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ABSTRACT 

 

The phase field models can coherently address the relative complex fracture phenomenon such as crack 

nucleation, branching, deflection, etc. The phase field method has been implemented in finite element package 

Abaqus for solving fracture problems in recent studies. The implementation of it is quite computationally 

expensive due to the requirement of high density mesh region in the anticipated fracture zone. Therefore, in the 

current work, a python scripting based mesh refinement strategy for phase field method (PFM) implementation 

in Abaqus, is presented. The proposed mesh refienement algorithm utilizes the Abaqus built-in posteriori error 

indicator MISESERI to track the crack path and demarcate the regions require mesh refinement. The python 

script enables the simultaneous execution of pre-assessment of crack path, local mesh refinement and phase 

field method implementation, altogether in a single pass. The accuracy and effectiveness of the proposed 

algorithm is validated through several standard fracture problems. The proposed mesh refinement algorithm 

based PFM results demonstrate significant reduction in computational time and savings in memory resource 

requirement as compared to the standard phase field method, which are quite encouraging. 

 

Keywords - Phase field fracture, Mesh refinement, Finite element method, Abaqus, UEL subroutine, Python 

scripting 

 

I. INTRODUCTION 

 

Fracture plays a crucial role in many engineering domains when it comes to keeping structures functional 

under varied loading conditions. It is one of the most prevalent modes of failure of engineering materials and 

structures. It has a substantial economic effect as avoiding failure owing to induced crack is a fundamental 

limitation in the design procedure for any engineering structure. Generally, it is achieved by incorporating 

significant safety factors throughout the design phase. For resreach commmunity, the ability to predict brittle 

failure while considering its catastrophic effects, onset, and mechanism of propagation is crucial. Griffith 

developed the theory to investigate the evolution of brittle cracks [1], which was followed by Irwin's technique 

to account for high stresses and microscopic plasticity close to the crack tip by introducing stress intensity factor 

(SIF) for different modes of fracture failure popularly known as the theory of linear elastic fracture mechanics 

(LEFM) [2]. 

It appears to be extremely difficult to anticipate the failure of engineering structures due to fracture using 

analytical and experimental approaches, as the latter is economically unsound while solutions for the former are 

rare. Computational fracture modeling is an effective method for understanding and estimating the failure of 

engineering structures. The fracture of solids can be mathematically modeled using either a discontinuous 

(discrete) approach or a continuous (smeared/diffuse) approach. The displacement field is considered to be 

discontinuous at the crack surface in the discrete methods, whereas the stress field is generally degraded to 

describe the fracture process in the continuous approaches.  

Several theories, like LEFM and cohesive zone model (CZM) [3,4],  which fall within the category of 

discrete approach, have been developed in the past to handle the modeling of fracture phenomena through 

numerical techniques, such as the finite element method (FEM) [5], meshfree methods [6,7], extended finite 

element method (XFEM) [8,9], floating node method [10,11], and isogeometric analysis (IGA) [12,13]. These 

discontinuous approaches pose a challenge to model fracture nucleation, propagation, and direction as they 

require additional criteria. In the case of a mesh-based methodology, such as the finite element method which 

implements a continuous displacement field, introducing displacement discontinuity where the domain of the 

solution changes with time is quite tedious and extortionate. Although, the XFEM with enrichment functions is 

used as an alternative method to model the crack domain evolving with time [14], the issues of crack branching, 

merging, and intersecting cracks remain a challenging task for researchers, especially in three dimensions. The 
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cracking particle method (CPM) is an interesting alternative methodology that has been been presented in 

literature for addressing complex fracture problems [15,16], where the crack is treated as a coalescence of 

discrete cracks that are constrained on nodes known as cracked particles. The approach is quite intuitive and 

efficient, and it can effectively replicate crack branching patterns in complex fracture problems. Peridynamic 

theory by Silling et al [17–19] has also been developed to address the discontinuous problems, where the 

interaction forces within the  material are defined on the basis of a parameter referred to as horizon. Although, 

the discrete fracture approaches such as CPM, peridynamics etc. are able to qualitatively deal with the complex 

fracture problems yet the challenges associated with the discontinuous approaches prompted the development of 

continuous/smeared crack approaches, in which the displacement discontinuity or jump is regularized over a 

small localization band of finite width, enabling crack paths to be naturally ascertained as part of the solution. 

The continuum damage mechanics (CDM) is the most widely used theory under the continuous approach which 

establishes the effect and evolution of micro-cracks and micro-defects using damage variables [20,21]. The 

phase field method (PFM) is another recently developed approach as an alternative to CDM. 

The phase field method has been developed as an alternative in recent years to address the issues of discrete 

or discontinuous approaches for modeling fracture problems. In PFM, the discontinuity in the form of a crack is 

modeled as damage/field smeared over a regularized region. The physics-based models derived from the 

Ginsberg-Landau phase evolution [22,23] and mechanics-based models derived from the variational theory of 

fracture [24] have been developed for modeling the fracture, where the latter helped to overcome the 

shortcomings of Griffith's approach to model the crack nucleation, deflection, branching, etc. The variational 

approach incorporates the minimization of the total potential energy with respect to the displacement field and a 

scalar phase variable governing the evolution of crack topology [25–31]. In order to assure distinct behavior in 

tensile and compressive fields, an additive decomposition of elastic energy density based on volumetric and 

deviatoric contributions has been presented in the literature [32,33]. Miehe’s thermodynamically compatible 

phase field model based on principles of continuum mechanics and thermodynamics with anisotropic strain 

energy density split is an essential addition to phase-field modeling [34,35]. It incorporates crack irreversibility 

by inducting a local history field variable. A similar anisotropic model with a positive-negative decomposition 

of effective stress tensor has been presented by Wu et al [36,37]. Readers interested in a more compendious 

review are advised for the literature [38,39].  

To establish the length scale parameter, phase field implementation requires a quite fine mesh, which makes 

it computationally intensive [38,40,41]. The mesh refinement in the domain where the crack growth is expected 

seems to be a precondition for the finite element implementation of the phase field method. To overcome the 

prerequisite of refined mesh, several adaptive mesh refinement strategies for phase-field models have been 

documented [42,43], where the critical value of the phase field serves as an element diagnostic for mesh 

refinement criteria. Klinsmann et al [44] proposed an adaptive phase field model that utilizes the gradient of 

phase field alongwith tensile part of maximum strain energy density as element diagnostic for mesh refinement.  

Heister et al [45] presented a predictor-corrector mesh refinement stratergy based on threshold value of phase 

field. The crack irreversibilty is imposed based on primal dual active set algorithm. The coarse elements are 

refined for preset maximum mesh refinement level, in the current time step. For adaptive phase field models, the 

effective crack driving force is also utilized as the mesh refinement criterion [46]. A much more efficient 

anisotropic adaptive model, where the mesh refinement is administered normally to crack propagation has been 

proposed by Artina et al [47]. Patil et al [48] proposed a coupled multiscale FEM with the phase field method 

for adaptive refinement, that involves the localized region in the proximity of diffuse crack to be discretized 

employing multiscale basis functions and modeling discontinuities with XFEM. Adaptive phase field models are 

also reported along with other numerical approaches such as scaled boundary finite element method [49], 

polygonal finite element method [50,51], posteriori error estimation [52], etc. In the literature [53], an alternate 

strategy for improving computional efficiency is presented, namely the use of physics informed neural network 

algorithms for the phase field method, which utilizes the variational energy of the system as the loss function to 

train the network. 

The implementation of phase field method to study fracture problems has been done on several open-source 

software platforms like `FENICS' [54], `JIVE' [55], etc. Bourdin has presented a Fortran-based code MEF90, for 

the implementation of the phase field method. Moreover, adaptive phase field implementations based on 

FENICS, MATLAB [48,50], and JIVE [44] have been reported in the literature, which requires additional codes 

to develop nonlinear solvers such as Newton-Raphson iterative solver, Jacobian free Newton-Krylow solver 

[56], etc. On the other hand, the use of commercial finite element software such as Abaqus' subroutine utilities 

to implement the phase field model has been reported in the literature. The Abaqus phase field implementation 

requires a Fortran code in the form of subroutines without requirement of separate code for the solvers. The 

nonlinear solver of Abaqus has built-in support for the monolithic as well as staggered Newton-Raphson 

iterative scheme, modified Newton or BFGS [57] scheme, the latter requiring fewer iterations than the staggered 

Newton-Raphson scheme for phase field implementation. The Fortran subroutines in Abaqus denoted as UEL, 

UMAT, and HETVAL, can be used independently or in tandem with each other for phase field implementation. 
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A combination of UEL and UMAT subroutines to simulate and visualize brittle fracture problems employing a 

phase field model was reported by Msekh et al [58]. The element level calculations are prescribed in the UEL 

subroutine while the UMAT subroutine is used for the post-processing. 

Further building up with this conjuncture, Molnar et al [59] presented a layered system of user elements to 

implement a phase field model. Utilizing the analogy between the heat transfer partial differential equation and 

phase field force balance equation, the implementation of UMAT-HETVAL subroutines is presented in the 

literature [40]. Recently Wu and Huang [60] presented three unique implementations of the phase field method 

in Abaqus using UMAT and UEL. Other procedures for implementation in commercial finite element software 

Abaqus have been discussed in the literature as well [61–64].  

The implementation of phase field method in Abaqus requires defining a region of low mesh size where the 

crack growth is expected. This can be significantly achieved based on the prior knowledge of crack path either 

via experimental methods or previous studies in literature. Even if the expected path of crack growth is known 

from the experimental/literature studies for simplistic problems such as Mode I and Mode II loading scenarios, it 

is insufficient to precisely work out the region where the mesh size can be reduced enough to fix the length scale 

parameter for capturing the phase field. Thus, a broad region with high mesh density is normally assigned which 

leads to large number of elements in the discretized domain. This situation augments in the case of complex 

fracture problems where multiple voids and/or notches are present in the specimen. Furthermore, for practical 

real-world fracture problems where the location of crack nucleation and subsequent growth is unknown, the 

study of such problems would impose significantly high order of the tangent stiffness matrix (AMATRX) for 

the analaysis. The implementation of the phase field technique in Abaqus thus demands sufficiently large 

memory resources and produces a lengthy computational time. The adaptive mesh refinement approach allows 

for a decrease in computing resources while requiring significantly less computational time. Although, the use 

of adaptivity for phase field models have been reported in the literarture yet the implementation of such adaptive 

phase field models in Abaqus have not been cited in the literature. An alternative strategy for obtaining 

reasonable computational time is to precisely redefine the zone of expected crack growth, that is characterised 

by a robust combination of an element diagnostic, such as the built-in error indicator in Abaqus, with the phase 

field function.  

Therefore, the current study presents a methodology for implementing mesh refinement strategy in Abaqus 

to model fracture problems with the phase field method. The goal is accomplished by writing a python script for 

the Abaqus Python Development Environment (PDE) interface that integrates Abaqus' adaptive remeshing tool 

with subroutine utility. The python script includes methods or functions for developing the problem model, user 

material data, and mesh in the initial ‘*.inp’ file. The python script makes it easy to initialize the remeshing rule 

on a set of elements using the posteriori-error indicator MISESERI. The ‘*_UEL.inp’ file for UEL 

implementation of the phase field method is incorporated by a separate function in the script. The whole process 

is automated with the help of the aforementioned python script itself. The results of the phase field method with 

proposed mesh refinement algorithm are verified thereafter.  

The chapter is organized as follows; an overview of the phase field method is presented in Section 2. The 

details of the implementation of the proposed mesh refinement algorithm for the phase field method are 

presented in Section 3. Section 4 addresses the robustness of the proposed approach through numerical 

simulations and their outcomes, which is followed by conclusive statements in Section 5. 

 

II. PHASE-FIELD MODEL FOR FRACTURE 

 

Consider a linear elastic solid continuum defined as the domain (Ω) of an N-dimensional space such that, 

Ω ⊂ R𝑁𝑑𝑖𝑚 and bounded by surface 𝜕Ω𝑁𝑑𝑖𝑚−1, (𝑁𝑑𝑖𝑚 ∈ {1,2,3}) as shown in Fig. 1. The displacement vector 

(𝐮) and traction vector (𝐭) are specified on 𝜕Ω𝑢 and 𝜕Ω𝑡  respectively, such that 𝜕Ω𝑢 ∩ 𝜕Ω𝑡 = ∅ & 𝜕Ω𝑢 ∪
𝜕Ω𝑡 = Ω. The displacement field (𝐮) and variation in displacement field (𝛿𝐮) are defined as, 

𝐮(𝒙) ∈ 𝒮𝐮{𝐮 | 𝐮(𝒙) = 𝐮    ∀    𝒙 ∈ 𝜕Ωu} (1) 

𝛿𝐮(𝒙) ∈ 𝒮𝛿𝐮{𝛿𝐮 | 𝛿𝐮(𝒙) = 0    ∀    𝒙 ∈ 𝜕Ωu} (2) 

The crack Γ(𝜙) ⊂ R𝑁𝑑𝑖𝑚−1, with unit normal vector �̂�𝑏, emerges once the failure criterion’s limit is 

exceeded. The crack phase field (𝜙) topology can be characterized in localization band 𝒳 ⊆ Ω in the vicinity of 

crack surface Γ(𝜙) as, 
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( (Figure 1: Schematic of a solid continuum representing an internal crack as (a) sharp and (b) diffuse 

topology  

𝜙(𝒙) ∈ 𝒮𝜙{𝜙 | 𝜙(𝒙) ∈ [0,1];     �̇�(𝑥) ≥ 0    ∀    𝒙 ∈ 𝒳} (3) 

𝛿𝜙(𝒙) ∈ 𝒮𝛿𝜙{𝛿𝜙 | 𝛿𝜙(𝒙) ≥ 0    ∀    𝒙 ∈ 𝒳; 𝛿𝜙(𝒙) = 0    ∀    𝒙 ∈ Γ} (4) 

Griffith's thermodynamic framework serves as the foundation for the phase field fracture model. According 

to the first rule of thermodynamics, a crack can grow only if the total energy of the system decreases or remains 

constant. As a result of the assumption of equilibrium circumstances, i.e. no net change in total energy - a 

critical condition for a fracture may be formulated. An energy dissipation functional based on the principle of 

virtual work can be expressed as [65], 

𝒟𝑐(�̅�, 𝜙) = 𝒲𝑒𝑥𝑡 −𝒲𝑖𝑛𝑡 (5) 

where the internal work (𝒲𝑖𝑛𝑡) consists of internal bulk energy and energy dissipation due to crack growth. The 

minimization of total potential energy functional is considered such that the variation in energy dissipation 

functional must follow 𝛿𝒟𝑐 ≥ 0. In consideration of minimization of the potential energy functional for any 

feasible deformation process, including crack evolution, the variational, ‘𝛿𝒟𝑐’, may well be expressed as 

follows, 

𝛿𝒟𝑐 = 𝛿𝒲𝑒𝑥𝑡 − 𝛿𝒲𝑖𝑛𝑡 ≥ 0 (6) 

 The external work (𝒲𝑒𝑥𝑡) for prescribed body force vector (𝐛) and boundary traction vector (𝐭) on the 

reference configuration can be formulated as, 

𝛿𝒲𝑒𝑥𝑡 = ∫
Ω

𝐛. 𝛿𝐮 𝑑𝑉 + ∫
𝜕Ω

𝐭. 𝛿𝐮 𝑑𝐴 
(7) 

 To couple the crack evolution with the deformation process, the associated internal work is expressed as a 

confluence of internal bulk energy (𝛿Ψ𝑏) and dissipated energy (𝛿ΨΓ) due to the evolution of the crack, 

𝛿𝒲𝑖𝑛𝑡 = ∫
Ω

𝛿Ψ𝑏(𝛜, 𝜙)   𝑑𝑉 + ∫
Ω

𝛿ΨΓ(𝜙)𝑑𝑉 
(8) 

 

A. Phase-field approximation of diffuse crack topology 
 

 The diffuse crack surface area, in a regularized context, can be expressed in terms of crack surface density 

functional, 𝛾(𝜙, ∇𝜙) established by Miehe et al [35] in the localization band (𝒳) in terms of phase field variable 

(𝜙) as, 

𝛾(𝜙, ∇𝜙) =
1

𝑐0
[
1

𝑙0
𝛼(𝜙) + 𝑙0|∇𝜙|

2] 
(9) 

∀    𝑐0 = 4∫
1

0

√𝛼(𝑧) 𝑑𝑧 = 2 
(10) 

 The length scale parameter (𝑙0) governs the width of the localization band (𝒳) with  𝑐0 > 0 as a scaling 

factor. The evolution of crack is characterized by the crack geometric function 𝛼(𝜙) = 𝜙2    ∀    𝛼 ∈ [0,1] as per 

the standard AT-2 model [66,67] resulting in the following crack surface density functional, 
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𝛾(𝜙, ∇𝜙) = [
𝜙2

2𝑙0
+
𝑙0
2
|∇𝜙|2] (11) 

 

B. Internal bulk energy and regularized dissipation functional 

 To account for the degradation of local strain energy density with crack growth, the internal bulk energy is 

expressed in terms of strain tensor (𝛜 = ∇𝑠𝑦𝑚𝐮) and a monotonically decreasing polynomial energy degradation 

function (𝑔(𝜙)). 

Ψ𝑏(𝛜, 𝜙) = 𝑔(𝜙).Ψ0(𝛜) (12) 

Ψ0(𝛜) =
1

2
𝛜:D0: 𝛜 =

1

2
𝛔: C0: 𝛔 

 

 Here, effective stress tensor (𝛔) for an isotropic elastic body can be defined in terms of elastic stiffness 

(D0) and compliance (C0) respectively as, 

𝛔 = D0: 𝛜;     𝛜 = C0: 𝛔 (13) 

D0 = C0
−1 

D0 = 𝜆(𝐈2⊗ 𝐈2) + 2𝜇𝐈4 

 

where, 𝐈𝑗 is jth order Identity tensor with 𝜆 & 𝜇 as Lame’s constants. The energy degradation function, 𝑔(𝜙) ∈

[0,1], chosen as a quadratic polynomial function [66,67], has a direct effect on the elastic stiffness of the 

material, (D = 𝑔(𝜙). D0) and satisfies following properties [35], 

𝑔(𝜙) = (1 − 𝜙2) + 𝒦𝑠𝑡𝑎𝑏   

𝑔′(𝜙) < 0,    𝑔(0) = 1, 𝑔(1) = 0    and    𝑔′(1) = 0 (14) 

 The stability parameter (𝒦𝑠𝑡𝑎𝑏) is taken as a small positive value, possibly of the order of 10−7 to 10−11, 

to ensure the matrix conditioning while implementing numerical methods. This also ensures the existence of 

some residual material stiffness even after the diffuse crack has fully evolved. The evolution of crack in the 

regions of compressive and tensile stress fields is dissociated by considering either volumetric-deviatoric split or 

anisotropic split [34] of the local strain energy density. The former model by Amor et al [32] considers the 

following positive and negative components of local strain energy density, 

Ψ0(𝛜) ⟶

{
 
 

 
 Ψ0(𝛜)

+ =
1

2
𝐾0〈𝑡𝑟(𝛜)〉

2 + 𝜇( 𝛜𝑑𝑒𝑣: 𝛜𝑑𝑒𝑣)

    +

Ψ0(𝛜)
− =

1

2
𝐾0〈−𝑡𝑟(𝛜)〉

2

 

(15) 

 The deviatoric component of the internal bulk energy contributes to the crack driving force for negative 

𝑡𝑟(𝛜) in the aforementioned model, which partially inhibits the development of cracks under compression. Here, 

the Macaulay operator is defined as 〈𝑉〉± =
𝑉±|𝑉|

2
 and 𝐾0 = 𝜆 + 2𝜇/3 denotes the bulk modulus. The anisotropic 

model by Miehe et al [34] accounts for the evolution of crack under tension by splitting the strain tensor into 

positive and negative tensors for ‘𝛜𝑖’ and ‘𝐧𝑎’ as eigen values and eigen vectors respectively, 

Ψ0(𝛜)
± =

𝜆

2
〈𝑡𝑟(𝛜𝑖)〉±

2 + 𝜇〈𝑡𝑟2(𝛜𝑖)〉± 

𝛜 = ∑

3

𝑎=1

𝛜𝑖     [𝐧𝑎⊗𝐧𝑎] 

(16) 

 

    (17) 

The constitutive relations can be expressed as, 

𝛔 = 𝑔(𝜙).  𝛔 =
𝜕Ψ(𝛜, 𝜙)

𝜕𝛜
 

(18) 

𝛔 =
𝜕

𝜕𝛜
[𝑔(𝜙)Ψ0

+ +Ψ0
−] = 𝑔(𝜙) 𝛔+ + 𝛔− 

(19) 

 To incorporate the cracking under tension and prevent interpenetration of crack faces under compression, 

only the positive part (Ψ0
+) is considered. A history field variable is introduced to ensure the damage 

irreversibility as maximum positive reference energy subjected to Karush-Kuhn-Tucker conditions [68] for both 

loading and unloading conditions, 
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ℋ∗ = {
Ψ0
+(𝜖) Ψ0

+ > ℋ𝑛

ℋ𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(20) 

where ℋ𝑛 is the history field variable calculated in the previous step. The variational of internal bulk energy 

(Eq. 12) is given by, 

𝛿Ψ𝑏(𝛜, 𝜙) = ∫
Ω

[
𝜕Ψ𝑏

𝜕𝛜
: ∇𝑠𝑦𝑚𝛿𝐮 +

𝜕Ψ𝑏

𝜕𝜙
: 𝛿𝜙]𝑑𝑉 = ∫

Ω

[𝛔: ∇𝑠𝑦𝑚𝛿𝐮 +
𝜕Ψ𝑏

𝜕𝜙
: 𝛿𝜙]𝑑𝑉 

(21) 

 The variational for the energy dissipated as the regularized crack topology (Eq. 11) evolves is expressed 

as, 

𝛿ΨΓ(𝜙) = ∫
Ω

𝐺𝑐  [
𝜙

𝑙0
𝛿𝜙 + 𝑙0 |∇𝜙| 𝛿∇𝜙]𝑑𝑉 

(22) 

 

C. Governing equations 

 The variations of internal bulk energy (Eq. 12) and dissipation functional (Eq. 22) result in the following 

variational expressions (Eq. 7 & Eq. 8) in an updated context [41], 

𝛿𝒲𝑖𝑛𝑡 = ∫
Ω

[𝛔: ∇𝑠𝑦𝑚𝐮 + [𝑔′(𝜙).ℋ∗]: 𝛿𝜙] + 𝐺𝑐[
𝜙

𝑙0
𝛿𝜙 + 𝑙0|∇𝜙| 𝛿∇𝜙]𝑑𝑉 

(23) 

𝛿𝒲𝑒𝑥𝑡 = ∫
Ω

𝐛. 𝛿𝐮    𝑑𝑉 + ∫
𝜕Ω

𝐭. 𝛿𝐮    𝑑𝐴 
(24) 

 Thus, the potential energy functional minimization (Eq. 6) yields the following governing equations in 

weak form, 

∫
Ω

[∇. 𝛔 + 𝐛] 𝛿𝐮 𝑑𝑉 +∫
𝜕Ω𝑡

[𝐭 − 𝛔. 𝐧]𝛿𝐮 𝑑𝐴 = 0 
(25) 

∫
Ω

{𝑔′(𝜙).ℋ∗ + 𝐺𝑐[
𝜙

𝑙0
− 𝑙0(Δ𝜙)]} 𝛿𝜙𝑑𝑉 +∫

𝜕Ω

𝐺𝑐𝑙0[∇𝜙. �̂�𝑏]𝛿𝜙𝑑𝐴 = 0 
(26) 

here, Δ represents the Laplacian operator and �̂�𝑏 is the outward unit normal vector on boundary 𝜕𝒳. 

 

D.  Implementation of PFM with FEM 

 The nodal displacement field (𝐮) and phase field (𝜙) can be expressed by discretizing the domain (Ω) in 

2D linear quadrilateral and triangular elements as, 

𝐮 =∑

𝑚

𝑖=1

𝑁𝑖
𝑢𝑢𝑖     and    𝜙 =∑

𝑚

𝑖=1

𝑁𝑖
𝜙
𝜙𝑖 

(27) 

where the element shape function matrix for the corresponding node i is defined as, 

𝑁𝑖
𝑢 = [

𝑁𝑖 0
0 𝑁𝑖

]     and    𝑁𝑖
𝜙
= 𝑁𝑖 

(28) 

 The respective derivatives can be then defined as, 

𝛜 =∑

𝑚

𝑖=1

𝐵𝑖
𝑢𝑢𝑖     &    ∇𝜙 =∑

𝑚

𝑖=1

𝐵𝑖
𝜙
𝜙𝑖 

(29) 

for    𝐵𝑖
𝑢 = [

𝑁𝑖,𝑥 0

0 𝑁𝑖,𝑦
𝑁𝑖,𝑦 𝑁𝑖,𝑥

]     &    𝐵𝑖
𝜙
= [

𝑁𝑖,𝑥
𝑁𝑖,𝑦

] 

(30) 

 In the current research work, an alternating minimization scheme for the Newton-Raphson iterative 

method is used to obtain solutions for a system of nonlinear equations by updating the residual vector and 

tangent matrix at each iteration respectively, 

[
𝐾𝑠
𝜙

0

0 𝐾𝑠
𝑢
] {
𝜙𝑠+1
𝑢𝑠+1

} = {
𝑅𝑠
𝜙

𝑅𝑠
𝑢
} 

(31) 

where the corresponding residual vector and tangent matrix are expressed as follows, 

𝐾𝜙 = ∫
Ω

{[
𝐺𝑐
𝑙0
+ 2ℋ∗](𝑁𝜙)𝑇𝑁𝜙 + 𝐺𝑐𝑙0(𝐵

𝜙)𝑇𝐵𝜙} 𝑑𝑉 
(32) 

𝐾𝑢 = ∫
Ω

{𝑔(𝜙)(𝐵𝜙)𝑇𝔻0𝐵
𝜙}𝑑𝑉 

(33) 
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𝑅𝜙 = ∫
Ω

{[𝑔′(𝜙)ℋ∗ +
𝐺𝑐
𝑙0
𝜙](𝑁𝜙)𝑇 + 𝐺𝑐𝑙0(𝐵

𝜙)𝑇∇𝜙} 𝑑𝑉 
(34) 

𝑅𝑢 = ∫
Ω

𝑔(𝜙)(𝐵𝑢)𝑇𝜎𝑑𝑉 −∫
Ω

(𝑁𝑢)𝑇𝑏𝑑𝑉 − ∫
𝜕Ω𝑡

(𝑁𝑢)𝑇𝑡    𝑑𝐴 
(35) 

 

III. ADAPTIVE IMPLEMENTATION PROCEDURE IN ABAQUS 

 In the current work, we have adopted the layered approach [59] of the UEL subroutine utilizing linear 

triangular and linear quadrilateral user elements for prescribing element level calculations and UMAT for post-

processing and feedback for error indicator MISESERI (Mises stress), which is a pre-requisite for establishing 

adaptive remeshing rule in Abaqus.  

 

A.  Error indicators 

 The commercial software Abaqus has built-in posteriori error indicator output variables such as 

MISESERI, ENDENERI (element energy density), and many more. These error indicators develop the 

groundwork for adaptive remeshing in Abaqus, which can be prompted by an adaptive remeshing rule. The 

posteriori error indicators reveal information about the regions of the analysis domain where discretization error 

potentially exists. These error indicators feature units that are identical to the base solution variable and can be 

requested as field output for the individual element. In the proposed mesh refinement algorithm, we have 

utilized the MISESERI error indicator variable as the basis of the remeshing rule for adaptive refinement at the 

desired locations. The MISESERI error indicator provides a discretization error estimate for the stress profile for 

the given boundary conditions.  

    

 Create initial 

‘*.inp’ file 

 Crete initial 

‘*_UEL.inp’ job 

with remeshing 

rule 

 Run initial 

‘*_UEL.inp’ job 

 Get MISESERI 

plot 

 Remesh domain 
 Create final 

‘*.inp’ file 
 Create final 

‘*_UEL.inp’ job 
 

 Get SDV’s for post-

processing 
 

 

  

 There exists a difference in the order of assumed trial functions for displacement and stress 

approximations. The computations of the error indicators are based on the superconvergent patch recovery 

technique as reported in the literature [69]. The stress values at the integration points are computed by 

employing a higher-order trial function, whose order is the same as that of the displacement trial function. The 

energy norm distance between the values obtained by the smoothed estimation of the stress field and the non-

smoothed estimation of the stress field serves as the value of the error estimate in the finite element solution. A 

detailed discussion on error estimation can be found in the literature [69–71]. 

 

B. Phase field implementation using UEL and UMAT subroutines 

 In Abaqus, the phase field implementation is accomplished by combining a UEL subroutine for integration 

point calculations and a UMAT subroutine for post-processing [59]. As a prerequisite, the UEL subroutine 

requires a ‘*_UEL.inp’ file which contains the essential inputs regarding the nodal repository, element 

connectivity for user-defined elements, and a set of elements ‘umatelem’ which serves as a dummy layer for 

post-processing via UMAT subroutine. The initial input file ‘*.inp’ is generated by Abaqus itself for any 

analysis, however, for the phase field implementation, it is essential to define the user-defined elements, 

material & fracture parameters, and generate an element set for post-processing. All these essential data tweaks 

to the initial ‘*.inp’ file can be saved as ‘*_UEL.inp file’, to be used in association with the UEL subroutine for 

phase field implementation. The UEL subroutine requires the user to provide the calculations for the tangent 

stiffness matrix (AMATRX) and force vector (RHS) for the element.  

 The material and fracture parameters specified in the ‘*_UEL.inp file’ can be incorporated into the 

subroutine as an argument (PROPS). The Abaqus solver interacts with the pre-defined array arguments of UEL 

to calculate and store results in the ‘*.odb’ file. The solution dependent state variable array (STATEV) in the 

Figure 2: Block-wise overview of adaptive mesh refinement procedure 
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UMAT subroutine is utilized for post-processing the results. The detailed implementation of this approach is 

reported in the literature [58,59]. 

 

  Python Script for Abaqus PDE interface (for imax =2) 

Start 
Create model specimen, user 

material, mesh 

Create initial Job-i.inp 

Read ‘Job-i.inp’ Create repository of nodal coordinates 

& element connectivity 

Initialize Layer 1 

(Phase) 

U1 & U2 user 

elements 

Initialize Layer 

2 

(Displacement) 

U3 & U4 user 

elements 

Initialize Layer 3 

(umatelem) 

CPS3 & CPS4 

elements 

Initialize MISESERI 

element output requests 

on facsimile set 

i =1 Create facsimile set of 

umatelem elements 

Initialize umatelem set for 

post-processing 

True False 

Initialize element and 

nodal output requests 
Write ‘Job-i_UEL.inp’ 

i=1 
False True i + = 1 Post-processing umatelem 

element and nodal output 

requests for SDV’s 
End 

Figure 3: Flowchart of a Python script for proposed PFM in Abaqus  

Implement 

remesh 

Run ‘Job-i_UEL.inp’ with 

fortran UEL subroutine 
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C. Mesh refinement algorithm for phase field method  

 The proposed mesh refinement algorithm for the phase field method is implemented entirely through 

python scripting. The goal of employing the python scripting utility is to automate this entire implementation 

process in a single pass, which is disassembled block-by-block as illustrated in Fig. 2 for illustration. The script 

contains appropriate functions/procedures for executing block-by-block operations simultaneously.  

 The process flowchart or the detailed operational plan depicting the algorithm for mesh refinemnt in PFM 

is shown in Fig. 3. The model geometry, user material data (with 16 dependent variables), section assignment, 

load step, boundary condition, amplitudes, etc. are defined initially through individual functions in the python 

script. The discretization of the specimen geometry defining element type and coarse mesh size is established 

next via a function in the python script. The adaptive mesh refinement consists of two simultaneous steps: first 

reporting an error indicator as field output (from step I to step II in Fig. 2) and then remeshing the designated 

regions so that the error estimate is within the tolerance limit or what is specified as errorTarget (refer Block 1) 

throughout the whole domain. This tolerance limit for the numerical examples, considered in the current work, 

is kept in the range of 1% - 5%, subjective to the type of problem. A remeshing rule is specified on the part set 

‘All_elem’ as shown in Block 1. It should be noted that defining this part set ‘All_elem’ is essential for 

establishing the remeshing rule in Abaqus. The set ‘All_elem’ serves as the facsimile set with the same element 

connectivity as the set ‘umatelem’ (Block 2). The integration point results obtained for the ‘umatelem’ set are 

also available for this facsimile set, allowing for a remeshing rule to be established. The mesh parameters for 

executing mesh refinement can be specified as arguments to the RemeshingRule object (Block 1) as 

‘minElementSize’ and ‘maxElementSize’, both being subjective to the length scale parameter considered for the 

problem (h/l0).  

Block 1: A python function initializing MISESERI based remeshing rule with arguments 

1 def create_remeshing_rule_assembly_instance (model_name, instance_name,  step_name, maxSize,        

2                                                                              minSize):                                                     

3     a = mdb.models[model_name].rootAssembly 

4     set_name = instance_name + '.All_elem' 

5     reg = a.sets[set_name] 

6     m1 = mdb.models[model_name] 

7     m1.RemeshingRule(name='RR: 1', stepName=step_name, region=reg, 

8                      description='', outputFrequency=ALL_INCREMENTS, 

9                      variables=('MISESERI', ), sizingMethod=UNIFORM_ERROR, 

10                      errorTarget=1.0, specifyMinSize=True,  

11                      specifyMaxSize=True, elementCountLimit=None, 

12                      coarseningFactor=NOT_ALLOWED, refinementFactor=10, 

13                      maxElementSize=maxSize, minElementSize=minSize) 

 

Block 2: Initialization of facsimile set ‘All_elem’ with element repository similar to ‘umatelem’ 

1 *Elset, elset=umatelem, generate 

2 29609, 44412, 1 

3 *Nset, nset=All_elem, generate 

4 1, 14731, 1 

5 *Elset, elset=All_elem, generate 

6 29609, 44412, 1 

7 ** FIELD OUTPUT: F-Output-1  

8 ** 

9 *Output, field, time interval=0.001 

10 *Element output, elset=Instance-1.All_elem, direction=YES 

11 MISESERI, MISESAVG, S, EVOL 

12 *Node Output, nset=REF_pt 

13 RF, U 

14 ** HISTORY OUTPUT: H-Output-1 

15 ** 

16 *Element Output, elset=umatelem 

17 SDV 

18 *End Step 

  

The python script contains a function that can read element connectivity and nodal repository from initial 

‘Job-1.inp’ and it returns ‘Job-1_UEL.inp’ that has definitions for the layer system constituting user elements 
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U1 & U2 (phase), U3 & U4 (displacement) and post-processing element layer 3 documented. The material and 

fracture properties are passed to the subroutine via ‘Job-1_UEL.inp’ as user element properties in the input file 

[59]. This job is submitted for analysis to obtain the MISESERI values that are requested for the facsimile set 

‘All_elem’ for each element as can be seen in Block 3. The MISESERI values indicate regions that require local 

refinement and then adaptive remeshing is implemented by calling a function in a python script that requires 

‘*.odb’ file path and ‘model_name' as arguments (Block 4). The adaptively refined mesh is registered as nodal 

and element repository by writing ‘Job-2.inp’ which is used to create a new input file ‘Job-2_UEL.inp’ to be 

submitted along with the Fortran subroutine for post-processing SDV's for phase field results. 

Block 3: Element and nodal output requests for Abaqus job specified within the input file 

1 ** OUTPUT REQUESTS 

2 ** 

3 *Restart, write, overlay, frequency=0 

4 ** 

5 ** FIELD OUTPUT: F-Output-1  

6 ** 

7 *Output, field, time interval=0.001 

8 *Element output, elset=Instance-1.All_elem, direction=YES 

9 MISESERI, MISESAVG, S, EVOL 

10 *Node Output, nset=REF_pt 

11 RF, U 

12 ** HISTORY OUTPUT: H-Output-1 

13 ** 

14 *Element Output, elset=umatelem 

15 SDV 

16 *End Step 

 

Block 4: Python function to implement adaptive remeshing in Abaqus 

1 def implement_remesh(odb_path, model_name):  

2     session.viewports[myView].assemblyDisplay.setValues(mesh=ON) 

3     o1 = odbAccess.openOdb(path=odb_path, readOnly=True)  # o1 --> odb object 

4     mdb.models[model_name].adaptiveRemesh(odb=o1) 

6     a = mdb.models[model_name].rootAssembly      # a --> assembly object 

7     session.viewports[myView].setValues(displayObject=a) 

8     session.viewports[myView].assemblyDisplay.setValues(mesh=ON) 

 

 

IV. Numerical Results and Discussion 

 

 In this section, the validity and robustness of the proposed mesh refinement strategy for phase field method 

is validated through standard fracture problems. All the considered fracture problems are simulated with the 

standard phase field method as well as proposed mesh refinement based phase field method. The proposed-PFM 

results are compared with the standard PFM and available literature results. The computational efficiency of the 

proposed-PFM is shown through a pie chart for all the considered problems. In all the problems, the model is 

discretized using both triangular and quadrilateral elements in a non-uniform pattern. First, the standard problem 

of a single edge notch plate under mode I loading condition is considered for the study. Further, the L-shaped 

panel test is conducted to assess the capacity of the proposed approach to capture the crack nucleation, growth 

and failure in mixed mode loading conditions. Finally, the tensile failure of multi-hole specimens in absence of 

an initial crack is analyzed for a square panel with 5 holes. All the numerical simulations are executed on Dell 

Workstation with Intel(R) i9-10900 @ 2.80 GHz processor and 64GB RAM. 

 

A.  Finite size edge crack plate under mode I loading 

 In the first example, a square plate with an edge crack of length 0.5 mm is considered for the simulations. 

The geometry and boundary conditions of the specimen are shown in Fig. 4(a). The material properties of the 

specimen are taken from the literature [34], and are given as Young's modulus, E = 210 GPa and Poisson's ratio, 

ν = 0.3. The length scale parameter, l0 = 0.0075 mm and fracture energy, Gc = 2.7 x 10-3 KN/mm are taken as 

fracture parameters.  
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 At first, the problem is simulated using standard PFM, where the model is discretized with a total of 26282 

linear quadrilateral and linear triangular elements with a global mesh size of 0.02 mm. Further, the mesh is 

refined with mesh size h = 0.003 mm in the zone where the crack is expected to propagate as shown in Fig. 4(b). 

This is done in accordance to maintain the suitable ratio of mesh size and length scale (h/l0 << 1) in the region. 

To study this problem, the anisotropic strain energy decomposition of Miehe et al [35] with staggered 

implementation [59] in Abaqus is considered. The loading is applied via displacement control strategy to 

determine the variation of load with respect to displacement. The displacement is applied in two steps. In the 

first step, the displacement u = 0.005 mm is specified for 2000 increments at increment size Δu1 = 10-4. In the 

second step, the displacement is ramped to u = 0.01 mm at Δu2 = 10-5 for the remaining increments. This is 

achieved by defining the tabular amplitudes for each Abaqus step separately. The predicted crack path for 

standard PFM is illustrated by plotting the contours of the phase field variable (ϕ) as shown in Fig. 6 for 

different displacement point. 

  

Further, the proposed PFM is implemented in Abaqus using a python script. The material and fracture 

parameters are taken the same as in standard PFM. The specimen is initially discretized with a global mesh size 

of 0.02 mm without local mesh refinement. A remeshing rule which governs the remesh region, global and local 

mesh size is established based on the MISESERI error indicator in the Abaqus utility for the whole specimen 

using python scripting. To identify the MISESERI values, a displacement control scheme is applied with 

increment size Δu1 = 10-3 for 500 increments followed by Δu2 = 5x10-4 for the next 1000 increments. Based on 

the MISESERI plot, the region as shown in Fig. 5(a) has been designated as the one that requires mesh 

refinement. The adaptive remesh is then incorporated with global mesh size ≈ 0.02 mm and local refined mesh 

size h = 0.001 mm, comprising 13941 linear quadratic and triangular elements (Fig. 5(b)), which is quite lesser 

0.5 0.5 

0
.5

 

1
 

(a) (b) 

Figure 4: (a) Single edge crack specimen geometry, dimensions and boundary conditions for Mode 

I loading, (b) Discretized Abaqus model for standard PFM 

uy 

(b) 

Figure 5: Single edge crack specimen results for mode I loading; (a) MISESERI plot prior to adaptive 

mesh refinement (b) Locally refined mesh based on MISESERI plot with 13941 elements 

(a) 
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than the standard PFM. The phase field results for proposed PFM are reported in Fig. 7 which are similar to the 

standard PFM results shown in Fig. 6. Further, the load-displacement response for both methods i.e. standard 

PFM and proposed PFM is shown in Fig. 8(a) which are in good agreement with the literature [34,35].  

A comparison of computational efficiency for standard PFM and proposed PFM is shown in Fig. 8(b). 

Compared to standard PFM, the global stiffness matrix size for proposed PFM is about half, allowing for less 

memory requirement. The CPU time required to solve the problem in standard PFM is 427 minutes, whereas it 

is 250 minutes for proposed PFM, indicating that the proposed PFM is more computationally efficient than the 

standard PFM. 

 

 

 

 

 

 

 

 

 

 

 

 

   

  

(a) (b) 

Figure 8: (a) Structure response for single edge crack specimen under mode I loading, (b) 

comparison of number of elements and computational time between standard PFM & proposed 

PFM 

(a) 

Figure 6: Standard PFM contours of phase field for mode I loading condition at l0 = 0.0075 mm for 

displacement; (a) u = 5.93×10-3 mm (b) u = 6.29×10-3 mm (c) u = 6.47×10-3 mm 

(b) (c) 

(a) (b) (c) 

Figure 7: Proposed PFM contours of phase field for mode I loading condition at l0=0.0075 mm for 

displacement; (a) u = 5.77×10-3 mm (b) u = 6.1×10-3 mm (c) u = 6.61×10-3 mm 
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B. L-panel test 

 In this section, a mixed mode failure problem of an L-shaped panel is considered for the analysis. The 

geometry, dimensions and loading conditions are shown in Fig. 9(a). The bottom edge is kept fixed while the 

incremental displacement is applied at a point on the right edge in the upward direction. The experimental 

analysis of this problem has been reported in the literature [72], and the experimentally observed crack path is 

depicted in Fig. 9(b) which is commonly considered as a validation benchmark for the crack path obtained from 

the numerical results. The material properties are taken as Young's modulus, E = 25.84 GPa and Poisson’s ratio, 

ν = 0.18. The length scale parameter, l0 = 3.125 mm and fracture energy, Gc = 9.5x10-5 KN/mm are taken as 

fracture parameters from the literature [73]. The thickness of the L-panel is taken as 100 mm.  

 First, the simulation of an L-shaped panel is performed using standard PFM by discretizing the geometry 

with global mesh size of ≈ 17 mm. A local mesh refinement with element size 0.625 mm (h/l0 = 0.2) is adopted 

for the region depicted in Fig. 11(a). The whole domain is discretized with non-uniform mesh consisting 55625 

linear triangular and quadrilateral elements. A net displacement of 1 mm is applied in two steps at increment 

size of Δu1 = 10-5 and Δu2 = 10-6 for 1000 and 2000 increments, respectively to ensure that the structural 

response is well recorded. The structural response for the standard PFM is shown in Fig. 13(a). The numerically 

predicted diffused crack pattern for standard PFM is illustrated in Fig. 10 for different displacement points s1 to 

s2 marked in Fig. 13(a).  
Further, the simulation of L-shaped panel is performed using the proposed PFM. The material and fracture 

parameters are kept the same as in standard PFM. Initially, the global mesh size is taken as 12 mm for the whole 

model with no local mesh refinement. The region that requires local mesh refinement is obtained with the help 

of MISESERI values. For the initial ‘Job-1_UEL’, a net displacement of 1 mm is applied in two steps with 

increment size of Δu1 = 10-3 and Δu2 = 10-4 for 1000 and 2000 increments, respectively, and the corresponding 

MISESERI plot is shown in Fig. 11(b). The error-target value for the remeshing rule is kept at 3.5 on a 

‘UNIFORM_ERROR’ basis for the current example. The global mesh size and local mesh size (h) are specified 

500 

250 

5
0

0
 

2
5

0
 

uy 

(a) (b) 

Figure 9: (a) Geometry and boundary conditions for an L-shaped panel, (b) Experimentally 

observed crack path domain [72] 

(a) (b (c) 

Figure 10: Standard PFM contours of phase field for L-shaped panel at l0 = 3.125 mm for 

displacement; (a) us1 = 0.276 mm (b) us2 = 0.332 mm (c) us3 = 0.544 mm 
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in the remeshing rule for the arguments ‘maxElementSize’ and ‘minElementSize’ (Block 1) as 15 mm and 0.625 

mm respectively. The adaptively refined mesh for the L-shaped panel is depicted in Fig. 11(c). The repository 

for nodal coordinates and element connectivity is read from ‘Job-2.inp’ via python script and the input file ‘Job-

2_UEL.inp’ required for final phase field re  sults is developed. The incremental displacement of Δu1 = 10-5 and 

Δu2 = 10-6 for 1000 and 2000 increments, respectively, is applied to ensure the accurate structural response for 

proposed PFM. The phase field results for the proposed PFM are shown in Fig. 12 corresponding to the points 

a1 to a3 marked in Fig. 13(a). A good agreement between the standard PFM and proposed PFM regarding the 

crack path and structural response is observed which signifies that proposed adaptively refined PFM is able to 

successfully track the crack evolution mechanism for the L-shaped panel test. The comparison metrics for 

standard PFM and proposed PFM are presented in Fig. 13(b). The computational time required for standard 

PFM is found to be 352 minutes more than the proposed PFM. Also, the memory requirement for later is found 

to be almost one-seventh of that of standard PFM.  

(a) (b) (c

) Figure 12: Proposed PFM contours of phase field for L-shaped panel at l0 = 3.125 mm for 

displacement; (a) ua1 = 0.288 mm (b) ua2 = 0.34 mm (c) ua3 = 0.56 mm 

(a) (b) 

Figure 13: (a) Load-displacement response corresponding for L-shaped panel, (b) Computational time 

and number of elements comparison between standard PFM and proposed PFM for the L-shaped panel 

(a) (b) (c) 

Figure 11: (a) Standard PFM mesh for L-shaped panel with 55625 elements, (b) MISESERI plot for 

L-shaped panel, and (c) Adaptively refined mesh with 7447 elements 
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C.  Tensile failure of a square plate with five holes 

The tensile failure of a square plate with five holes without any initial crack, is considered for the numerical 

analysis. The objective of studying this problem is to demonstrate the capacity of proposed mesh refinement 

strategy to capture the crack nucleation and growth in presence of multiple voids or defects, in the absence of 

any pre-existing crack. The geometry along with the applied boundary conditions is shown in Fig. 14(a). The 

specimen consists of two semi-circular holes at the left and right edges and 3 circular holes of the different radii 

within the specimen [74]. The holes' geometric centers and radii are specified in Table 1. The volumetric-

deviatoric energy split by Amor et al [32] is implemented in the Fortran subroutine for this problem.  

 

 

 

 

 

 

 

 

 

 

 

The problem is first simulated using the standard PFM method. The discretized specimen consisting of 

45399 linear triangular and quadrilateral elements is shown in Fig. 14(b). The total displacement uy = 0.01 mm 

is applied in two steps. In the first step, the increment size Δu1 = 10-4 for 2000 increments, and for the second 

step, increment size Δu2 = 5 × 10-5 for 5000 increments is specified. The crack nucleation initiates near the hole 

h5, with a similar but much subdued nucleation in the vicinity of h4. Further, the crack grows along h3 and h2 

with a modest increase in displacement. The crack growth mechanism observed between h5 and h4 is different 

from that of crack growth from h4 to h2. The crack growth trajectory for standard PFM corresponding to the 

points marked in Fig. 18(a) is depicted in Fig. 15 and is found to be in good agreement with the literature [74]. 

 Further, the mesh refinement stratgey implementation in PFM is executed via a two job process as 

explained in Fig. 3. The specimen is first discretized coarsely with a global mesh size of 0.02 mm. The ‘Job-

1_UEL.inp’ is submitted along with the Fortran subroutine to obtain the MISESERI values. The MISESERI plot 

is depicted in Fig. 16(a). The MISESERI plot represents the region requiring local mesh refinement which is 

implemented through the remeshing rule specified in Block 4. The adaptive remeshing enables a local mesh 

refinement of size h = 0.001 mm and global mesh of size of 0.3 mm constituting total of 12944 elements as 

shown in Fig. 16(b). The phase field results for the proposed PFM corresponding to the points marked in Fig. 

18(a) are shown in Fig. 17. The crack growth pattern and mechanism for proposed PFM are found to be similar 

to that observed in standard PFM results and literature [74]. The load versus displacement plot for standard 

PFM and proposed PFM is reported in Fig. 18(a). The number of elements and computational time is presented 

in Fig. 18(b). The computational time for standard PFM and proposed PFM is found 1119 minutes and 365 

Hole Center coordinates Radius (mm) 

h1 (0, 0.5) 0.1 

h2 (0.35, 0.45) 0.1 

h3 (0.6, 0.55) 0.05 

h4 (0.75, 0.5) 0.075 

h5 (1, 0.45) 0.075 

Table 1: Coordinates of center and radius of holes for square plate with five holes 

 

1 mm 

1
 m

m
 

uy 

h1 

h5 h2 

h3 
h4 

Figure 14: (a) Specimen geometry and boundary conditions for a square plate with 5 

holes, (b) standard PFM discretized Abaqus model for square plate with 5 holes 

(a) (b) 
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minutes respectively. Therefore, from the simulations, it can be concluded that the proposed PFM is 

computationally much more efficient for simulating such kind of problem.  

 

 

  

  

 

 

 

Figure 15: Standard PFM contours of phase field for square plate specimen with 5 holes at l0 = 0.008 

mm for displacement; (a) us1 = 6.13×10-3 mm (b) us2 = 6.21×10-3 mm (c) us3 = 6.362×10-3 mm (d) us4 = 

6.73×10-3 mm (e) us5 = 7.26×10-3 mm 

(a) (b) (c) (d) (e) 

(a) (b) 

Figure 16: (a) MISESERI plot for a square plate specimen with 5 holes, (b) Adaptively refined 

mesh with 12944 elements for a square plate specimen with 5 holes 

Figure 17: Proposed PFM contours of phase field for a square plate specimen with 5 holes at l0 = 

0.008 mm for displacement; (a) ua1 = 6.108×10-3 mm (b) ua2 = 6.173×10-3 mm (c) ua3 = 6.343×10-3 

mm (d) ua4 = 7.206×10-3 mm b ua5 = 7.223×10-3 mm 

( (

(a) (b) (c) (d) (e) 
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(a) (b) 

Figure 18: (a) Load-displacement response for square plate specimen with 5 holes, (b) Computational 

time and number of elements comparison between standard PFM and proposed PFM  

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 
 

 In this work, the implementation procedure of posteriori error indicator based adaptive mesh refinement 

algorithm in Abaqus is discussed for the phase field method. The proposed algorithm implementation in PFM is 

executed in Abaqus by a python script that features user-defined functions/procedures for the operational plan. 

The robustness and efficiency of the proposed approach are examined through several standard fracture 

problems. The conclusions drawn, based on the study, are given as:  

 The proposed algorithm in PFM approach enables the use of Abaqus’ built-in error indicators for adaptive 

mesh refinement instead of user-specified computations at the element level to mark regions requiring 

local mesh refinement.  

 The proposed approach is able to successfully manifest the expected crack path through the Abaqus’ built 

in MISESERI indicator. 

 In the proposed PFM approach, the requirement to designate a high mesh density zone based on the prior 

information about the crack growth direction is entirely eliminated. Hence the proposed approach can be 

used for more generic problems. 

 The proposed adaptive PFM is able to provide accurate results with a significant reduction in 

computational time as shown in  Table 2.  

 Although the proposed PFM performance and capability is positively demonstrated for 2D problems, 

extension to 3D problems is one of the potential future works to be considered. 
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