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1 Abstract

In this paper, we have proposed a prey predator model to study systematically
dynamical properties of the model with non-linear prey and predator harvest-
ing . Here we showed that the system has positivity and uniform boundedness
by applying mathematical tools. We also obtained equilibrium points and ana-
lyzed bifurcations at these equilibrium points. Here we analyzed existence and
stability of intewrior equilibrium point. Saddle-node , transcritical , and hopf
bifurcation are shown in this paper by varying values of parameter.Here we an-
alyzed local and global stability and got different conditions to see the system,
that is stable or not at equilibrium points. The main purpose of this work is to
obtain a complete mathematical analysis for this model.

2 Introduction

A prey predator model was proposed by Volterra under the assumptions: (1)
prey grows logistically in absence of predators, (2) when there is no prey ,
predators die out exponentially and (3) a predator consumes prey biomass as a
linear function of prey density. The model with the above assumption is given
by

dx

dt
= rx(1− x

k
)− axy (1)

dy

dt
= maxy − dy (2)

Where x and y denote the density of prey and predator respectively at time t.
The intrinsic growth rate and environmental carrying capacity for prey popu-
lation are denoted as r and k. The encounter rate at which predators kill prey
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is a, m is the conversion rate of prey which is eaten by new predators. d is the
natural death rate of predators. There are generally three types of harvesting:
(1) Constant harvesting where the number of individuals harvested per unit
time is constant, (2) Proportional harvesting

H(y) = qEy (3)

Which means the number of harvested individuals per unit time is proportional
to current population. (3) (Holling Type 2) nonlinear harvesting

H(y) =
qEy

m1E +m2y
(4)

Where q denote the catchability coefficient and E is the effort, m1 and m2 are
suitable positive constants.
In this section we proposed a prey predator model

dx

dt
= rx(1− x

k
)− c1xy −

c2xy

a+ x
− d1x

2 − q1Ex

dy

dt
= mc1xy +

mc2xy

a+ x
− d2y

2 − dy − q2Ey (5)

with positive initial conditions

x(0) > 0, y(0) > 0 (6)

Here x(t) and y(t) denote prey and predator density at time t.Where r and k are
intrinsic growth rate and environmental carrying capacity for prey population
respectively. c1 is the encounter rate at which predators consumes prey, m
is the conversion rate of eaten prey into new predators. c2 is the maximum
value of the per capita reduction rate of prey. a measures the extent to which
the environment provides protection to prey and predator. d1, and d2 are the
intraspecific competition for prey and predator respectively. All the parameters
are assumed to be positive.

3 Mathematical analysis

3.1 Positivity

Theorem 1. All solutions (x(t), y(t)) of system (9) with initial condition (6)
are positive for all t ≥ 0.

Proof. From first equation of (9), after integrating it is obtained that

x(t) = x(0) exp[

∫ t

0

{r(1− x(s)

k
)− c1y(s)−

c2y(s)

a+ x(s)
− d1x(s)− q1E}ds] > 0

Since x(0) > 0
Similarly by integrating the second equation of (9) we obtained that
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y(t) = y(0) exp[

∫ t

0

{mc1x(s) +
mc2x(s)

a+ x(s)
− d2y(s)− d− q2E}ds] > 0

as y(0) > 0
This shows the positivity of all solutions of the system.

3.2 Boundedness

Theorem 2. All solutions (x(t),y(t)) of system (9) with initial condition (6)
are uniformly bounded.

Proof. Let us consider the function

W (t) = x(t) +
1

m
y(t)

Then after simplification, we get

dW

dt
+H1W ≤ rx+H1x+

H1

m
y

Now considering

rx+H1x+
H1

m
y = H2

We get

dW

dt
+H1W ≤ H2

Therefore

0 ≤ lim
t→∞

W (t) ≤ H2

H1

as t→ ∞
Hence all solutions of (9), which are initiating from R2

+ are confined in the
region
R = {(x, y) ∈ R2

+ : 0 < x(t) + 1
my(t) < H2 + ϕ, foranyϕ > 0} Hence uniform

boundedness of solutions of the system is proved.

4 Equilibria

To find the equilibria of the system (9), we have to consider

dx

dt
= 0 (7)

dy

dt
= 0 (8)
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By simple calculation we get the axial equilibria of the system (9) as follows:
(1) Trivial or prey-predator free equilibrium point E0 = (0, 0)
(2) Predator free equilibrium point E1 = (x1, 0) where

x1 =
r − q1E
r
k + d1

which exist if r > q1E
(3) interior equilibrium point E∗(x∗, y∗)
where x∗ and y∗ satisfies the following system of equation:

dx

dt
= rx(1− x

k
)− c1xy −

c2xy

a+ x
− d1x

2 − q1Ex = 0

dy

dt
= mc1xy +

mc2xy

a+ x
− d2y

2 − dy − q2Ey = 0

4.1 Local stability analysis

The Jacobian matrix for system is

J =

(
r − 2rx

k − c1y − ac2y
(a+x)2 − 2d1x− q1E −c1x− c2x

a+x

mc1y +
amc2y
(a+x)2 mc1x+ mc2x

a+x − 2d2y − d− q2E

)
So here
tr(J) = r − 2rx

k − c1y − ac2y
(a+x)2 − 2d1x− q1E +mc1x+ mc2x

a+x − 2d2y − d− q2E

and
det(J) = (r− 2rx

k − c1y− ac2y
(a+x)2 −2d1x−q1E)(mc1x+

mc2x
a+x −2d2y−d−q2E)−

(−c1x− c2x
a+x )(mc1y +

amc2y
(a+x)2 )

So if
|det(J)| < 1 then the system is dissipative dynamical system and if |det(J)| = 1
then the system is conservative dynamical system, and is an undissipated system
ottherwise

4.1.1 Stability and dynamic behaviour of E0

At E0(0, 0)

JE0
=

(
r − q1E 0

0 −d− q2E

)
Therefore

E0(0, 0) is
(a) sink if |r − q1E| < 1 and| − d− q2E| < 1
(b)source if |r − q1E| > 1 and| − d− q2E| > 1
(c) saddle if |r−q1E| > 1 and |−d−q2E| < 1, or |r−q1E| < 1 and |−d−q2E| > 1
(d) Non-hyperbolic if |r − q1E| = 1 or | − d− q2E| = 1

4.1.2 Stability and dynamic behaviour of E1

At E1(x1, 0)
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JE1
=

(
r − 2rx1

k − 2d1x1 − q1E −c1x1 − c2x1

a+x1

0 mc1x1 +
mc2x1

a+x1
− d− q2E

)
So here we get the two eigen values which are
r − 2rx1

k − 2d1x1 − q1E and mc1x1 +
mc2x1

a+x1
− d− q2E

So E1(x1, 0) is a
(a) sink if |r − 2rx1

k − 2d1x1 − q1E| < 1 and |mc1x1 + mc2x1

a+x1
− d− q2E| < 1

(b) Source if |r − 2rx1

k − 2d1x1 − q1E| > 1 and |mc1x1 + mc2x1

a+x1
− d− q2E| > 1

(c) Saddle if |r − 2rx1

k − 2d1x1 − q1E| > 1 and |mc1x1 + mc2x1

a+x1
− d − q2E| < 1

or |r − 2rx1

k − 2d1x1 − q1E| < 1 and |mc1x1 + mc2x1

a+x1
− d− q2E| > 1

(d) Non-hyperbolic if |r− 2rx1

k −2d1x1−q1E| = 1 or |mc1x1+mc2x1

a+x1
−d−q2E| = 1

4.1.3 Dynamical behaviour of the interior equilibrium point E∗(x∗, y∗)

At the interior equilibrium point E∗(x∗, y∗)

JE∗ =

(
M11 M12

M21 M22

)
Where

M11 = r − 2rx∗

k
− c1y

∗ − ac2y
∗

(a+ x∗)2
− 2d1x

∗ − q1E

M12 = −c1x∗ −
c2x

∗

a+ x∗

M21 = mc1y
∗ +

amc2y
∗

(a+ x∗)2

M22 = mc1x
∗ +

mc2x
∗

a+ x∗
− 2d2y

∗ − d− q2E

Here T = tr(JE∗) =M11 +M22 and D = det(JE∗) =M11M22 −M12M21

If 1− tr + det > 0, then interior equilibrium point is a
(a)Sink if 1 + tr + det > 0 and det < 1
(b) Source if 1 + tr + det > 0 and det > 1
(c) Saddle if 1 + tr + det < 0
(d) Non-hyperbolic if 1 + tr+ det = 0 and tr ̸= 0 or tr2 − 4det < 0 and det = 1

4.2 Global Stability Analysis

Theorem 3. The positive interior equilibrium point is globally asymptotically
stable if

c2
(a+ x∗)2

<
r

y∗k
+
d1
y∗

+
d2
x∗

(9)

Proof. For proving the global stability of positive interior equilibrium point
E∗(x∗, y∗) we construct a Lyapunov function L(x, y) = 1

xy
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Clearly L > 0 if x > 0 and y > 0.
Let,

h1(x, y) = rx(1− x

k
)− c1xy −

c2xy

a+ x
− d1x

2 − q1Ex

h2(x, y) = mc1xy +
mc2xy

a+ x
− d2y

2 − dy − q2Ey

So,

∂(h1L)

∂x
+
∂(h2L)

∂y
=

−r
yk

+
c2

(a+ x)2
− d1

y
− d2

x
(10)

So if at E∗(x∗, y∗)
∂(h1L)

∂x + ∂(h2L)
∂y < 0

that is if
−r
y∗k

+ c2
(a+x∗)2

− d1

y∗
− d2

x∗
< 0

Then E∗(x∗, y∗) is globally asymptotically stable

4.3 Permanence

Theorem 4. The system (9) is permanent if
(a) p1(r − q1E) + p2(−d− q2E) > 0
(b)p1[r − rx1

k − d1x1 − q1E] + p2[mc1x1 +
mc2x1

a+x1
− d− q2E] > 0

(c)p1[r(1− x2

k )−c1y2− c2y2

a+x2
−d1x2−q1E]+p2[mc1x2+

mc2x2

a+x2
−d2y2−d−q2E] > 0

Proof. Let the average Lyapunov function for system (9) be

σ(x, y) = xp1y
p
2 (11)

Clearly , σ(x, y) is a non-negative C1 function defined in R2
+ and each pi is

assumed to be positive.Then

ψ(x, y) =
σ̇(x, y)

σ(x, y)
(12)

= p1
ẋ

x
+ p2

ẏ

y
(13)

= p1[r(1−
x

k
− c1y −

c2y

a+ x
− d1x− q1E] + p2[mc1x+

mc2x

a+ x
− d2y − d− q2E](14)

At E0(0, 0)

ψ(x, y) = p1(r − q1E) + p2(−d− q2E) (15)
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At E1(x1, 0)

Ψ(x, y) = p1[r −
rx1
k

− d1x1 − q1E] + p2[mc1x1 +
mc2x1
a+ x1

− d− q2E] (16)

At E2(x2, y2)

ψ(x, y) = p1[r(1−
x2
k
)− c1y2 −

c2y2
a+ x2

− d1x2 − q1E] + p2[mc1x2 +
mc2x2
a+ x2

− d2y2 − d− q2E] (17)

Therefore if at E0(0, 0) , E1(x1, 0) and E2(x2, y2)
ψ(x, y) > 0 , that is if

p1(r − q1E) + p2(−d− q2E) > 0 (18)

p1[r −
rx1
k

− d1x1 − q1E] + p2[mc1x1 +
mc2x1
a+ x1

− d− q2E] > 0 (19)

p1[r(1−
x2
k
)− c1y2 −

c2y2
a+ x2

− d1x2 − q1E] + p2[mc1x2 +
mc2x2
a+ x2

− d2y2 − d− q2E] > 0 (20)

Then the system is permanent.

5 Bifurcation

5.1 Transcritical and Saddle node bifurcation

In this subsection, we are interested in transcritical bifurcation of system (9) by
using Sotomayor’s theorem.

Theorem 5. (1) System (9) undergoes a transcritical bifurcation around E0(0, 0)
if r − q1E = 0
(2) System (9) undergoes transcritical bifurcation around E1(x1, 0) if x1 = kand
x1 ̸= k

2 , and saddle node bifurcation if x1 ̸= k.

Proof. (1) For proving that the model (9) undergoes a transcritical bifurcation
around E0(0, 0), We use Sotomayor’s theorem by considering r as the bifurca-
tion parameter.
At E0(0, 0)

JE0 =

(
r − q1E 0

0 −d− q2E

)
. (21)

According to Sotomayor’s theorem at E(0, 0) transcritical bifurcation occurs if
one of the eigen values of the jacobian at E0(0, 0) is zero and the other eigen
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value has negative real part i.e if r = q1E. Here

FrE0 =

(
x− x2

k
0

)
So at E0(0, 0)

FrE0 =

(
0
0

)
So
WTFrE0 = 0
Let V and W are eigen vectors coresponding to zero eigen value of J(E0) and
J(E0)

T respectively. After simple calculation we get

V =

(
v1
v2

)
≡
(

1
0

)
(22)

Similarly, we get

W =

(
w1

w2

)
≡
(

1
0

)
(23)

Also after easy calculation, we get

WTDFrE0V = 1 ̸= 0 and

WTD2FrE0(V, V ) = −2r
k − 2d1 ̸= 0

So a transcritical bifurcation occurs around E(0, 0).
(2) At E1(x1, 0)

let V and W are eigen vector coresponding to zero eigen value of J(E1) and
J(E1)

T respectively , where

V =

(
v1
v2

)
≡
(

1
0

)
(24)

Similarly we get

W =

(
w1

w2

)
≡
(

1

−Q1

Q2

)
(25)

where

Q1 = −c1x1 −
c2x1
a+ x1

Q2 = mc1x1 +
mc2x1
a+ x1

− d− q2E (26)
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FrE1 =

(
x1 − (x1)

2

k
0

)
and we get

WTFrE1 = x1 −
(x1)

2

k

WTDFrE1V = 1− 2
x1
k

(27)

WTD2FE1
(V, V ) = −2

r

k
− 2d1

Therefore we get if x1 = k and x1 ̸= k
2 , then transcritical bifurcation occurs at

predator free equilibrium E1(x1, 0), and if x1 ̸= k then saddle node bifurcation
occurs at E1(x1, 0).

5.2 Existence and stability of Hopf bifurcation

At E∗(x∗, y∗) if
(a) tr(JE∗) = 0
(b) det(JE∗) > 0
(c) d

dr tr(JE∗) ̸= 0
then the system undergoes a hopf bifurcation at interior equilibrium point.
So if
(a) M11 +M22 = 0
(b) M11M22 −M12M21 > 0
(c) x∗ ̸= k

2
then the system undergoes a hopf bifurcation. Now if A > 0 then the periodic
orbit is unstable i.e the bifurcation is subcritical and if A < 0 then the periodic
orbit is stable i.e the bifurcation is supercritical.
where

A =
1

16
(fxxx + fxyy + gxxy + gyyy) +

1

16w
[fxy(fxx + fyy)− gxy(gxx + gyy)− fxxgxx + gyyfyy]

Here

A =
1

16w
[d1(c1 +

ac2
(a+ x)2

) + d2(mc1 +
mac2

(a+ x)2
)]

which implies that A > 0.So the hopf bifurcation is subcritical.
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