
A unique potential to study scattering and fusion phenomena in heavy ion collisions
around Coulomb barrier

Bidhubhusan Sahu1,∗, Kamala Kanta Jena2, Santosh Kumar Agarwalla3
Department of Physics, School of Applied Sciences, KIIT Deemed to be University, Bhubeneswar-751024, Odisha, India

2P. G. Department of Physics, Bhadrak Autonomous College, Bhadrak-756100, India
3Department of Applied Physics and Ballistics, Fakir Mohan University, Balasore-756019, India

∗Email: bbsahufpy@kiit.ac.in, kkjena1@gmail.com, san1612@rediffmail.com

Abstract: To examine the data of angular variation in elastic scattering cross sections, a systematic recursive formula of the
partial-wave scattering matrix for the total effective complex potential of nucleus-nucleus collisions is developed. The cross sec-
tions for the absorption from arbitrarily small intervals are also expressed in an additional manner. This results in an assessment
of the absorption contributions in the interior region of the effective potential, which explains the fusion cross section (σfus) data
for different incident center-of-mass energies Ec.m.. The interaction potential taken into account in this study is energy indepen-
dent and enables resonance states in various partial-wave trajectories owing to its weakly absorbing characteristic. Therefore, it
becomes clear that the occurrence of these resonances is the physical cause of the observable oscillatory structure in the modifica-
tion of the quantity D(Ec.m.), the second derivative of the product ”Ec.m.σfus” with respect to Ec.m.. In this chapter, we discuss
simultaneous and extremely effective descriptions of the cross sections for fusion, elastic scattering, and the outcomes of D(Ec.m.)
in various kinds of heavy-ion collisions.

1 Introduction
There have been numerous experiments on the nucleus-nucleus collision process, and extensive data on the angular distribution
of elastic scattering ( dσ(θ)

dσR(θ) ) at various incidence energies and fusion cross sections at firmly energy intervals are now available
[1]− [5]. Eight such systems come to mind in this regard: 12C+208Pb in Refs. [1, 3], 16O+208Pb in Refs. [2, 4], 19F+208Pb in
Refs. [6, 7], 16O+144Sm in Refs. [8–10], and 16O+62Ni in Refs. [11, 12] all of which include a wealth of information. Unlike
in light ion systems, the shape resonances generated by the effective potential in heavy ion systems, though present, are hardly
observable experimentally [13]. Further research is needed to ascertain the potential impact and expression of such resonances in
any other visible forms throughout the collision process. One employs the phenomenological potential, which is often complicated,
to analyse these heavy ion collision data. The observed values of the elastic scattering cross section at different energies are
fitted to determine all the parameters defining the potential. Using the same interaction potential, one has to explain the fusion
cross-section (σfus) data arising from the fusion process and resonance phenomena occurring via elastic scattering process of
the colliding nuclei. It is challenging to discover a special potential that can address both of these phenomena at the same time
since the scattering process is sensitive to the nature of the potential on the surface region and the fusing process is an internal
activity. Additionally, once the elastic scattering data has been obtained for the theoretical analysis, one can easily obtain the
results of the total reaction cross section (σr), which includes the cross section for various reaction channels, with the fusion
channel predominating in low energy collision activities. Now, a problem arises in extracting the part of reaction cross section
from the the total σr which can exactly account for the measured data of σfus.

The expected value of the imaginary component of the potential, calculated using the distorted waves from the full potential in
the elastic channel, accounts for σr within the scope of optical potential model analysis of scattering. This could be easily inter-
preted as the total of the cross sections caused by absorption in the various areas of the potential where the imaginary component
is actively present. Using the same wave function that describes the elastic scattering data, one can obtain the absorption cross
section σi

A in the infinitesimally small ith radial interval δri giving the total absorption cross section σA =
∑n

i=1 σ
i
A where n is

the total number of intervals such that the total range of the potential R=
∑n

i=1 δr
i. It is relatively simple to express clearly the

quantity of absorption over different regions or intervals of the potential using this equation for absorption. One anticipates that
the absorption in this spatial area 0 < r < RB has to account for the experimental results of the fusion cross section (σexpt

fus ) based
on the idea that the fusion of two nuclei happens in the region internal to the radial location (RB) of the electrostatic Coulomb
barrier. The exact radius Rfus up-to which absorption cross section is to be calculated to explain σexpt

fus is known as fusion radius.
This concept of fusion cross section has been used in the direct reaction model (DRM) of Udagawa et al. [14, 15]. However, they
have estimated the value of Rfus larger than the corresponding value of RB in most of the heavy ion systems analyzed thereby
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asking fusion to initiate before crossing the Coulomb barrier. This is contrary to the popular assumption [16, 17] that fusion only
takes place after the barrier has been fully penetrated and hence, this result has attracted severe criticism in the literature [18, 19].

In our present calculation, we overcome this problem and explain results of σexpt
fus in the cases of 12C+208Pb, 16O+208Pb,

19F+208Pb, 16O+144Sm, and 16O+62Ni systems with value of Rfus parameter always less than the value of RB in a given system.
Instead of employing Runge-Kutta or other comparable methods of numerical integration, we use an alternative approach to solve
the Schrödinger equation for a given nucleus-nucleus potential. Our approach is appropriate for the investigation of region-wise
absorption in the reaction process. We simulate the potential in our computation using arbitrarily tiny rectangular pieces, and
we establish an analytical formula for the scattering matrix (S-matrix), which is utilized to explain the elastic scattering data, by
employing accurate wave functions and their analytical continuation between neighboring parts. The quantity of absorption in
each tiny portion (width) of the potential is determined using the same wave functions. It turns out that the overall reaction cross
section σr is equal to the sum of all contributions for absorption across the whole range of potential. In contrast, we take into
consideration the total of the contributions for absorption across a constrained region 0 < r < Rfus inside the radial location RB

of the Coulomb barrier in order to explain why the value of the fusion cross section σfus is always less than that of σr. We’ve
confirmed that the outcomes of elastic scattering obtained using our approach and the Runge-Kutta method are identical.

In the collision of two heavy nuclei with incidence energies close to the Coulomb barrier, measurements with excellent accu-
racy reveal data of σfus at relatively close energy intervals. When heavy pairs of nuclei collide, the variation of the outcomes of
σfus with the bombarding center of mass energy Ec.m. seems smooth fluctuating without any distinctive characteristic or structure,
but it oscillates when light pairs of nuclei collide. But, when the product Ec.m.σfus is differentiated twice with respect to Ec.m.

using some point difference formula, the corresponding result of D(Ec.m.)=
d2(Ec.m.σfus)

dE2
c.m.

, generally referred to as barrier distri-
bution, exhibits peculiar oscillatory structure in its variation with Ec.m. [5]. The corresponding experimental results of D(Ec.m.)
in the cases of the above eight systems are explained with remarkable success in addressing the peak structure. The theoretical
results of σfus obtained in our above method of region-wise absorption at various incident Ec.m. are presented in the form of
D(Ec.m.). In this study, we identify the following crucial traits in the potential that we used; in addition to being very deep and
having little diffuseness, the real part is also highly strong compared to the imaginary part. Shape resonance states (experimentally
unseen) [13] might endure throughout the collision process as a result of the formation of standing waves in the nuclear well
because of the potential’s less absorptive character. The oscillating structure in the results of D(Ec.m.) as a function of Ec.m. is
consequently attributed to these resonances.

It should be noted that coupled-channels (CC) formulation is the natural language for investigating fusion processes at energies
around the Coulomb barrier. For this, a number of computer programmes, including CCFUS [20,21] and CCFULL [22], have been
created. Since there are many channels present in the heavy ion collision process due to its complexity, solving coupled equations
that take all of these channels into account is both difficult and time-consuming. Such formulations are, however, somewhat
schematic and include important approximations to ease the process of calculations. No matter how exhaustive the CC calculation
is, it has been noted [4] that simultaneous explanation of the aspects of both σfus and D(Ec.m.) in the majority of pairings of
nuclei is far from the satisfactory. This unsatisfactory circumstance is still present in the most current CC projections [23] based
on M3Y plus repulsion potential used to analyze the data of the 16O+208Pb system. According to a most recent calculation [24],
even the observed data of σfus alone from the deep sub-barrier area to the above barrier region of energy cannot be concurrently
reproduced by the CC calculations with the identical Woods-Saxon nuclear potential. The microscopic CC calculation is essentially
a one-dimensional barrier passing model [25, 26] that includes lots of barriers with different heights that are produced as a result
of coupling between the relative motion and the internal degrees of freedom of the colliding nuclei, such as static deformation,
collective vibration [27], inelastic excitation, and nucleon transfer [23]. In order to enforce an ingoing-wave boundary condition
for the barrier crossing model, the CC calculation for the fusion cross section does not take the influence of any mechanism
produced by the interaction potential in the interior pocket area into account because it is thought to be extremely absorptive.

The nucleus-nucleus potential in the interior or pocket area is a key component of the current formulation and is used to explain
the experimental results of σfus as well as the related function D(Ec.m.) generated from measured σfus. Due to the pocket’s
less absorptive character, the resonances that it produces successfully depict the oscillatory structure of D(Ec.m.). Furthermore,
although it is not stated directly in our model, the impact of coupling is implied. It is anticipated that the entrance channel potential
barrier would vary dramatically when a non-elastic channel is coupled with it [28], especially in the interior region r < RB , where
the effective potential will suddenly drop [29,30]. By choosing a low value for the diffuseness parameter in the Woods-Saxon form
of nuclear potential, this coupling effect may be easily included in the formulation. The current formulation includes the influence
of channel coupling in a phenomenological fashion by using such a modest diffuseness value in the simultaneous analysis of
elastic scattering and fusion cross section data. In section 1.2, we present the formulation for analytical expression for S-matrix
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and region-wise absorption. Application of the formulation is done in section 1.3 to the analysis of experimental data of dσ(θ)
dσR(θ) ,

σfus(Ec.m.) and D(Ec.m.) in the cases of 12C+208Pb, 16O+208Pb, 19F+208Pb, 16O+144Sm, and 16O+62Ni systems. We summarize
the results in section 1.4.

2 Formulation
In the nuclear optical model, which is frequently employed in the study of heavy ion collisions, the solution of the radial
Schrödinger equation for a complex Coulomb nuclear potential is the most significant component of the scattering and reaction
cross section. The complex nuclear potential (VN (r)), electrostatic or Coulomb potential (VC(r)), and the centrifugal component
(Vℓ(r)) are added to provide the effective potential in the radial equation. When solving the Schrödinger equation for this poten-
tial, it is most common to use the Runge-Kutta (RK) type method of numerical integration to obtain the wave function and its
derivative at a radial point outside the range of the nuclear potential. This wave function and derivative are then connected to the
exact Coulomb wave function and its derivative to obtain the results of the scattering matrix for the analysis of scattering data, etc.
However, with this procedure, it is not simple to separate a portion of the reaction cross-section from the entire reaction cross-
section to analyze the fusion cross-section. As a result, we use a practical but slightly different method to resolve the Schrödinger
equation [31–33].

Let’s start by carefully examining the s-wave scattering. A chain of ’n’ rectangular potentials with arbitrary small widths ’w’
can be thought of as a potential U(r). In reality, a similar process is implied in any numerical integration of a differential equation.
Having simulated the potential up to a maximum range r=Rmax, we have Rmax=

∑n
i wi where wi=w is the width of ith rectangle.

Let, in the jth region,
∑j−1

i=1 wi < r ≤
∑j

i=1 wi, the strength and width of the potential be denoted by Uj and wj , respectively.
The reduced Schrödinger equation in this region is

d2Φ(r)

dr2
+

2m

ℏ2
(E − Uj)Φ(r) = 0, (1)

with the following solution
Φj(r) = aje

ikjr + bje
−ikjr, (2)

where the wave number kj is defined as kj =
√

2m
ℏ2 (E − Uj) for the jth segment of width wj . For two adjacent segments, we use

the notation qji = −qij =
kj−ki

kj+ki
. Here, m denotes the particle’s mass and E denotes the incident energy. The solution in the first

three segments, which are near the origin and r = 0, may be expressed explicitly as;

ΦI = sin k1(r − c1), 0 < r < w1 (3)

ΦII = a2e
ik2(r−c2) + b2e

−ik2(r−c2), w1 < r < (w1 + w2) (4)

ΦIII = a3e
ik3(r−c3) + b3e

−ik3(r−c3), (w1 + w2) < r < (w1 + w2 + w3) (5)

Here, a2, b2, a3, and b3 stand for the coefficients of the wave functions and c1, c2 and c3 indicate some arbitrary constants.
Matching the wave functions and the derivatives at the boundary at r = w1, we get

a2 =
1

2
e−ik2(w1−c2)

[
sin k1(w1 − c1) +

k1
ik2

cos k1(w1 − c1)
]
, (6)

b2 =
1

2
eik2(w1−c2)

[
sin k1(w1 − c1)−

k1
ik2

cos k1(w1 − c1)
]
, (7)

a2
b2

= e−2ik2(w1−c2) × q21 , (8)

where

q21 =
sin k1(w1 − c1) +

k1

ik2
cos k1(w1 − c1)

sin k1(w1 − c1)− k1

ik2
cos k1(w1 − c1)

. (9)
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Similar calculation at the boundary at r = w1 + w2 yields

a3 =
1

2
e−ik3(w1+w2−c3)b2e

−ik2(w1+w2−c3)
[
(1− k2

k3
) + (1 +

k2
k3

)e2ik2w2q21

]
, (10)

b3 =
1

2
eik3(w1+w2−c3)b2e

−ik2(w1+w2−c3)
[
(1 +

k2
k3

) + (1− k2
k3

)e2ik2w2q21

]
, (11)

a3
b3

= e−2ik3(w1+w2−c3) × q321 , (12)

where

q321 =
q32 + q21 e

2ik2w2

1 + q32 × q21 e2ik2w2
(13)

and

q32 =
k3 − k2
k3 + k2

. (14)

This can be generalized for n boundaries to give

an
bn

= e−2ikn(
∑n−1

j=1 wj−cn) × qn,n−1,n−2,...1, (15)

qn,n−1,n−2,...1 =
qn,n−1 + qn−1,n−2,...1e

2ikn−1wn−1

1 + qn,n−1 × qn−1,n−2,...1e2ikn−1wn−1
, (16)

...

q21 =
sin k1(w1 − c1) +

k1

ik2
cos k1(w1 − c1)

sin k1(w1 − c1)− k1

ik2
cos k1(w1 − c1)

, (17)

where, qn,n−1 = kn−kn−1

kn+kn−1
.

Setting the arbitrary constants as c1 = w1 and
cn =

∑n−1
j=1 wj ,

we get

D(0) =
an
bn

= qn,n−1,n−2,...1 =
qn,n−1 + qn−1,n−2,...1e

2ikn−1wn−1

1 + qn,n−1 × qn−1,n−2,...1e2ikn−1wn−1
, (18)

with

qn−1,n−2,...1 =
qn−1,n−2 + qn−2,n−3,...1e

2ikn−2wn−2

1 + qn−1,n−2 × qn−2,n−3,...1e2ikn−2wn−2
, (19)

...
q21 = −1. (20)

The function in the m-region may be defined in terms of that in the (m-1) area using the recursive nature of the formula for
qn,n−1,n−2,...1. This allows us to simulate the potential U (r) by n-step potentials and create an easy-to-use numerical program for
the assessment of the scattering matrix and the wave function at a certain incident energy. If

∑n
i=1 wi = Rn = Rmax, such that

the potential Uj(r) considered in 1 is zero for r > Rn, it can be easily understood that the s-wave S-matrix is given by S0=−an

bn
and the total absorption or reaction cross section in the region 0 < r < Rn is given by

σ
(0)
abs =

π
k2 (1− |an|2

|bn|2 ).
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Similarly, Sp
0 = −ap

bp
can be interpreted as the S-matrix of the original potential truncated at Rp(=

∑p
i=1 wi) < Rmax. Hence,

π
k2 (1− |ap|2

|bp|2 ) can be taken as the absorption cross section generated in the region 0 < r < Rp. Thus, π
k2 [(1− |ap|2

|bp|2 )− (1− |aq|2
|bq|2 )]

shall give the contribution to the absorption cross section from the region Rp > r > Rq =
∑q

i=1 wi.
Taking the complex conjugate of the Schrödinger equation (1) and rearranging, we get

2ikn(| an |2 − | bn |2) =
∫ Rn

0

2iIm U(r) ΦΦ∗ dr, (21)

1− | an |2

| bn |2
= I1 + I2 + . . . , (22)

I1 = − 1

kn

∫ w1

0

Im U(r) | Φ

bn
|2 dr, (23)

I2 = − 1

kn

∫ (w1+w2)

w1

Im U(r) | Φ

bn
|2 dr. (24)

Using the respective wave function and the potential in a given segment, we simplify the corresponding integral and obtain

1− | an |2

| bn |2
=

n∑
j=1

Ij , (25)

with

Rn =

n∑
j=1

wj = Rmax. (26)

Considering same width for all segments, i.e. w = w1 = w2 = w3 = . . ., we have n = Rmax

w .
This result in the jth segment can be expressed as

Ij = (− 1

kn
)
ImUj

| bn |2
[ | bj |2

2Imkj
e−2Imkj wj−1(e2Imkj wj − 1)

− | bj |2

2Imkj
e2Imkj wj−1(e−2Imkj wj − 1) +

1

Rekj
Im

(
ajb

∗
je

2Imkj wj−1(e2iRekj wj − 1)
)]

. (27)

The asterisk indicates the complex conjugate of the respective quantity. The procedure for calculation of S-matrix through Eqs.
(4.18) - (4.20) with multistep potential (MP) approximation makes the procedure an algebraic recursive method which can be
easily programmed. The Eqs. (4.27) - (4.29) give a method to study the absorption cross section as discrete sums of contributions
from various sections.

It is simple to generalise this method to the challenging heavy ion Coulomb nuclear issue for any partial waves. One may use
the MP approximation approach mentioned above for this effective potential to handle the problem of higher partial waves as the
scattering by VN (r)+VC(r)+ Vℓ(r). The complexity of the rℓ+1 behaviour of the wave function very near the origin in the complex
potential scattering is not particularly important for the following reasons. The properly normalized wave function typically
attenuates quickly to zero well beyond the origin in the case of complex absorptive potential due to the existence of absorption.
As a result, one may begin the S-matrix computation well after r=0, where the multistep approximation is fairly precise. We
have confirmed that the cross-section and S-matrix findings produced by our strategy are nearly identical to those produced by
traditional methods.

In the region 0 < r ≤ Rmax, the potential consists of all the three parts VN (r), VC(r) and Vℓ(r). But in the outer region
r ≥ Rmax, the potential of the nucleus-nucleus interaction is only Coulombic (VC(r)) with the centrifugal terms Vℓ(r)= ℏ2

2m
ℓ(ℓ+1)

r2

for different angular momentum partial wave ℓ.
Using the exact Coulomb wave functions i.e. Gℓ and Fℓ and their derivatives G′

ℓ and F ′
ℓ , in the outer region r ≥ Rmax and

the wave function Φn(r) = ane
iknr + bne

−iknr and its derivative Φ′
n(r) in the left side of r = Rmax, and matching them at
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r = Rmax, we get the expression for partial wave S-matrix ηℓ as

ηℓ = 2iCℓ + 1, (28)

where

Cℓ =
kF ′

ℓ − FℓH

H(Gℓ + iFℓ)− k(G′
ℓ + iF ′

ℓ)
, (29)

H =
Φ′

n

Φn
= ikn

D(ℓ) eiknRmax − e−iknRmax

D(ℓ) eiknRmax + e−iknRmax
, (30)

D(ℓ) =
an
bn

, (31)

with kn =
√

2m
ℏ2 (E − Vn) which is real at r = Rmax, where the potential Vn = VC + Vℓ is real and E > Vn.

Using the above expression (4.30) for ηℓ, we explain the elastic scattering of a given system. For the total reaction cross section
one can use the formula

σr =
π

k2

∑
ℓ

(2ℓ+ 1)(1− |ηℓ|2) (32)

As formulated above, this is equal to the absorption cross section

σabs =
π

k2

∑
ℓ

(2ℓ+ 1)(1− | an |2

| bn |2
) =

π

k2

∑
ℓ

(2ℓ+ 1)(

n∑
j=1

I
(ℓ)
j ) (33)

By taking into account the matching number of segments in the aforementioned summation, it is possible to determine the
contribution of any component within the range 0−Rmax to the absorption or reaction cross section. With no potential disturbance,
this calculation of region-wise absorption in the collision process yields the wave function that describes the angular distribution
of elastic scattering data. If one wishes to obtain the amount of absorption cross section in the region 0 < r < Rfus, where
Rfus < Rmax, the total number of segments to be considered in the summation (4.35) is nfus =

Rfus

w . The resulting cross
section

σfus =
π

k2

∑
ℓ

(2ℓ+ 1)(

nfus∑
j=1

I
(ℓ)
j ) (34)

corresponds to the fusion cross section in the context of DRM [14], as mentioned in the introduction.
It might be beneficial at this point to briefly explore this MP formulation as a numerical approach. In comparison to the trape-

zoidal rule using straight-line sections, Simpson’s rule using parabolic sections, and the spline technique using cubic polynomials,
this method is, in a sense, the simplest approximation to the solution of the differential equation [34–36]. The latter techniques are
highly helpful for computing the wave function with more accuracy, but they have the drawback of being difficult to describe alge-
braically in terms of simple intervals. The computation of wave function and cross-section up to three to four significant places of
decimal, however, is fairly appropriate in the nuclear cross-section calculation given the experimental uncertainties involved. In a
study [37], we compared the numerical results for typical potentials such Eckart and Ginocchio potentials produced using the MP
technique in one dimension with those obtained using the RK and exact solution, and we discovered that the results agreed up to
three significant places. This section has demonstrated how our analytical formulation results in a tidy recursive relation that makes
it easier to calculate cross-sections and S-matrices. With this MP formulation, it is possible to transparently estimate the contri-
bution to absorption in various potential segments and examine the nature of the wave function and its normalization. However,
the wave function rises quickly in the calculations for the nucleus-nucleus optical model performed using the RK method [38] due
to the imaginary potential and must be appropriately renormalized at various stages in order to perform the effective phase-shift
calculations. This makes it more difficult to estimate the regional contributions to cross section and reactions [39]. In this chapter,
we calculated the cross sections of elastic scattering and fusion in heavy ion collisions and successfully compared them with the
corresponding experimental results to show the viability and applicability of this MP method in nuclear-scattering analysis. Stan-
dard optical model methods are used to confirm the numerical results of the elastic scattering cross sections that are reported in
this chapter [38].
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Table 1: Optical model potential parameters used in the calculations. VB and RB represent height and radial position of the Coulomb barrier,
respectively.

System VN rV aV W rW aW rC VB RB Rfus

(MeV) (fm) (fm) (MeV) (fm) (fm) (fm) (MeV) (fm) (fm)
12C+208Pb 125 1.31 0.320 3.0 1.325 0.25 0.90 56.7 12.16 9.9
16O+208Pb 125 1.35 0.285 2.0 1.320 0.15 1.02 73.7 12.52 8.8
19F+208Pb 105 1.35 0.285 2.0 1.320 0.15 1.37 81.51 12.74 8.3
16O+144Sm 100 1.295 0.365 4.0 1.250 0.15 1.1 60.25 11.46 10.0
16O+62Ni 75 1.333 0.380 6.0 1.250 0.33 1.04 30.41 10.2 7.78

3 Application
We apply the formulation developed in section 1.2 to the analysis of the collision data of eight typical heavy ion systems
namely 12C+208Pb, 16O+208Pb, 19F+208Pb, , 16O+144Sm, and 16O+62Ni systems and obtain a unified and consistent descrip-
tion of the measured cross sections of elastic scattering and fusion, and the peculiar peak structure in the variation of the quantity
D(Ec.m.)=

d2(Ec.m.σfus)
dE2

c.m.
as a function of Ec.m..

In the optical model potential (OMP) analysis of scattering of two nuclei of mass number A1 and A2 and proton numbers Z1

and Z2, the OMP is described by
V (r) = −VNf(r,RV , aV )− iWg(r,RW , aW ) + VC(r)

in the entrance channel. The form factor used in this chapter is
f(r,R, a) = g(r,R, a) = [1 + exp{(r −R)/a}]−1.

VN and W are the strength of real and imaginary parts of OMP. The radius parameters are expressed as rV = RV /(A
1/3
1 +A

1/3
2 )

and rW = RW /(A
1/3
1 +A

1/3
2 ). The symbols aV and aW indicate diffuseness parameters. The Coulomb potential VC(r) is given

by
VC(r) =

Z1Z2e
2(3−r2/R2

C)
2RC

, r ≤ RC ; VC(r) = Z1Z2e
2/r, r > RC ,

where RC = rC(A
1/3
1 + A

1/3
2 ) with rC as the Coulomb radius parameter. Thus, there are a total of seven parameters, VN , rV ,

aV , W , rW , aW , and rC , in this OMP.

3.1 Elastic-scattering cross section
The angular distribution of elastic scattering can be explained by a number of different sets of potential-descriptive parameters,
according to what we know. All seven parameters in our current calculation are independent of energy, and when choosing the
values for the potential, we were motivated by the fact that resonance can occur if the imaginary part W is weak and that such a
weak absorption is sufficient if the real part is thought to be deep [40] and less diffused [41] to account for the elastic-scattering
cross-section. In Table 1.1, the values of the OMP parameters used in the calculation for the analysis of elastic scattering data
for the 12C+208Pb, 16O+208Pb, 19F+208Pb, 16O+144Sm , and 16O+62Ni, systems are given. Table 1.1 also contains the values of
height VB and radius RB of the s-wave barrier for each of the above five systems.

(i) 12C+208Pb system

In the case of 12C+208Pb, according to the abovementioned prescription, the real portion is made deep with depth VN = 125
MeV and less diffused with diffuseness parameter aV = 0.32 fm and the radius parameter rV =1.31 fm. The imaginary component
also receives the additional parameters rW =1.325 fm and aW =0.25 fm, as well as a weak attractive strength of W=3.0 MeV. The
Coulomb radius parameter is assumed to have a value of rC = 0.9 fm. The real portion of the combined nuclear and Coulomb
potentials for an s-wave can be shown in Fig. 1 as a function of radial distance for a visual illustration. This demonstrates the
repulsive barrier for the 12C+208Pb system with height VB= 56.7 MeV and position RB= 12.16 fm lowering quickly in the inner
side. According to the formulation, ’n’ rectangular potentials, each with a width of 0.008 fm, are used to replicate the potential
in the area 0 < r ≤ Rmax. The nuclear potential together with its imaginary portion is zero in the area r > Rmax ≈ 15 fm,
leaving the effective potential as solely Coulombic with the centrifugal term. Using the S-matrix given by the expression (1.28), at
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Figure 1: Plot of real part of nuclear plus Coulomb potentials for partial wave ℓ=0 as a function of radial distance with potential parameters
V0=-125 MeV, rV =1.31 fm, aV =0.32 fm, and rC=0.9 fm for the 12C+208Pb system.

laboratory energies of 58.9, 60.9, 62.9, 64.9, 74.9, and 84.9 MeV, we get the findings of angular change of differential scattering
cross-section. These computed findings are displayed in Fig. 2 as solid curves, and they are contrasted with the comparable
experimental data from Ref. [1], which are depicted in the same figure as solid circles.

It is obvious that the data explanation in each energy case is fairly sound. It should be noted that we utilized the exact same set
of OMP values listed in Table 1.1 to explain the results for all energies between 58.9 MeV and 84.9 MeV. In other words, OMP
parameter values are independent of energy. We should also point out that the value of rC = 0.9 fm that we are considering is a little
lower than the standard value of rC = 1.25 fm. This fact is supported by the calculation’s conclusion in Ref. [42] about Coulomb
potentials in heavy ion interactions, which shows that it has no impact on the outcomes of the elastic-scattering cross-section in
our calculation. This lower value of rCrC has been utilized to consistently account for the fusion cross-section data at low energy
for the 12C+208Pb system that will be covered in the next section.

(ii) 16O+208Pb system
We have taken into consideration a deep real potential in this instance as well, with depth VN = 125 MeV and a small diffuseness
parameter aV = 0.285 fm. Other parameter values are shown in Table 1.1. The barrier lowering steeply in the inner side with height
VB=73.7 MeV and radius RB=12.52 fm for this system can be seen in the plot of the real component of nuclear plus Coulomb
potentials as a function of radial distance for s-wave in Fig. 3.

Figure 4 shows a comparison between our projected differential scattering cross-section values (solid curves) and the corre-
sponding experimental data (solid circles) from Reference [2] at various laboratory energies, including 80, 83, 88, 90, 96, and 102
MeV. It is obvious that the data’s explanation for all energies is sound. Additionally, we have employed a single potential for all
energies in this case, but with a lesser value of rC = 1.02 fm.

(iii) 19F+208Pb system

In this system, we have taken a deep real potential with depth VN=105 MeV and a small diffuseness parameter aV =0.285 fm.
Values of other parameters are given in Table 1.1. Using the S-matrix given by equation (1.28), we obtain the results of angular
variation of differential scattering cross section at laboratory energies, 88.0, 91.0, 93.0, 96.0, 98.0, and 102.0 MeV. In Fig. 5, these
computed results are depicted as solid curves, and they are compared with the analogous experimental data from [6], which are
displayed as solid circles in the same figure. It is obvious that the data’s explanation for all energies is reasonable.
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Figure 2: Angular distribution of elastic scattering cross sections (ratios to Rutherford) of 12C+208Pb system at laboratory energies 58.9, 60.9,
62.9, 64.9, 69.9, 74.9, and 84.9 MeV as a function of θc.m.. The full drawn curves are theoretical results of present optical model calculation.
The solid circles are experimental data taken from [1].

Figure 3: Plot of real part of nuclear plus Coulomb potentials for partial wave ℓ=0 as a function of radial distance with potential parameters
V0=-125 MeV, rV =1.339 fm, aV =0.285 fm, and rC=1.02 fm for the 16O+208Pb system.
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Figure 4: Same as Fig. 2 for 16O+208Pb system at laboratory energies 80, 83, 88, 90, 96, and 102 MeV. The full drawn curves are theoretical
results of present optical model calculation. The solid circles are experimental data taken from [2].

(v) 16O+144Sm system

Similar calculations are done for this system. We have chosen a deep real potential with VN = 100.0 MeV and a minimal
diffuseness value of aV = 0.365 fm in this case as well. Other parameter values are shown in Table 1.1. Figure 6 compares
the calculated differential scattering cross-section values (solid curves) with the corresponding experimental data (solid circles)
from Reference [8] at various energies, 66.0, 69.2, and 72.3 MeV. It is seen that the agreement with experimental data is quite good.

(vii) 16O+62Ni system

Here, we have used the optical potential parameters of 16O+58Ni system except rV =1.333 fm. In Fig. 7, we compare the com-
puted differential scattering cross-section findings (solid curves) with corresponding experimental data (solid circles) obtained
from references [11] at various energies 42.0, 48.0 and 54.0 MeV. It is clear from the figure that the above experimental data are
successfully reproduced by our method simultaneously.

In light of the necessity that such potential is essential in the description of fusion data to be carried out below for the afore-
mentioned eight systems, finding of such energy independent OMP is a significant conclusion of this research.

3.2 Fusion cross section
Fusion of the two nuclei is a crucial mechanism that is actively linked to the elastic scattering event in the low-energy collision
process. It is simple to take into account that the fusion cross section, σfus, is a portion of the overall reaction cross section, σr,
when estimating cross sections for elastic scattering and fusion simultaneously. However, it is never easy to take a part from σr

that precisely accounts for the observed results of fus at different incidence energy across a large range. In order to compute σfus,
we take into account the DRM of Udagawa et al. [14]. The quantity of absorption cross section inside the inner zone 0 < r < Rfus

is what this model refers to as the fusion cross section. Where Rfus is a radial distance expected to be less than RB which is
the radial position of the s-wave Coulomb barrier in the case of a given nucleus-nucleus system. In the formulation through Eq.
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(1.34), we have calculated the values of σfus as per the above principle of DRM.

(i) 12C+208Pb system

Using Rfus=9.9 fm, we obtain the results of σfus for the 12C+208Pb system and compare it (solid curve) in Fig. 8 with the
corresponding experimental data (solid circles) taken from Ref. [3]. It is obvious that the data matching throughout the whole
energy range, from Ec.m.=50 MeV to 75 MeV, is pretty excellent. The OMP parameters whose values explain the elastic scatter-
ing data in Fig. 2 have not been altered in order to achieve this fitting. The values of Rfus= 9.9 fm utilized in our computation
are smaller than the value of Coulomb radius RB=12.16 fm in this system, which is required by the permissible state of reality.
Further, the importance of the present successful description of elastic scattering and fusion cross sections increases due to the
observation [3, 26] that there is systematic failure of the Woods-Saxon nuclear potential describing these data, simultaneously.

(ii) 16O+208Pb system

Similarly remarkable accomplishment is attained in the case of the 16O+208Pb system, where our calculated results (complete
curve) are able to match the experimental data (solid dot) of σfus taken from Ref. [4] across the whole range of energy from
Ec.m.=68 MeV to 86 MeV. The fusion radius in this instance, Rfus=8.8 fm, is less than the Coulomb radius, RB=12.52 fm.
Unlike in the case of 12C+208Pb, in this 16O+208Pb system, we need to slightly modify the value of the nuclear radius parameter
rV =1.35 fm (Table 1.1) used in the analysis of scattering data and take rV =1.339 fm for the fitting of measured σfus data.
(iii) 19F+208Pb system

In this case, we have used the fusion radius Rfus=8.3 fm which is less than the Coulomb radius RB=12.74 fm. In Fig. 10,
we compare our calculated results (solid curves) of fusion cross section with the corresponding experimental data (solid circles)
taken from Ref. [7]. In order to get a good fitting in fusion cross section, we need to slightly modify the nuclear radius parameter
rV =1.35 fm used in the analysis of elastic scattering to rV =1.356 fm.

(v) 16O+144Sm system

When our calculated results (full curve) are compared to the experimental data (solid dot) of σfus taken from Ref. [9] for the
16O+144Sm system shown in Fig. 11, a similar result is achieved. The fusion radius in this instance, Rfus=10.0 fm, is less than
the Coulomb radius, RB=11.46 fm. The nuclear radius parameter, rV , which was previously set to 1.145 fm (Table 1.1) for the
analysis of scattering data must now be changed to 1.295 fm for the fitting of observed σfus data.

(vii) 16O+62Ni system

Here, we have taken Rfus=7.78 fm which is less than RB=10.20 fm. The calculated results (solid curve) of fusion cross
section is compared with the experimental data (solid circles) taken from Ref. [11] in Fig. 12. It is clear from the figure that the

Figure 8: Variation of fusion cross section σfus as a function of energy Ec.m. for the 12C+208Pb system. The full curve represents our calculated
results. The experimental data shown by solid circles are obtained from [3].
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Figure 9: Variation of σfus as a function of Ec.m. for the 16O+208Pb system. The full curve represents our calculated results. The experimental
data shown by solid circles are obtained from [4].
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Figure 10: Variation of fusion cross section σfus as a function of energy Ec.m. for the 19F+208Pb system. The full curve represents our
calculated results. The experimental data shown by solid circles are obtained from [7].

theoretical results is in excellent agreement with the experimental data. To achieve this we have slightly changed the rV value
from 1.333 fm (used for elastic scattering calculation) to 1.313 fm.

The fusion radius Rfus values we utilized in our calculations are, however, smaller in all of these systems than the corre-
sponding Coulomb radius RB values. This indicates unequivocally that fusion is an internal phenomena whereas scattering and
other distant, less absorptive direct reaction mechanisms are responsible for the surface occurrence. We should note that for a
given system, there may be many sets of possible Woods-Saxon parameters that describe elastic scattering data in a manner that is
comparable. Since elastic scattering is a surface phenomenon, all sets of potential parameter sets produce Coulomb barriers with
the same height VB and fixed radial position RB , but different sets produce different depths and slopes of the effective potential on
the interior side r < RB . However, the fusion of two nuclei is an internal phenomenon that is defined by absorption in this area,
and the values of the radius parameter Rfus, which is located in the region 0 < r < RB , are responsible for the corresponding
cross-section. The value of Rfus will be determined by the set of potential parameters employed in the study of scattering, hence
it may have different values for various sets of potential. We need not, however, alter the value of Rfus as a function of energy for
the study of σfus at various incidence energies as we have chosen a single potential for the description of both elastic and fusion
cross sections. Rfus’s energy-independent character is essential since it makes the product Ec.m.σfus energy derivative simpler

in the results of d2(Ec.m.σfus)
dE2 which is described in the next sub-section.
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Figure 13: Variation of D(Ec.m.)=
d2(Ec.m.σfus)

dE2
c.m.

as a function of energy Ec.m. corresponding to results of σfus for 12C+208Pb system. The
full curve represents our calculated result. The experimental data shown by solid circles are obtained from [3].

Figure 14: Variation of D(Ec.m.)=
d2(Ec.m.σfus)

dE2
c.m.

as a function of energy Ec.m. corresponding to results of σfus in 16O+208Pb system. The
full curve represents our calculated result. The experimental data shown by solid circles are obtained from [4].

3.3 Explanation of D(Ec.m.)
The results of σfus from experiment and theory as a function of energy, as shown in Figs. (8 to 12), do not exhibit any kind of
structure. Therefore, nothing further can be inferred about the potential physical incidents that could be contributing to the fusion
process from this logical interpretation of the monotonically evolving data. The identical result of σfus is reported in a different
way as follows in order to provide some insight into these processes. One can extract values of a quantity that is the second
derivative of the product Ec.m.σfus denoted by D(Ec.m.)=

d2(Ec.m.σfus)
dE2

c.m.
with respect to energy Ec.m.. For this, the following

point difference formula can be used:

D(E) =
[
(E −∆E)σ− − 2Eσ + (E +∆E)σ+

]
/(∆E)2, (35)

where σ−, σ, and σ+ indicate fusion cross sections σfus at center of mass energies E −∆E, E and E +∆E, respectively, with
energy step size ∆E. Function D(Ec.m.) is generally referred to as barrier distribution [5, 9, 43].

We get the amount D(Ec.m.) as a function of Ec.m.Ec.m. from our computed results of σfus using the formula (1.35). For the
12C+208Pb system, we present our results in Fig. 13 as a solid curve and then compare them with the relevant experimental data
(solid circles). It can be observed that our calculation accurately reproduces the major peak as well as a few other minor peaks in
the higher energy range.

Similarly, in Figs. 14, 16, and 17 we obtain remarkable matching of the highly oscillatory structures of the measured data of
D(Ec.m.) in the cases of 16O+208Pb, 19F+208Pb, 16O+92Zr, 16O+144Sm, 16O+62Ni, and 6Li+209Bi systems respectively.
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More crucially, the unfavourable character of some of the dips in the higher-energy zone is fairly clearly explained. The
discovery [4] that the more microscopic coupled channel calculation [44] for fusion has failed to explain the results of D(Ec.m.)
in the 16O+208Pb system [4,23] raises the significance of this successful explanation. It’s worth noting that there are three ways to
disrupt the oscillatory structures in all of the systems mentioned above; : (i) by increasing the imaginary component W’s strength;
(ii) by taking into account a higher Coulomb radius parameter rC ; and (iii) by increasing the step size ∆E for differentiation
using formula (1.35). In order to provide an appropriate explanation for the elastic scattering data as well as an explanation for the
observed results of σfus and D(Ec.m.)., the values of W and rC are fixed.

4 Summary and conclusion
Analytical solutions to the Schrödinger equation with composite optical potential of two interacting nuclei result in a recursive
mathematical formula for the scattering matrix. An analytical formula for the absorption cross-section has been established to take
into consideration the reaction cross-sectionsection using the same potential and wave function. The formulation is applied to the
12C+208Pb, 16O+208Pb, 19F+208Pb, 16O+144Sm , and 16O+62Ni systems for the analysis of the following experimental data in a
consistent manner. (i) The angular fluctuations of the cross-section of differential scattering at various energies near the Coulomb
barrier. (ii) Fusion cross-section σfus as a function of energy throughout a large range spanning the Coulomb barrier area. (iii)

The outcome of the quantity D(Ec.m.)=
d2(Ec.m.σfus)

dE2
c.m.

.
The key characteristics that result from this analysis may be summed up as follows.

(a) The elastic-scattering data at various energies could be well explained by a single, complex nuclear potential in Woods-Saxon
form without any energy dependency. Important characteristics of the complex optical potential employed in the computation
include large depth and little diffuseness in the real part and weak strength (low absorption) in the imaginary component.
(b) A key component of the computation is the estimation of the reaction cross-sectional area that will be used to calculate the
fusion cross-section using the stepwise absorption approach. This procedure of dividing up the overall reaction cross-section is
natural in the sense that neither the extraction process nor the division of the imaginary part ever requires additional energy.
(c) The results of σfus presented in another form namely D(Ec.m.)=

d2(Ec.m.σfus)
dE2

c.m.
by using point difference formula show peculiar

peak structure in its variation with Ec.m.. Our calculated outcomes for σfus presented in the aforementioned manner describe this
outcome with highs and lows with a surprising degree of success.
(d) It has been found that resonance states can develop when two nuclei collide because of the optical potential’s weakly absorptive
property indicated in item (a) above. Following that, it comes out that these resonances regulate the oscillatory or peak structure
of D(Ec.m.) mentioned in point (c) above.
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