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ABSTRACT 

Concentric objects are often part of the broad category of whorled patterns, which also includes a curve 

which emanates from a point, moving farther away as it revolves around the point. This ignited us to think over 

collection of open sets forms a chain where the core open set is non empty and all the other open sets originates 

from it.  This paves us a way to develop the new concept layer topology.  Moreover, an attempt has been done to 

extend this definition in infinite domains like real numbers as standard layer topology, lower limit layer topology 

and upper limit topology in terms of bases. A comparative study has also done among them. Its properties and 

characterizations were also studied. Finally, we have given a new graphic approach to the layer topological 

structure. Further it was extended to associate the layer open sets with some special types of graphs such as cycle, 

complete graph, path graph and complete bipartite graph. 
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I. INTRODUCTION  
 

Topology is a main branch of mathematics. Modern topology depends strongly on the ideas of set theory, 

developed by Georg Cantor in the later part of the 19th century. Informally, a topology describes how elements 

of a set relate spatially to each other. In 1983, Mashhour et al. came up with an idea of supra topological spaces 

by dropping a finite intersection condition of topological spaces. In 2015, Adel. M. Al-Odhari, introduced the 

concept of infra topological spaces removing the arbitrary union condition of topological spaces. In 2022, [2]Amer 

Himza Almyaly introduced the concept of interior topology. In nature all occurring process are towards a centre 

and all the other objects are originated from it.  The concept of layer topology was initiated from a nonempty core 

open set which is a source of the other layer open sets.  

 

 

II. PRELIMINARIES 
 

   In this section, we recalled some basic definitions related to topology and graph theory. All these 

definitions can be found in the sources [2], [4] and [5]. 

  A topology on a nonempty set X is a collection τ of subsets of X having the following properties: (i) 𝜙 and X 

are in τ. (ii) The union of the elements of any subcollection of τ is in τ. (iii) The intersection of the elements of 

any finite subcollection of τ is in τ. A set X for which a topology τ has been specified is called a topological space. 

Let X be a topological space with topology τ. If Y is a subset of X, the collection τY = {Y ∩ U : U ∈ τ} is a 

topology on Y, called the subspace topology(relative topology). Let X be a nonempty set. A subclass It ⊆ P(X) is 

called interior topology on X if the following is satisfied: (a) ∅ ∉ It  (b) It is closed under an arbitrary union of 

elements of It (c) It is closed under the arbitrary intersection of elements of It. An interior topological space is set 

X together with the interior topology It on X. 

  A graph G = (V, E) consists of a set of objects V = {v1, v2, · · · } called vertices, and another set                                

E = {e1, e2, · · · }, whose elements are called edges, such that each edge ek is identified with an unordered pair   

(vi, vj) of vertices. The graph G is finite if the number of vertices and the number of edges in G if finite; otherwise, 

it is an infinite graph. If any vertex can be reached from any other vertex in G by travelling along the edges, then 

G is called connected graph. The number of edges incident on a vertex v is called the degree. A vertex of degree 

one is called an end vertex. A walk is defined as a finite alternating sequence of vertices and edges, beginning and 

ending with vertices, such that each edge is incident with the vertices preceding and following it. No edge appears 

more than once in a walk. It is possible for a walk to begin and end at the same vertex. Such a walk is called a 

closed walk. A walk that is not closed is called an open walk. An open walk in which no vertex appears more than 

once is called a path. A closed walk in which no vertex (except the initial and the final vertex) appears more than 

once is called a circuit. A circuit is also called a cycle. 



 

  

 

III. NEW RESULTS 

 

A. Layer topology 

 In this section, we have introduced the concept of layer topological space and studied some of its 

properties. 

 

Definition 3.1 Let X be a non-empty set. The collection ℒ of subsets of X is called Layer topology on X if the 

following conditions are satisfied: (i) φ ∉ ℒ and X ∈ L (ii) If A1, A2, · · ·, An (n ϵ ˄) ∈ ℒ, then A1 ⊂ A2 ⊂ · · · ⊂ 

An.  Also (X, ℒ) is called the layer topological space. The elements of ℒ are called ℓ-open sets. By condition (ii), 

arbitrary union of ℓ-open sets is ℓ-open and arbitrary intersection of ℓ-open sets is ℓ-open.   

 

Example 3.2 Let X = {a, b, c, d}. Then ℒ = {{a}, {a, b}, {a, b, c}, X} is a layer topology on X. Also (X, ℒ) is 

the layer topological space. 

 

Example 3.3 Let X = C, the set of all complex numbers and ℒ = {N, W, Z, Q, R, C}, where N is the set of all 

natural numbers, W is the set of all whole numbers, Z is the set of all integers, Q is the set of all rational numbers, 

R is the set of all real numbers. Clearly (X, ℒ) is the layer topological space. 

 

Definition 3.4 A layer topology ℒ on a set X having only two ℓ-open sets is called the indiscrete layer 

topological space. 

 

Remark 3.5 The following example shows that indiscrete layer topology on a set X is not unique.  

 

Example 3.6 (i) Let X = {a, b, c, d, e}. The following are some of the indiscrete layer topologies on X. 

ℒ1 = {{a, b, c}, X}  

ℒ2 = {{a, d}, X}  

ℒ3 = {{b}, X} 

(ii) Let X = ℝ, the set of all real numbers.  

ℒ1 = {ℤ, ℝ}, where ℤ is the set of all integers 

ℒ2 = {ℚ, ℝ}, where ℚ is the set of all rational numbers 

 

Definition 3.7 A layer topology ℒ on a set X having ’n’ elements is said to be discrete if it has exactly ’n’ 

number of ℓ-open sets. (i.e) |ℒ| = n. 

 

Remark 3.8 The following example shows that the discrete layer topology on a finite set is not unique.  

 

Example 3.9 Let X = {a, b, c, d}. The following are some of the discrete layer topologies on X.  

ℒ1 = {{a}, {a, b}, {a, b, c}, X}.  

ℒ2 = {{a}, {a, c}, {a, b, c}, X}.  

ℒ3 = {{b}, {a, b}, {a, b, d}, X}.  

ℒ4 = {{c}, {a, c}, {a, b, c}, X}.  

ℒ5 = {{d}, {a, d}, {a, b, d}, X}. 

 

Definition 3.10 A subset of A of a layer topological space is said to be ℓ-closed set if X-A is ℓ-open.  

 

Theorem 3.11 Let (X, ℒ) be a layer topological space, then the collection ℒ* of all ℓ-closed sets satisfy the 

following: (i) X∉   ℒ *, φ ∈ ℒ *  (ii) If C1, C2, · · · , Cn (n ϵ ˄) ∈ ℒ *  then C1 ⊃ C2 ⊃ · · · ⊃ Cn.  

Proof. 

 (i) X ∈ L ⇒ φ ∈ ℒ *  and φ ∉ ℒ ⇒ X ∈ ℒ *.  

(ii) Let C1, C2, · · · , Cn ∈ ℒ *  . Then Ci = Ai
c, i = 1, 2, · · · , n, where Ai ∈ ℒ.  

Also, A1 ⊂ A2 ⊂ · · · ⊂ An ⇒ 𝐴1
𝑐⊃ 𝐴2

𝑐  ⊃ · · · ⊂ 𝐴𝑛
𝑐  . Hence C1 ⊃ C2 ⊃ · · · ⊃ Cn. 

 

Definition 3.12 Let (X, ℒ) be a layer topological space, then x ∈ X is called a core point if x ∈ U, ∀U ∈ ℒ.                

The set of all core points is called the core set denoted by ℂ. 

 

Example 3.13 In Example 3.2, {a} is the core set and in Example 3.3, N is the core set. 

 

Theorem 3.14 Let (X, ℒ) be a layer topological space, then the following are equivalent.  

(i) ℂ ⊆ X is the core set. 



 

  

(ii) ℂ = ∩ Ui ; ∀Ui ∈ L.  

(iii) ℂ is the minimal ℓ-open set.  

Proof. (i) ⇒ (ii) Let ℂ be the core set. By definition ℂ ⊆ Ui, ∀i. ⇒ C ⊆ ∩ Ui.  

To prove the other side, let x ∈ ∩ Ui ⇒ x ∈ Ui , ∀ i ⇒ x ∈ ℂ. Hence ℂ = ∩ Ui.  

(ii) ⇒ (iii) Let ℂ = ∩ Ui ; ∀ Ui ∈ ℒ. Then ℂ is the subset of every ℓ-open set. Hence ℂ is the minimal ℓ-open set. 

(iii) ⇒ (i) Let A be a minimal ℓ-open set and ℂ be the core set. Then A ⊆ ℂ. To prove ℂ ⊆ A. Suppose not, there 

exist x ∈ ℂ such that x ∉  A. Now x ∈ ℂ means x is the core point and x ∈ Ui, ∀i, where Ui is the ℓ-open set. 

Therefore x ∈ A. Which is a contradiction. Hence A = ℂ. 

 

Theorem 3.15 In layer topological space the core set is unique.  

Proof. Let (X, ℒ) be a layer topological space. We have ℂ = ∩ Ui , Ui’ s are the ℓ-open sets. Also, ∩ Ui = Ui for 

some i. Therefore, ℂ is a ℓ-open set. Suppose ℂ1 and ℂ2 are two core sets in (X, ℒ). Now ℂ1 = ∩ Ui = ℂ2. Hence 

the core set exists and unique. 

 

Definition 3.16 Let (X, ℒ) be a layer topological space, then x ∈ X is called a border point if x ∉  U, ∀ U ∈ L 

such that U ≠ X. The set Ꞗ of all border points is called the border set. 

 

Example 3.17 In Example 3.2, {d} is the border set and in Example3.3, the set of all purely imaginary numbers 

is the border set. 

 

Remark 3.18 Border set is not a ℓ-open set. 

 

Remark 3.19 Discrete layer topology has exactly one core point and one border point.  

 

Theorem 3.20 Core set and border set of a layer topology are disjoint.  

Proof. Let (X, ℒ) be a layer topological space. Let ℂ be the core set and Ꞗ the border set.  

Suppose ℂ ∩ Ꞗ ≠ φ. Let x ∈ ℂ ∩ Ꞗ. Then x ∈ ℂ and x ∈ Ꞗ. Now from the definition of border set if x ∈ Ꞗ then 

x ∉  U, ∀U ∈ L such that U ≠ X. Therefore x ∉ ℂ. Which is a contradiction. Hence ℂ ∩ Ꞗ = φ. 

 

Theorem 3.21 No two distinct ℓ-open sets have the same number of elements. 

Proof. Let A and B be distinct ℓ-open sets. From the definition it is clear that, either A ⸦ B or B ⸦ A. Hence 

they have different number of elements. 

 

Theorem 3.22 Let X be a non-empty set with ‘n’ elements and ℒ be a layer topology on X. Then ℒ has a 

maximum of ‘n’ number of ℓ-open sets.  

Proof. Suppose ℒ has a maximum of ‘n + 1’ ℓ-open sets. Let ℒ = {A1, A2, A3, · · ·, An, X} and |A1| = 1, |A2| = 2, 

· · · |An| = n. Also |X| = n. ∴ |An| = |X|. Which is a contradiction, by theorem 3.14. 

 

Definition 3.23 Suppose ℒ and ℒ ‘ are two layer topologies on a set X. If ℒ  ⸧ ℒ ‘, then we say that ℒ ‘ is finer 

than ℒ; if ℒ ‘ properly contains ℒ, we say that ℒ ‘ is strictly finer than ℒ. Also we say that ℒ is coarser than  ℒ ‘; 

if ℒ properly contained in ℒ ‘, we say that ℒ  is strictly coarser than ℒ ‘. We say that ℒ is comparable with ℒ ‘ if 

either ℒ  ⸧ ℒ ‘ or ℒ ‘ ⸧ ℒ . 

 

Example 3.24 Let X = {a, b, c, d}. The layer topologies ℒ1 = {{a}, {a, d}, X} and ℒ2 = {{a}, {a, d}, {a, c, d}, 

X} are comparable such that ℒ1 ⸦ ℒ2. 

 

B. Relative layer topology 

 In this section, we have discussed the condition for the subspace layer topology. 

Theorem 4.1 Let (X, ℒ) be a layer topological space and ℂ ⊆ X be the core set and let Y ⊆ X such that Y ∩ ℂ 

≠  φ then the collection ℒY = {U ∩ Y : ∀ U ∈ ℒ} is a layer topology on Y .  

Proof. (i) Let Y ⊆ X, then X ∩ Y = Y ∈ ℒY.  

(ii) Let A1, A2, … An ∈ ℒY.  

Then A1 = U1 ∩ Y, A2 = U2 ∩ Y, …, An = Un ∩ Y, where U1, U2, …, Un ∈ ℒ, such that U1 ⸦ U2 ⸦ …, Un. 

Now, (U1 ∩ Y) ⸦ (U2 ∩ Y) ⸦… ⸦ (Un ∩ Y) ⇒ A1 ⊂ A2 ⊂ · · · ⊂ An. 

(iii) Suppose φ ∈ ℒY. Then there exist some A ∈ ℒ such that A ∩ Y = φ.  

⇒ (ℂ ∩ A) ∩ (ℂ ∩ Y) = ℂ ∩ φ, where ℂ is the core set of (X, ℒ).  

⇒ ℂ ∩ (ℂ ∩ Y) = φ.  

⇒ ℂ ∩ Y = φ. Which is a contradiction. Hence φ ∉ ℒY.  

 



 

  

Definition 4.2 The collection ℒY is called relative layer topology on Y ⊆ X and (Y, ℒY) is called relative layer 

topological space.  

 

Example 4.3 Let X = {a, b, c, d} and ℒ = {{b}, {b, d}, {a, b, d}, X} be the layer topology on X.  

Consider Y = {b, c, d}, then the relative layer topology ℒY = {{b}, {b, d}, Y}. 

 

C. Layer topology in ℝ 

 In this section, we have defined a base for the layer topology and some special types of layer topologies 

generated by the layer base in ℝ. 

 

Definition 5.1 Let (X, ℒ) be a layer topological space and ℬ ⊆ ℒ. Then ℬ is called a base for a layer topology 

ℒ if every ℓ-open set U ∈ ℒ is a union of members of ℬ. Equivalently, ℬ is a layer base for ℒ if for any x ∈ U 

∈ ℒ, there exist B ∈ ℬ such that x ∈ B ⊆ U. 

 

Lemma 5.2 Let ℬ and ℬ’ be bases for the layer topologies ℒ and ℒ ‘respectively on X. Then the following are 

equivalent. 

(i) ℒ ‘ is finer than ℒ . 

(ii) For each x ϵ X and each basis element B  ϵ ℬ containing x, there is a basis element  B’ ϵ ℬ’ such that          

x ϵ B’ ⊆ B. 

Proof. (ii) ⇒ (i). Given U ϵ ℒ. To prove U ϵ  ℒ ‘.  

Let x ϵ U. Since ℬ generates ℒ, there is an element B ϵ ℬ  such that x ϵ B ⊆ U. By(ii), there exist an element  

B’ ϵ ℬ’ such that x ϵ B’ ⊆ B. Then x ϵ B’ ⊆  U. So U ϵ  ℒ ‘. 

(i) ⇒ (ii). Given x ϵ X and B ϵ ℬ, with x ϵ B. Now B ϵ ℒ and ℒ ⸦ ℒ ‘. Therefore B ϵ  ℒ ‘. Since ℒ ‘ is 

generated by ℬ’, there is an element B’ ϵ ℬ’ such that x ϵ B’ ⊆ B. 

 

Definition 5.3 If ℬ is the collection of all open intervals in ℝ (the set of real numbers), of the form (-n, n);         

n ϵ ℝ, the layer topology generated by ℬ is called the standard layer topology on ℝ, denoted by ℒℝ. 

 

Definition 5.4 If ℬ’ is the collection of all half-open intervals in ℝ, of the form [-a, a); a ϵ ℝ, the layer topology 

generated by ℬ’ is called the lower limit layer topology on ℝ, denoted by ℒL. 

 

Definition 5.5 If ℬ’’ is the collection of all half-open intervals in ℝ, of the form (-b, b]; b ϵ ℝ, the layer 

topology generated by ℬ’’ is called the upper limit layer topology on ℝ, denoted by ℒU. 

 

Lemma 5.6 The layer topologies of ℒL and ℒU strictly finer than the standard layer topology on ℝ, but are not 

comparable with one another. 

Proof.  Let ℒ, ℒ ’ and ℒ ” be the layer topologies of ℒℝ, ℒL and ℒU, respectively. Given a basis element (-n, n) 

for ℒ and a point x of (-n, n), the basis element [-x-ε, x+ε) for ℒ ‘ contains x and lies in (-n, n). On the other hand, 

given the basis element [-a, a) for ℒ ’ , there is no open interval (-n, n) that contains ‘-a’ and lies in [-a, a). Thus 

ℒ ’ is strictly finer than ℒ. 

 Given a basis element (-n, n) for ℒ and a point x of (-n, n), the basis element (-x-ε, x+ε] for ℒ ” contains 

x and lies in (-n, n). On the other hand, given the basis element (-b, b] for ℒ ”, there is no open interval (-n, n) that 

contains ‘b’ and lies in (-b, b]. Thus ℒ ” is strictly finer than ℒ. 

 Given a basis element [-a, a) for ℒ ‘, and -a ϵ [-a, a) there is no basis element (-b, b] for ℒ ” that contains 

‘-a’ and lies in [-a, a). On the other hand, given basis element (-b, b] for ℒ ”, and b ϵ (-b, b] there is no basis 

element [-a, a) for ℒ ’ that contains ‘b’ and lies in (-b, b]. Hence the layer topologies of ℒL and ℒU are not 

comparable.  

 

Definition 5.7 For a fixed x ϵ ℝ or y ϵ ℝ, if ℬ1 is the collection of all open intervals in ℝ, of the form (x, y);      

x < y, the layer topology generated by ℬ1 is called the open ray layer topology on ℝ. 

 

Definition 5.8 For a fixed x ϵ ℝ or y ϵ ℝ, if ℬ2 is the collection of all closed intervals in ℝ, of the form [x, y] ;    

x  < y, the layer topology generated by ℬ2 is called the closed ray layer topology on ℝ. 

  

D. Layer topology on graphs 

 In this section, we have defined layer topology for each non empty proper subset of the vertex set V of 

a simple connected graph G. 

 

Definition 6.1 Let G = (V, E) be a simple connected graph. The closed neighbourhood of the sub set A of V is 

defined by, N[A] = A ∪ {v ϵ V-A : uv ϵ E, ∀ u ϵ A}. 



 

  

 
Definition 6.2 Let G = (V, E) be a simple connected graph with ‘n’ vertices. Then the layer topology 

corresponding to a non-empty proper subset A of V is defined as ℒA = {A, A1, A2, …, Ak}, where Ai = N[Ai-1],  

i = 2, 3, …, k;  k <  n; with Ak = V.  

 

Example 6.3 Consider a graph in figure 1, with vertex set V = {a, b, c, d}. 

 
Figure 1. 

ℒ{b} = {{b}, {a, b}, V}; 

ℒ{a,d} = {{a, d}, V}.  

 

Theorem 6.4 The layer topology corresponding to every vertex in a complete graph is indiscrete. 

Proof. Let V = {v1, v2, …, vn} be the vertex set a complete graph Kn. Consider vi ϵ V. Since vi is adjacent to every 

other vertex, the layer topology corresponding to a vertex vi ϵ V is ℒ{vi} = {{vi}, V}. 

 

Theorem 6.5 The layer topology corresponding to every vertex in a complete bipartite graph has exactly three 

ℓ-open sets. (i.e) |ℒ{v}| = 3, ∀ v ϵ V. 

Proof. Let V be the vertex set of a complete bipartite graph Km, n. Let V can be partitioned into V1 and V2 such 

that V1 ∪ V2  = V and V1 ∩ V2 = φ. Let V1 = {x1, x2, …, xm} and V2 = {y1, y2, …, yn}. Let xi ϵ V1 ; i = 1,2,…, m, 

then the layer topology ℒ{xi} = {{xi}, {xi, y1, y2, …, yn}, V}. Now, yj ϵ V2 ; j = 1,2,…, n, then the layer topology   

ℒ{yi} = {{yj}, {yj, x1, x2, …, xm}, V}. Hence for every vertex v ϵ ℒ, |ℒ{v}| = 3. 

 

Theorem 6.6 The layer topology corresponding to the end vertices of a path graph Pn is discrete. 

Proof.  Let V = {v1, v2, …, vn} be the vertex set a path graph Pn. Consider v1 ϵ V. Then ℒ{v1} = {{A1, A2, …, 

An}, where A1 = {v1}, A2 = {v1, v2}, … An = V, is a discrete layer topology. Similar argument for vn ϵ V. 

 

Theorem 6.7 Let G = (V, E) be a cycle graph Cn ; n ≥ 3, and ℒ{v} be a layer topology corresponding to a vertex 

v ϵ V, then |ℒ{v}| = {

(𝑛+1)

2
 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛

2
+ 1 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

   

Proof.  Let V = {v1, v2, …, vn}. Consider vi ϵ V. Since G is a cycle, for i = 1; vi-1 = vn, vi-2 = vn-1 and so on.  

Also, for i = n; vi+1 = v1, vi+2 = v2 and so on. 

Case(i). Suppose ‘n’ is odd.  

Let A1 = {vi}. Then A2 = N[A1] = {vi-1, vi, vi+1}, A3 = N[A2] ={vi-2, vi-1, vi, vi+1, vi+2}, …, 𝐴(𝑛+1)

2

 = V.  

Then ℒ{vi} = {A1, A2, …, 𝐴(𝑛+1)

2

} is a layer topology, with |ℒ{vi}| = 
(𝑛+1)

2
. 

Case(ii). Suppose ‘n’ is even.  

Let A1 = {vi}. Then A2 = N[A1] = {vi-1, vi, vi+1}, A3 = N[A2] = {vi-2, vi-1, vi, vi+1, vi+2}, …, 𝐴(
𝑛

2
+1)= V.  

Then ℒ{vi} = { A1, A2, …, 𝐴(
𝑛

2
+1)} is a layer topology, with |ℒ{vi}| = 

𝑛

2
+ 1. 

 

IV. CONCLUSION 

 

            In this paper, we have explored the concept of layer topology and studied its basic properties and 

characterisations. We have also induced layer topological structure from graphs. In addition, we have also 

analysed and enumerated the layer open sets for some special types of graphs.   In future, we will extend this 

notion to compactness and separation axioms.  Also, this idea may be extended to determine various parametres  

of  a given graph which may lead us to give some real life applications. 
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