# Uniqueness and Value Sharing of Meromomorphic Functions on Annuli 

Ashok Rathod<br>Department of Mathematics, Karnatak University, Dharwad - 580 003, India<br>e-mail: ashokmrmaths@gmail.com


#### Abstract

In this paper, we study meromorphic functions that share only one value on annuli and prove the following results. Let $f(z)$ and $g(z)$ two non constant meromorphic functions on annli and For $n \geq 11$, if $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share the same nonzero and finite value $a$ with the same multiplicities on annuli, then $f \equiv d g$ or $g=c_{1} e^{c z}$ and $f=c_{2} e^{-c z}$, where $d$ is an $(n+1)^{t h}$ root of unity, $c, c_{1}$ and $c_{2}$ being constants.


Keywords: Value Distribution Theory; Nevanlinna theory; the annuli.
Subject Classification: 30D35

## 1 Introduction and Main results

In this paper, a meromorphic function always mean a function which is meromorphic in $\mathbb{A}\left(R_{0}\right)$, where $1<R_{0} \leq+\infty$. Let $f(z)$ and $g(z)$ be non constant meromorphic in $\mathbb{A}\left(R_{0}\right)$, where $1<R_{0} \leq+\infty, a \in \overline{\mathbb{C}}$. We say that $f$ and $g$ share the value $a$ CM if $f(z)-a$ and $g(z)-a$ have the same zeros with the same multiplicities. We shall use standard notations of value distribution theory in annuli, $\left.\left.T_{0}(R, f), m_{0}(R, f), N_{0}(R, f), \bar{N}_{0}(R, f), \ldots([4]],[6]\right]\right)$.

In this paper, we shall show that certain types of differential polynomials on annuli when they share only one value.

Theorem 1.1. Let $f$ and $g$ be two non constant meromorphic fuctions in $\mathbb{A}\left(R_{0}\right)$, where $1<R_{0} \leq+\infty, n \geq 11$ an integer and $a \in \mathbb{C}-\{0\}$. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share the value a CM, then either $f \equiv d g$ or $g=c_{1} e^{c z}$ and $f=c_{2} e^{-c z}$, where $c, c_{1}$ and $c_{2}$ are constants and satisfy $\left(c_{1} c_{2}\right)^{n+1} c^{2}=a^{-2}$.

Remark 1.1. The following example shows that $a \neq 0$ is necessary. For $f=e^{e^{z}}$ and $g=e^{z}$, we see that $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share 0 CM for any integer $n$, but $f$ and $g$ do not satisfy the conclusion of Theorem 1.1.

In order to prove the above result, we shall first prove the following two theorems.

Theorem 1.2. Let $f$ and $g$ be two non constant meromorphic functions in $\mathbb{A}\left(R_{0}\right)$, where $1<R_{0} \leq+\infty, n \geq 6$. If $f^{n} f^{\prime} g^{n} g^{\prime}=1$, then $f \equiv d g$ or $g=c_{1} e^{c z}$ and $f=c_{2} e^{-c z}$, where $c, c_{1}$ and $c_{2}$ are constants and $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$.

Theorem 1.3. Let $f$ and $g$ be two non constant entire fuctions in $\mathbb{A}\left(R_{0}\right)$, where $1<R_{0} \leq+\infty, n \geq 1$. If $f^{n} f^{\prime} g^{n} g^{\prime}=1$, then $f \equiv d g$ or $g=c_{1} e^{c z}$ and $f=c_{2} e^{-c z}$, where $c, c_{1}$ and $c_{2}$ are constants and $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$.

## 2 Some Basic Theorems and Lemmas

Theorem 2.A. [7] (Lemma on the Logarithmic Derivative ). Let $f$ be a nonconstant meromorphic function in $\mathbb{A}\left(R_{0}\right)$, where $1<R_{0} \leq+\infty$, and $\alpha \geq 0$. Then

1. In the case, $R_{0}=+\infty$,

$$
m_{0}\left(R, \frac{f^{\prime}}{f}\right)=O\left(\log \left(R T_{0}(R, f)\right)\right)
$$

for $R \in(1,+\infty)$ except for the set $\triangle_{R}$ such that $\int_{\triangle_{R}} R^{\alpha-1} d R<+\infty$;
2. In the case, $R_{0}<+\infty$,

$$
m_{0}\left(R, \frac{f^{\prime}}{f}\right)=O\left(\log \left(\frac{T_{0}(R, f)}{R_{0}-R}\right)\right)
$$

for $R \in\left(1, R_{0}\right)$ except for the set $\triangle_{R}^{\prime}$ such that $\int_{\triangle_{R}^{\prime}} \frac{d R}{\left(R_{0}-R^{\alpha-1}\right)}<+\infty$.
Lemma 2.1. Let $f$ and $g$ be two non constant entire functions in $\mathbb{A}\left(R_{0}\right)$, where $1<R_{0} \leq+\infty$. Then for any $1<R<R_{0}$, we have
$N_{0}\left(R, \frac{f}{g}\right)-N_{0}\left(R, \frac{g}{f}\right)=N_{0}(R, f)+N_{0}\left(R, \frac{1}{g}\right)-N_{0}(R, g)-N_{0}\left(R, \frac{1}{f}\right)$.
In studying on uniqueness theorems of meromorphic functions, the following lemma plays an important role.

Lemma 2.2. Suppose that $f_{1}(z), f_{2}(z), \ldots, f_{n}(z)$ are linearly independent meromorphic functions in $\mathbb{A}\left(R_{0}\right)$, where $1<R_{0} \leq+\infty$ satisfying the following identity

$$
\begin{equation*}
\sum_{j=1}^{n} f_{j} \equiv 1 \tag{2.1}
\end{equation*}
$$

Then for $1 \leq j \leq n$, we have
$T_{0}(R, f) \leq \sum_{k=1}^{n} N_{0}\left(R, \frac{1}{f_{k}}\right)+N_{0}\left(R, f_{j}\right)+N_{0}(R, D)-\sum_{k=1}^{n} N_{0}\left(R, f_{k}\right)-N_{0}\left(R, \frac{1}{D}\right)+S(R, f)$
Where $D$ is the Wronskian determinant $W\left(f_{1}, f_{2}, \ldots, f_{n}\right), S(r, f)=o\left(T_{0}(R, f)\right)$ and $T_{0}(R, f)=\max _{1 \leq k \leq n}\left\{T_{0}\left(R, f_{k}\right)\right\}$, for every $R$ such that $1<R<R_{0}$, $R \notin E$ and $E$ is the set of finite linear measure.

First of all, we prove a lemma which is a essentially generalization of Borel's theorem.

Lemma 2.3. Let $g_{j}(z)(j=1,2, \ldots, n)$ be an entire functions and $a_{j}(z)(j=0,1,2, \ldots, n)$ be a meromorphic functions in $\mathbb{A}\left(R_{0}\right)$, where $1<R_{0} \leq+\infty$, satisfying $T_{0}(R, a j)=$ $o\left(\sum_{k=1}^{n} T_{0}\left(R, e^{g k)}\right)\right.$, for every $R$ such that $1<R<R_{0}, R \notin E,(j=0,1,2, \ldots, n)$. If

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j}(z) e^{g_{j}(z)} \equiv a_{0}(z) \tag{2.3}
\end{equation*}
$$

then there exists constant $c_{j}(j=1,2, \ldots, n)$ at least one of them is not zero such that

$$
\begin{equation*}
\sum_{j=1}^{n} c_{j} a_{j}(z) e^{g_{j}(z)} \equiv 0 \tag{2.4}
\end{equation*}
$$

Lemma 2.4. Let $f$ and $g$ be two non constant entire functions in $\mathbb{A}\left(R_{0}\right)$, where $1<R_{0} \leq+\infty$. If $f$ and $g$ share $1 C M$, one of the following three cases holds:
(i) $T_{0}(R, f) \leq \bar{N}_{0}(R, f)+\bar{N}_{0}^{(2}(R, f)+\bar{N}_{0}(R, g)+\bar{N}_{0}^{(2}(R, g)+\bar{N}_{0}\left(R, \frac{1}{f}\right)$

$$
+\bar{N}_{0}^{(2}\left(R, \frac{1}{f}\right)+\bar{N}_{0}\left(R, \frac{1}{g}\right)+\bar{N}_{0}^{(2}\left(R, \frac{1}{g}\right)+S(R, f)+S(R, g)
$$

the same inequality holding for $T_{0}(R, g)$;
(ii) $f \equiv d g$;
(iii) $f g \equiv 1$,
where $\bar{N}_{0}^{(2}(R, 1 / f)=\bar{N}_{0}\left(R, \frac{1}{f}\right)-N_{0}^{1)}\left(R, \frac{1}{f}\right)$ and $N_{0}^{1)}\left(R, \frac{1}{f}\right)$ is the counting function of the zeros of $f$ in $\{z:|z| \leq R\}$.

## 3 Proof of Lemmas

1. Proof of Lemma 2.1: By Jensen's formula in annuli, we have
$N_{0}\left(R, \frac{1}{f}\right)-N_{0}(R, f)=\int_{0}^{2 \pi} \log \frac{1}{\left|f\left(R e^{i \theta}\right)\right|} \frac{d \theta}{2 \pi}+\int_{0}^{2 \pi} \log \left|f\left(R e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}-\int_{0}^{2 \pi} \log \left|f\left(e^{i \theta}\right)\right| \frac{d \theta}{\pi}$
for every $R$ such that $1<R<R_{0}$.
Consider,

$$
\begin{aligned}
N_{0}\left(R, \frac{f}{g}\right)-N_{0}\left(R, \frac{g}{f}\right)= & \int_{0}^{2 \pi} \log \left|\frac{f\left(R e^{i \theta}\right)}{g\left(R e^{i \theta}\right)}\right| \frac{d \theta}{2 \pi}+\int_{0}^{2 \pi} \log \left|\frac{g\left(R e^{i \theta}\right)}{f\left(R e^{i \theta}\right)}\right| \frac{d \theta}{2 \pi}+\int_{0}^{2 \pi} \log \left|\frac{g\left(e^{i \theta}\right.}{f\left(e^{i \theta}\right)}\right| \frac{d \theta}{\pi} \\
= & \left\{\int_{0}^{2 \pi} \log \left|\frac{1}{g\left(R e^{i \theta}\right)}\right| \frac{d \theta}{2 \pi}+\int_{0}^{2 \pi} \log \left|g\left(R e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}-\int_{0}^{2 \pi} \log \left|g\left(e^{i \theta}\right)\right| \frac{d \theta}{\pi}\right\} \\
& -\left\{\int_{0}^{2 \pi} \log \left|\frac{1}{f\left(R e^{i \theta}\right.}\right| \frac{d \theta}{2 \pi}+\int_{0}^{2 \pi} \log \left|f\left(R e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}-\int_{0}^{2 \pi} \log \left|f\left(e^{i \theta}\right)\right| \frac{d \theta}{\pi}\right\} \\
= & (R, f)+N_{0}\left(R, \frac{1}{g}\right)-N_{0}(R, g)-N_{0}\left(R, \frac{1}{f}\right) .
\end{aligned}
$$

This completes the proof of Lemma 2.1
2. Proof of Lemma 2.2: Taking the derivative in both sides of identity (2.1), we get

$$
\begin{equation*}
\sum_{j=1}^{n} f_{j}^{(k)}=0 \quad(k=1,2, \ldots, n-1) \tag{3.1}
\end{equation*}
$$

Since $f_{1}(z), f_{2}(z), \ldots, f_{n}(z)$ are linearly independent, we see that $D \not \equiv 0$. (2.1) and (3.1) imply

$$
\begin{equation*}
D=D_{j} \quad(j=1,2, \ldots, n), \tag{3.2}
\end{equation*}
$$

where $D_{j}$ is algebraic cofactor of $f_{j}$ in $D$. Hence

$$
\begin{equation*}
f_{1}=\frac{\frac{D_{1}}{f_{2} f_{3} \ldots f_{n}}}{D}=\frac{\Delta_{1}}{f_{1} f_{2} \ldots f_{n}}, \tag{3.3}
\end{equation*}
$$

where $\Delta=\left|\begin{array}{ccc}1 & 1 \cdots & 1 \\ \frac{f_{1}^{\prime}}{f_{1}} & \frac{f_{2}^{\prime}}{f_{2}} \cdots & \frac{f_{n}^{\prime}}{f_{n}} \\ \cdots & \cdots & \cdots \\ \frac{f_{1}^{(n-1)}}{f_{1}} & \frac{f_{2}^{(n-1)}}{f_{2}} \cdots & \frac{f_{n}^{(n-1)}}{f_{n}}\end{array}\right|$
and $\Delta$ is the algebraic cofactor of the elements at the first column and the first row in $\Delta$. From (3.3), we have

$$
\begin{align*}
m_{0}\left(R, f_{1}\right) & \leq m_{0}\left(R, \Delta_{1}\right)+m_{0}\left(R, \frac{1}{\Delta}\right) \\
& \leq m_{0}\left(R, \Delta_{1}\right)+m_{0}(R, \Delta)+N_{0}(R, \Delta)-N_{0}\left(R, \frac{1}{\Delta}\right) \tag{3.4}
\end{align*}
$$

since $\Delta=\frac{D}{f_{1} f_{2} \ldots f_{n}}$, which leads to
$N_{0}(R, \Delta)-N_{0}\left(R, \frac{1}{\Delta}\right)=\sum_{k=1}^{n} N_{0}\left(R, \frac{1}{f_{k}}\right)-\sum_{k=1}^{n} N_{0}\left(R, f_{k}\right)+N_{0}(R, D)-N_{0}\left(R, \frac{1}{D}\right)(3,5)$
Note that $m_{0}\left(R, \frac{f_{j}^{(k)}}{f_{j}}\right)=S\left(R, f_{j}\right)=S(R, f),(\mathrm{j}=1,2, \ldots, \mathrm{n}$ and $\mathrm{k}=1,2, \ldots, \mathrm{n}-1)$.
We have

$$
\begin{equation*}
m_{0}\left(R, \Delta_{1}\right)+m_{0}(R, \Delta)=S(R, f) \tag{3.6}
\end{equation*}
$$

From (3.4), (3.5) and (3.6), we get

$$
\begin{aligned}
& T_{0}\left(R, f_{1}\right)=m_{0}\left(R, f_{1}\right)+N_{0}\left(R, f_{1}\right) \\
& \quad \leq \sum_{k=1}^{n} N_{0}\left(R, \frac{1}{f_{k}}\right)+N_{0}\left(R, f_{1}\right)+N_{0}(R, D)-\sum_{k=1}^{n} N_{0}\left(R, f_{k}\right)-N_{0}\left(R, \frac{1}{D}\right)+S(\text { Rु, J) }
\end{aligned}
$$

By the same method, we can prove other results similar to 3.7$)$ for $f_{j}, \quad(2 \leq$ $j \leq n$ ). Hence (2.2) holds.
3. Proof of Lemma 2.3: If $a_{0}(z) \equiv 0$, Lemma 2.3 is obviously true. In the following, we assume that $a_{0}(z) \not \equiv 0$. From 2.3, we have $\sum_{j=1}^{n} \frac{a_{j}(z)}{a_{0}(z)} e^{g_{j}(z)} \equiv 1$. Let $G_{j}(z)=\frac{a_{j}(z)}{a_{0}(z)} e^{g_{j}(z)}(\mathrm{j}=1,2, \ldots, \mathrm{n})$. Then $\sum_{j=1}^{n} \equiv 1$.

If $G_{1}(z), G_{2}(z), \ldots, G_{n}(z)$ are linearly independent, then from Lemma 2.1 we have

$$
\begin{equation*}
T_{0}(R, G) \leq \sum_{j=1}^{n} N_{0}\left(R, \frac{1}{G_{j}}\right)+N_{0}(R, D)+S(R, f) \tag{3.8}
\end{equation*}
$$

where $D$ is Wronskian $W\left(G_{1}, G_{2}, \ldots, G_{n}\right)$, and $S(r, f)=o\left(T_{0}(R, f)\right)$ and $T_{0}(R, f)=$ $\max _{1 \leq k \leq n}\left\{T_{0}\left(R, f_{k}\right)\right\}$, as $1<R<R_{0}, R \notin E$. $E$ is the set of finite linear measure.
Note that

$$
\begin{align*}
N_{0}\left(R, \frac{1}{G_{j}}\right) & \leq N_{0}\left(R, \frac{1}{a_{j}}\right)+N_{0}\left(R, a_{0}\right) \leq T_{0}\left(R, a_{j}\right)+T_{0}\left(R, a_{0}\right) \\
& =o\left(\sum_{k=1}^{n} T_{0}\left(R, e^{g k)}\right), \quad\left(1<R<R_{0}, R \notin E\right) .\right. \tag{3.9}
\end{align*}
$$

and

$$
\begin{aligned}
N_{0}\left(R, G_{j}\right) & \leq N_{0}\left(R, a_{j}\right)+N_{0}\left(R, \frac{1}{a_{0}}\right) \leq T_{0}\left(R, a_{j}\right)+T_{0}\left(R, a_{0}\right) \\
& =o\left(\sum_{k=1}^{n} T_{0}\left(R, e^{g k)}\right), \quad\left(1<R<R_{0}, R \notin E\right) .\right.
\end{aligned}
$$

We have

$$
\begin{equation*}
N_{0}(R, D) \leq n \sum_{j=1}^{n} N_{0}\left(R, G_{j}\right)=o\left(\sum_{k=1}^{n} T_{0}\left(R, e^{g k)}\right), \quad\left(1<R<R_{0}, R \notin E\right) .\right. \tag{3.10}
\end{equation*}
$$

From (3.8), 3.9) and (3.10), we get

$$
T_{0}\left(R, G_{j}\right)<o\left(\sum_{k=1}^{n} T_{0}\left(R, e^{g k)}\right)+S(R, f), \quad\left(1<R<R_{0}, R \notin E\right), j=1,2, \ldots, n .\right.
$$

On the other hand, we have

$$
\begin{array}{rr}
T_{0}\left(R, G_{j}\right)=T_{0}\left(R, e^{g_{k}}\right)+o\left(\sum_{k=1}^{n} T_{0}\left(R, e^{g k)}\right)\right. & (R \notin E), \\
S(R, f)=o\left(\sum_{k=1}^{n} T_{0}\left(R, e^{g k)}\right)\right. & (R \notin E) .
\end{array}
$$

Hence for $j=1,2, \ldots, n$ we have

$$
T_{0}\left(R, e^{g_{k}}\right)=o\left(\sum_{k=1}^{n} T_{0}\left(R, e^{g k}\right) \quad(R \notin E) .\right.
$$

Therefore

$$
\sum_{k=1}^{n} T_{0}\left(R, e^{g_{k}}\right)=o\left(\sum_{k=1}^{n} T_{0}\left(R, e^{g k}\right) \quad(R \notin E)\right.
$$

This is a contradiction. Hence $G_{1}(z), G_{2}(z), \ldots, G_{n}(z)$ are linearly dependent. This completes the proof of Lemma 2.3.
4. Proof of Lemma 2.4: Set

$$
\begin{equation*}
\phi=\frac{f^{\prime \prime}}{f^{\prime}}-2 \frac{f^{\prime}}{f-1}-\frac{g^{\prime \prime}}{g^{\prime}}+2 \frac{g^{\prime}}{g-1} \tag{3.11}
\end{equation*}
$$

Since $f$ and $g$ share 1 CM , a simple computation on local expansions shows that $\phi\left(z_{0}\right)=0$ if $z_{0}$ is a simple zero of $f-1$ and $g-1$. Next we consider two cases $\phi \not \equiv 0$ and $\phi \equiv 0$.

If $\phi \not \equiv 0$, then

$$
\begin{aligned}
N_{0}^{1)}\left(R, \frac{1}{f-1}\right) & =N_{0}^{1)}\left(R, \frac{1}{g-1}\right) \leq N_{0}\left(R, \frac{1}{\phi}\right) \\
& \leq T_{0}(R, \phi)+O(1) \leq N_{0}(R, \phi)+S(R, f)+S(R,(g) .12)
\end{aligned}
$$

where $N_{0}^{1)}(R, 1 / f-1)$ is the counting function of the simple zeros of $f-1$ in $\{z:|z| \leq R\}$. Since $f$ and $g$ share 1 CM , any root of $f(z)=1$ can not be a pole of $\phi(z)$. In addition, we can easily see from (3.11) that any simple pole of $f$ and $g$ is not a pole of $\phi$. Therefore, by (3.11), the poles of $\phi$ only occur at zeros of $f^{\prime}$ and $g^{\prime}$ and the multiple poles of $f$ and $g$. If $f^{\prime}\left(z_{0}\right)=f\left(z_{0}\right)=0$, then $z_{0}$ is a multiple zero of $f$. We denote by $N_{0}\left(R, 1 / f^{\prime}\right)$ the counting function of those zeros of $f^{\prime}$ but not that of $f(f-1)$. From (3.11), (3.12) and the above observation that

$$
\begin{align*}
N_{0}^{1)}\left(R, \frac{1}{f-1}\right) \leq & \bar{N}_{0}^{(2}(R, f)+\bar{N}_{0}^{(2}(R, g)+N_{0}\left(R, \frac{1}{f^{\prime}}\right)+N_{0}\left(R, \frac{1}{g^{\prime}}\right)+N_{0}^{(2}\left(R, \frac{1}{f^{\prime}}\right) \\
& +N_{0}^{(2}\left(R, \frac{1}{g^{\prime}}\right)+S(R, f)+S(R, g) \tag{3.13}
\end{align*}
$$

On the otherhand, by the second fundamental theorem we have
$T_{0}(R, f) \leq \bar{N}_{0}(R, f)+N_{0}\left(R, \frac{1}{f}\right)+\bar{N}_{0}\left(R, \frac{1}{f-1}\right)-\bar{N}_{0}\left(R, \frac{1}{f^{\prime}}\right)+S(R, f)$
and by the first fundamental theorem we have

$$
\begin{aligned}
N_{0}\left(R, \frac{1}{g^{\prime}}\right)-N_{0}\left(R, \frac{1}{g}\right) & =N_{0}\left(R, \frac{g}{g^{\prime}}\right) \leq T_{0}\left(R, \frac{g}{g^{\prime}}\right)+O(1) \\
& =\bar{N}_{0}(R, g)+\bar{N}_{0}\left(R, \frac{1}{g}\right)+S(R, g)
\end{aligned}
$$

This implies that

$$
N_{0}\left(R, \frac{1}{g^{\prime}}\right)=\bar{N}_{0}(R, g)+\bar{N}_{0}\left(R, \frac{1}{g}\right)+S(R, g) .
$$

It is easy to see from the definition of $N_{0}^{(0)}\left(R, 1 / g^{\prime}\right)$ that
$\bar{N}_{0}^{(0)}\left(R, \frac{1}{g^{\prime}}\right)+\bar{N}_{0}^{(2}\left(R, \frac{1}{g-1}\right)+\bar{N}_{0}^{(2}\left(R, \frac{1}{g}\right)-\bar{N}_{0}^{(2}\left(R, \frac{1}{g}\right) \leq N_{0}\left(R, \frac{1}{g^{\prime}}\right)$.
The above two inequalities yield

$$
\begin{equation*}
\bar{N}_{0}^{(0)}\left(R, \frac{1}{g^{\prime}}\right)+\bar{N}_{0}^{(2}\left(R, \frac{1}{g-1}\right) \leq N_{0}(R, g)+N_{0}\left(R, \frac{1}{g}\right)+S(R, g) . \tag{3.15}
\end{equation*}
$$

Since $f$ and $g$ share 1 CM , we have

$$
\begin{equation*}
\bar{N}_{0}\left(R, \frac{1}{f-1}\right) \leq \bar{N}_{0}^{1)}\left(R, \frac{1}{f-1}\right)+\bar{N}_{0}^{(2}\left(R, \frac{1}{g-1}\right) . \tag{3.16}
\end{equation*}
$$

Combining (3.13) to (3.16), we obtain $(i)$. If $\phi(z) \equiv 0$, we deduce from (3.11) that

$$
\begin{equation*}
f \equiv \frac{A g+B}{C g+D}, \tag{3.17}
\end{equation*}
$$

where $A, B, C$ and $D$ are finite complex numbers satisfying $A D-B C \neq 0$. Then, by the first fundamental theorem,

$$
\begin{equation*}
T_{0}(R, f)=T_{0}(R, g)+S(R, f) \tag{3.18}
\end{equation*}
$$

Next we consider three respective subcases.
Subcase 1. $A C \neq 0$. Then

$$
f-\frac{A}{C}=\frac{B-A D / C}{C g+D} .
$$

By the second fundamental theorem, we have

$$
\begin{align*}
T_{0}(R, f) & \leq \bar{N}_{0}(R, f)+\bar{N}_{0}\left(R, \frac{1}{f-(A / C)}\right)+\bar{N}_{0}\left(R, \frac{1}{f}\right)+S(R, f) \\
& =\bar{N}_{0}(R, f)+\bar{N}_{0}(R, g)+\bar{N}_{0}\left(R, \frac{1}{f}\right)+S(R, f) \tag{3.19}
\end{align*}
$$

we get $(i)$.
Subcase 2. $A \neq 0, C=0$ Then $f \equiv(A g+B) / D$. If $B \neq 0$, by the second main theorem

$$
\begin{align*}
T_{0}(R, f) & \leq \bar{N}_{0}(R, f)+\bar{N}_{0}\left(R, \frac{1}{f}\right)+\bar{N}_{0}\left(R, \frac{1}{f-(B / D)}\right)+S(R, f) \\
& =\bar{N}_{0}(R, f)+\bar{N}_{0}\left(R, \frac{1}{f}\right)+\bar{N}_{0}\left(R, \frac{1}{g}\right)+S(R, f) \tag{3.20}
\end{align*}
$$

we get $(i)$. If $B=0$, then $f \equiv A g / D$. If $A / D=1$, then $f \equiv g$; this is (ii). If $A / D \neq 1$, then by the assumption that $f$ and $g$ share 1 CM , it is easy to see that $f \neq 1$ and $g \neq 1$, which yields $f \neq 1, A / D$. By the second fundamental theorem we have

$$
T_{0}(R, f) \leq \bar{N}_{0}(R, f)+S(R, f)
$$

and (i) follows.
Subcase 3. $A=0, C \neq 0$ Then $f \equiv B /(C g+D)$. if $D \neq 0$, by the second fundamental theorem we have

$$
\begin{align*}
T_{0}(R, f) & \leq \bar{N}_{0}(R, f)+\bar{N}_{0}\left(R, \frac{1}{f}\right)+\bar{N}_{0}\left(R, \frac{1}{f-(B / D)}\right)+S(R, f) \\
& =\bar{N}_{0}(R, f)+\bar{N}_{0}\left(R, \frac{1}{f}\right)+\bar{N}_{0}\left(R, \frac{1}{g}\right)+S(R, f) \tag{3.21}
\end{align*}
$$

we get $(i)$. If $D=0$, then $f \equiv B / C g$. If $B / C=1$, then $f g \equiv 1$ and we obtain (iii). If $B / C \neq 1$, by the assumption that $f$ and $g$ share 1 CM , we have $f \neq 1, B / C$. By the second fundamental theorem we get

$$
T_{0}(R, f) \leq \bar{N}_{0}(R, f)+S(R, f)
$$

This implies $(i)$. Thus the proof of Lemma 2.4 is complete.

## 4 Proof of Theorems

1. Proof of Theorem 1.2: We prove the theorem step by step as follows. Step 1. We prove that

$$
\begin{equation*}
f \neq 0, \quad g \neq 0 \tag{4.1}
\end{equation*}
$$

In fact, suppose that $f$ has a zero $z_{0}$ with order $m$. Then $z_{0}$ is a pole of $g$ (with order p , say) by

$$
\begin{equation*}
f^{n} f^{\prime} g^{n} g^{\prime}=1 . \tag{4.2}
\end{equation*}
$$

Thus, $n m+m-1=n p+p+1$, i.e., $(m-p)(n+1)=2$. This impossible since $n \geq 6$ and $m, p$ are integers.

Step 2. We claim that

$$
\begin{equation*}
N_{0}(R, f)+N_{0}(R, g) \leq 2 m_{0}\left(R, \frac{1}{f g}\right)+O(1) \tag{4.3}
\end{equation*}
$$

By step 1 and (4.2) we deduce that

$$
\begin{equation*}
(n+1) N_{0}(R, g)+\bar{N}_{0}(R, g)=N_{0}\left(R, \frac{1}{f^{\prime}}\right) \tag{4.4}
\end{equation*}
$$

From Lemma 2.1 we have

$$
\begin{aligned}
N_{0}\left(R, \frac{f}{f^{\prime}}\right)-N_{0}\left(R, \frac{f^{\prime}}{f}\right) & =N_{0}(R, f)+N_{0}\left(R, \frac{1}{f^{\prime}}\right)-N_{0}\left(R, f^{\prime}\right)-N_{0}\left(R, \frac{1}{f}\right) \\
& =N_{0}\left(R, \frac{1}{f^{\prime}}\right)-\bar{N}_{0}(R, f) .
\end{aligned}
$$

By the first fundamental theorem, the left side is $m_{0}\left(R, f^{\prime} / f\right)-m_{0}\left(R, f / f^{\prime}\right)+$ $O(1)$, so we have

$$
\begin{equation*}
N_{0}\left(R, \frac{1}{f^{\prime}}\right)=\bar{N}_{0}(R, f)+m_{0}\left(R, \frac{f}{f^{\prime}}\right)-m_{0}\left(R, \frac{f^{\prime}}{f}\right)+O(1) \tag{4.5}
\end{equation*}
$$

Now we rewrite (4.2) in the form $g^{\prime} / g=\left(f^{\prime} / f\right)(1 / f g)^{n+1}$. Then

$$
m_{0}\left(R, \frac{f}{f^{\prime}}\right) \geq m_{0}\left(R, \frac{g^{\prime}}{g}\right)-(n+1) m_{0}\left(R, \frac{1}{f g}\right)-O(1)
$$

combining this, (4.4) and 4.5, we get

$$
(n+1) N_{0}(R, g)+\bar{N}_{0}(R, g) \leq \bar{N}_{0}(R, f)+m_{0}\left(R, \frac{f^{\prime}}{f}\right)-m_{0}\left(R, \frac{g^{\prime}}{g}\right)+(n+1) m_{0}\left(R, \frac{1}{f g}\right)+O(1)
$$

By symmetry,

$$
(n+1) N_{0}(R, f)+\bar{N}_{0}(R, f) \leq \bar{N}_{0}(R, g)+m_{0}\left(R, \frac{g^{\prime}}{g}\right)-m_{0}\left(R, \frac{f^{\prime}}{f}\right)+(n+1) m_{0}\left(R, \frac{1}{f g}\right)+O(1)
$$

By adding above two inequalities we obtain (4.3).
Step 3. We prove that $f g$ is constant. Let $h=1 / f g$. Then $h$ is entire by Step 1, and (4.2) can be written as

$$
\left(\frac{g^{\prime}}{g}+\frac{1}{2} \frac{h^{\prime}}{h}\right)^{2}=\frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-h^{n+1}
$$

Let

$$
\alpha=\frac{g^{\prime}}{g}+\frac{1}{2} \frac{h^{\prime}}{h}
$$

The above equation becomes

$$
\begin{equation*}
\alpha^{2}=\frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-h^{n+1} \tag{4.6}
\end{equation*}
$$

If $\alpha \equiv 0$, then $h^{n+1}=\frac{1}{2}\left(h^{\prime} / h\right)^{2}$. Combining this with Step 1 we obtain $T_{0}(R, h)=m_{0}(R, h)=S(R, h)$; thus $h$ is a constant. Next we assume that $\alpha \not \equiv 0$. Differentiating (4.6) yields

$$
2 \alpha \alpha^{\prime}=\frac{1}{2} \frac{h^{\prime}}{h}\left(\frac{h^{\prime}}{h}\right)^{\prime}-(n+1) h^{\prime} h^{n}
$$

From this and (4.6) it follows that

$$
\begin{equation*}
h^{n+1}\left((n+1) \frac{h^{\prime}}{h}-2 \frac{\alpha^{\prime}}{\alpha}\right)=\frac{1}{2} \frac{h^{\prime}}{h}\left(\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{\alpha^{\prime}}{\alpha} \frac{h^{\prime}}{h}\right) \tag{4.7}
\end{equation*}
$$

If $(n+1) \frac{h^{\prime}}{h}-2 \frac{\alpha^{\prime}}{\alpha} \equiv 0$, then there exists a constant c such that $\alpha^{2}=c h^{n+1}$. This and 4.6) give

$$
(c+1) h^{n+1}=\frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2} .
$$

If $c=-1$, then $h^{\prime} \equiv 0$, and so $h$ is constant. If $c \neq-1$, we have $T_{0}(R, h)=$ $S(R, h)$, and $h$ is constant. Next we suppose that

$$
(n+1) \frac{h^{\prime}}{h}-2 \frac{\alpha^{\prime}}{\alpha} \not \equiv o .
$$

Then, by (4.7) and the fact that $h$ is entire,

$$
\begin{aligned}
(n+1) T_{0}(R, h) & =(n+1) m_{0}(R, h) \\
& \leq m_{0}\left(R, h^{n+1}\left((n+1) \frac{h^{\prime}}{h}-2 \frac{\alpha^{\prime}}{\alpha}\right)\right)+m_{0}\left(R, \frac{1}{(n+1) h^{\prime} / h-2 \alpha^{\prime} / \alpha}\right)+O(1) \\
& \leq m_{0}\left(R, \frac{1}{2} \frac{h^{\prime}}{h}\left(\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h}\right)\right)+T_{0}\left(R,(n+1) \frac{h^{\prime}}{h}-2 \frac{\alpha^{\prime}}{\alpha}\right) \\
& \leq \bar{N}_{0}(R, f)+\bar{N}_{0}(R, g)+\bar{N}_{0}\left(R, \frac{1}{\alpha}\right)+S(R, h)+S(R, \alpha)
\end{aligned}
$$

Now by (4.6) and (4.3) we have

$$
T_{0}(R, \alpha) \leq \frac{1}{2}(n+3) T_{0}(R, h)+S(R, h)
$$

and

$$
N_{0}(R, f)+N_{0}(R, g) \leq 2 m_{0}(R, h)+O(1)
$$

Combining the above three inequalities we obtain

$$
\frac{1}{2}(n-5) T_{0}(R, h) \leq S(R, h)
$$

Thus $h$ must be a constant.
Step 4. We prove our conclusion. By Step 3, $h$ is constant. Then, by (4.2),

$$
\frac{g^{\prime}}{g}=c, \quad c=i h^{(n+1) / 2}
$$

Thus

$$
g(z)=c_{1} e^{c z}, \quad f=c_{2} e^{-c z}
$$

where $c, c_{1}$ and $c_{2}$ are constants and satisfy $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$ by 4.2). This completes the proof of the theorem.

## 2. Proof of Theorem 1.3: From

$$
f^{n} f^{\prime} g^{n} g^{\prime}=1
$$

and the assumption that $f$ and $g$ are entire we immediately see that $f$ and $g$ have no zeros. Thus there exists two entire functions $\alpha(z)$ and $\beta(z)$ such that

$$
f(z)=e^{\alpha(z)}, \quad g(z)=e^{\beta(z)} .
$$

Inserting these in the above equality, we get

$$
\alpha^{\prime} \beta^{\prime} e^{(n+1)(\alpha+\beta)} \equiv 1 .
$$

Thus $\alpha^{\prime}$ and $\beta^{\prime}$ have no zeros and we may set

$$
\alpha^{\prime}=e^{\delta(z)}, \quad \beta^{\prime}=e^{\gamma(z)} .
$$

Differentiating this gives

$$
(n+1)\left(e^{\delta}+e^{\gamma}\right)+\delta^{\prime}+\gamma^{\prime} \equiv 0 .
$$

By Lemma 2.3, $\delta=\gamma+(2 m+1) \pi i$ for some integer $m$. Inserting this in the above equality we deduce that $\delta^{\prime} \equiv \gamma^{\prime} \equiv 0$, and so $\delta$ and $\gamma$ are constants, i.e., $\alpha^{\prime}$ and $\beta^{\prime}$ are constants. From this we can easily obtain the desired result.
3. Proof of Theorem 1.1: Let $F=f^{n+1} / a(n+1)$ and $G=g^{n+1} / a(n+1)$. Then condition that $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share the value $a$ CM implies that $F^{\prime}$ and $G^{\prime}$ share the value 1 CM . Obviously,

$$
\begin{align*}
N_{0}\left(R, F^{\prime}\right) & =(n+1) N_{0}(R, f)+\bar{N}_{0}(R, f), \\
N_{0}\left(R, G^{\prime}\right) & =(n+1) N_{0}(R, g)+\bar{N}_{0}(R, g)  \tag{4.8}\\
\bar{N}_{0}\left(R, F^{\prime}\right) & =\bar{N}_{0}^{(2}\left(R, F^{\prime}\right)=\bar{N}_{0}(R, f) \leq \frac{1}{n+2} T_{0}\left(R, F^{\prime}\right)+O(1),  \tag{4.9}\\
\bar{N}_{0}\left(R, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}^{(2}\left(R, \frac{1}{F^{\prime}}\right) & =2 \bar{N}_{0}\left(R, \frac{1}{f}\right)+\bar{N}_{0}\left(R, \frac{1}{f^{\prime}}\right)+\bar{N}_{0}^{(2}\left(R, \frac{1}{f^{\prime}}\right) \\
& \leq 2 \bar{N}_{0}\left(R, \frac{1}{f}\right)+\bar{N}_{0}\left(R, \frac{1}{f^{\prime}}\right)  \tag{4.10}\\
& \leq 2 T_{0}(R, f)+\bar{N}_{0}\left(R, \frac{1}{f^{\prime}}\right)+O(1) .
\end{align*}
$$

Since

$$
\begin{aligned}
n m_{0}(R, f) & =m_{0}\left(R, a \frac{F^{\prime}}{f^{\prime}}\right) \leq m_{0}\left(R, F^{\prime}\right)+m_{0}\left(R, \frac{1}{f^{\prime}}\right)+O(1) \\
& =m_{0}\left(R, F^{\prime}\right)+T_{0}(R, f)-N_{0}\left(R, \frac{1}{f^{\prime}}\right)+O(1) \\
& \leq m_{0}\left(R, F^{\prime}\right)+T_{0}(R, f)+\bar{N}_{0}(R, f)-N_{0}\left(R, \frac{1}{f^{\prime}}\right)+m_{0}\left(R, \frac{f^{\prime}}{f}\right)+O(1) \\
& \leq m_{0}\left(R, F^{\prime}\right)+T_{0}(R, f)+\bar{N}_{0}(R, f)-N_{0}\left(R, \frac{1}{f^{\prime}}\right)+m_{0}\left(R, \frac{F^{\prime}}{F}\right)+O(1),
\end{aligned}
$$

it follows from this, 4.8), and Theorem 2.A that

$$
(n-1) T_{0}(R, f) \leq T_{0}\left(R, F^{\prime}\right)-N_{0}(R, f)-N_{0}\left(R, \frac{1}{f^{\prime}}\right)+S\left(R, F^{\prime}\right)
$$

This and Theorem 2.A imply that

$$
\begin{aligned}
2 T_{0}(R, f)+N_{0}\left(R, \frac{1}{f^{\prime}}\right) & =\frac{2}{n-1}\left\{(n-1) T_{0}(R, f)+N_{0}\left(R, \frac{1}{f^{\prime}}\right)\right\}+\frac{n-3}{n-1} N_{0}\left(R, \frac{1}{f^{\prime}}\right) \\
& \leq \frac{2}{n-1}\left\{T_{0}\left(R, F^{\prime}\right)+N_{0}(R, f)\right\}+\frac{n-3}{n-1}\left\{T_{0}(R, f)+\bar{N}_{0}(R, f)\right\}+m_{0}\left(R, \frac{f^{\prime}}{f}\right)+O( \\
& \leq\left(\frac{2}{n-1}+\frac{n-3}{(n-1)^{2}}\right) T_{0}\left(R, F^{\prime}\right)+\left(\frac{n-5}{n-1}+\frac{n-3}{(n-1)^{2}}\right) N_{0}(R, f)+S\left(R, F^{\prime}\right) .
\end{aligned}
$$

combining this 4.9), and 4.10, we obtain

$$
\begin{equation*}
\bar{N}_{0}\left(R, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}^{(2}\left(R, \frac{1}{F^{\prime}}\right) \leq \frac{4 n^{2}-6 n-2}{(n-1)^{2}(n+2)} T_{0}\left(R, F^{\prime}\right)+S\left(R, F^{\prime}\right) \tag{4.11}
\end{equation*}
$$

We similarly derive for $G^{\prime}$ that

$$
\begin{gather*}
\bar{N}_{0}\left(R, G^{\prime}\right)=\bar{N}_{0}^{(2}\left(R, G^{\prime}\right)=\bar{N}_{0}(R, g) \leq \frac{1}{n+2} T_{0}\left(R, G^{\prime}\right)+S\left(R, G^{\prime}\right)  \tag{4.12}\\
\bar{N}_{0}\left(R, \frac{1}{G^{\prime}}\right)+\bar{N}_{0}^{(2}\left(R, \frac{1}{G^{\prime}}\right) \leq \frac{4 n^{2}-6 n-2}{(n-1)^{2}(n+2)} T_{0}\left(R, G^{\prime}\right)+S\left(R, G^{\prime}\right) . \tag{4.13}
\end{gather*}
$$

Without loss of generality, we suppose that there exists a set $I \subset[0, \infty)$ such that $T_{0}\left(R, G^{\prime}\right) \leq T_{0}\left(R, F^{\prime}\right)$. Next we apply Lemma 2.4 to $F^{\prime}$ and $G^{\prime}$, it follows that there are three cases to be considered.

Case (i).

$$
\begin{aligned}
T_{0}\left(R, F^{\prime}\right) \leq & \bar{N}_{0}\left(R, F^{\prime}\right)+\bar{N}_{0}^{(2}\left(R, F^{\prime}\right)+\bar{N}_{0}\left(R, G^{\prime}\right)+\bar{N}_{0}^{(2}\left(R, G^{\prime}\right)+\bar{N}_{0}\left(R, \frac{1}{F^{\prime}}\right) \\
& +\bar{N}_{0}^{(2}\left(R, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(R, \frac{1}{G^{\prime}}\right)+\bar{N}_{0}^{(2}\left(R, \frac{1}{G^{\prime}}\right)+S\left(R, F^{\prime}\right)+S\left(R, G^{\prime}\right)
\end{aligned}
$$

Setting (4.9), (4.11), (4.12), and (4.13) into the above inequality and keeping in mind that $T_{0}\left(R, G^{\prime}\right) \leq T_{0}\left(R, F^{\prime}\right)$, we get

$$
\begin{equation*}
\frac{n^{3}-12 n^{2}+17 n+2}{(n+1)^{2}(n+2)} T_{0}\left(R, F^{\prime}\right) \leq S\left(R, F^{\prime}\right) \tag{4.14}
\end{equation*}
$$

We denote by $p(n)$ the numerator of the coefficient on the left hand side above. Then $p^{\prime}(n)=3 n^{2}-24 n+17>0$ for $n \leq 8$. Note that $p(11)=68$; thus $p(n)$ is positive for $n \leq 11$. It follows from (4.14) that $F^{\prime}$ must be rational function.
 must be a constant, which is impossible.

Case (ii). $F^{\prime}=G^{\prime}$. Then we deduce that $f^{n+1}=g^{n+1}+c(c \in \mathbb{C})$. Let $f=h g$, and we have

$$
\begin{equation*}
\left(h^{n+1}-1\right) g^{n+1}=c . \tag{4.15}
\end{equation*}
$$

If $h^{n+1} \equiv 1$, then $h$ is $(n+1)^{t h}$ unit root and we obtain the desired result. If $h^{n+1} \not \equiv 1$, then by (4.15),

$$
g^{n+1}=\frac{c}{h^{n+1}-1}
$$

Thus $h$ is not constant. We write this in the form

$$
g^{n+1}=\frac{c}{\left(h-u_{1}\right) \ldots\left(h-u_{n+1}\right)},
$$

where $u_{1}, \ldots, u_{n+1}$ are different $(n+1)^{\text {th }}$ roots of unity. Thus $h$ has at least $n+1(\geq 14)$ multiple values. However, from Nevanlinna's second fundamental theorem we know that $h$ has at most 4 multiple values, a contradiction.

Case (iii). $\quad F^{\prime} G^{\prime} \equiv 1$, i.e., $a^{-2} f^{n} f^{\prime} g^{n} g^{\prime} \equiv 1$. Let $\widehat{f}=a^{-1 /(n+1) f}$ and $\widehat{g}=a^{-1 /(n+1) g}$. Then $\widehat{f}^{n} f^{\prime} \hat{g}^{n} g^{\prime}=1$. The conclusion follows follows from Theorem 1.2.

## References

[1] T. B. CAO, Z. S. DENG, On the uniqueness of meromorphic functions that share three or two finite sets on annuli, Proceeding Mathematical Sciences, 122(2012), 203-220
[2] T. B. CAO, H. X. YI, Uniqueness theorems of meromorphic functions share sets IM on Annili, Acta Math.Sinica (Chin.Ser.), 54(2011), 623632.
[3] T. B. CAO, H. X. YI, H. Y. XU, On the multiple values and uniqueness of meromorphic functions on annuli, Compute. Math. Appl.,58(2009), 14571465.
[4] Y. X. CHEN, Z. J. WU, Exceptional values of meromorphic functions and of their derivatives on annuli, Ann. Polon.Math. 105(2012), 154-165.
[5] A. FERNANDEZ, On the value distribution of meromorphic function in the punctured plane, Mathematychin Studii, 34(2010), 136-144.
[6] A. YA. KHRYSTIYANYN, A. A. KONDRATYUK, On the Nevanlinna Theory for meromorphic functions on annuli. I, Mathematychin Studii, 23(2005),19-30.
[7] A. YA. KHRYSTIYANYN, A. A. KONDRATYUK, On the Nevanlinna Theory for meromorphic functions on annuli. II, Mathematychin Studii,24(2005),57-68.
[8] KORHONEN R, Nevanlinna theory in an annulus, value distribution theory and related topics. Adv Complex Anal Appl, 2004,3:547-554.
[9] H. Y. XU, and Z. X. XUAN, The uniqueness of analytic functions on annuli sharing some values, Abstract and Applied analysis,vol.2012,Article ID 896596,13 pages,2012.
[10] HONG-YAN XU, Exceptional values of Meromorphic Function on Annulus, Hindawi Publishing Corporation The Scientific World Journal Volume 2013,Article ID 937584, 7 pages,2013.

