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1 Introduction and Main results

In this paper, a meromorphic function always mean a function which is
meromorphic in A(R0), where 1 < R0 ≤ +∞. Let f(z) and g(z) be non con-
stant meromorphic in A(R0), where 1 < R0 ≤ +∞, a ∈ C. We say that f
and g share the value a CM if f(z)− a and g(z)− a have the same zeros with
the same multiplicities. We shall use standard notations of value distribution
theory in annuli, T0(R, f), m0(R, f), N0(R, f), N0(R, f),...([[4]], [[6]]).

In this paper, we shall show that certain types of differential polynomi-
als on annuli when they share only one value.

Theorem 1.1. Let f and g be two non constant meromorphic fuctions in
A(R0), where 1 < R0 ≤ +∞, n ≥ 11 an integer and a ∈ C− {0}. If fnf ′ and
gng′ share the value a CM, then either f ≡ dg or g = c1e

cz and f = c2e
−cz,

where c, c1 and c2 are constants and satisfy (c1c2)
n+1c2 = a−2.

Remark 1.1. The following example shows that a ̸= 0 is necessary. For
f = ee

z
and g = ez, we see that fnf ′ and gng′ share 0 CM for any integer n,

but f and g do not satisfy the conclusion of Theorem 1.1.

In order to prove the above result, we shall first prove the following two
theorems.

Theorem 1.2. Let f and g be two non constant meromorphic functions in
A(R0), where 1 < R0 ≤ +∞, n ≥ 6. If fnf ′gng′ = 1, then f ≡ dg or g = c1e

cz

and f = c2e
−cz, where c, c1 and c2 are constants and (c1c2)

n+1c2 = −1.
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Theorem 1.3. Let f and g be two non constant entire fuctions in A(R0),
where 1 < R0 ≤ +∞, n ≥ 1. If fnf ′gng′ = 1, then f ≡ dg or g = c1e

cz and
f = c2e

−cz, where c, c1 and c2 are constants and (c1c2)
n+1c2 = −1.

2 Some Basic Theorems and Lemmas

Theorem 2.A. [7] (Lemma on the Logarithmic Derivative ). Let f be a non-
constant meromorphic function in A(R0), where 1 < R0 ≤ +∞, and α ≥ 0.
Then
1. In the case, R0 = +∞,

m0

(
R,

f ′

f

)
= O (log(RT0(R, f)))

for R ∈ (1,+∞) except for the set △R such that
∫
△R

Rα−1dR < +∞;
2. In the case, R0 < +∞,

m0

(
R,

f ′

f

)
= O

(
log

(
T0(R, f)

R0 −R

))
for R ∈ (1, R0) except for the set △′

R such that
∫
△′

R

dR
(R0−Rα−1)

< +∞.

Lemma 2.1. Let f and g be two non constant entire functions in A(R0), where
1 < R0 ≤ +∞. Then for any 1 < R < R0, we have

N0

(
R,

f

g

)
−N0

(
R,

g

f

)
= N0 (R, f) +N0

(
R,

1

g

)
−N0 (R, g)−N0

(
R,

1

f

)
.

In studying on uniqueness theorems of meromorphic functions, the fol-
lowing lemma plays an important role.

Lemma 2.2. Suppose that f1(z), f2(z), . . . , fn(z) are linearly independent mero-
morphic functions in A(R0), where 1 < R0 ≤ +∞ satisfying the following
identity

n∑
j=1

fj ≡ 1 (2.1)

Then for 1 ≤ j ≤ n, we have

T0(R, f) ≤
n∑

k=1

N0

(
R,

1

fk

)
+N0 (R, fj) +N0 (R,D)−

n∑
k=1

N0 (R, fk)−N0

(
R,

1

D

)
+ S(R, f)(2.2)

Where D is the Wronskian determinantW (f1, f2, . . . , fn), S(r, f) = o(T0(R, f))
and T0(R, f) = max1≤k≤n{T0(R, fk)}, for every R such that 1 < R < R0,
R ̸∈ E and E is the set of finite linear measure.

First of all, we prove a lemma which is a essentially generalization of
Borel’s theorem.



3

Lemma 2.3. Let gj(z) (j=1,2,...,n) be an entire functions and aj(z) (j=0,1,2,...,n)
be a meromorphic functions in A(R0), where 1 < R0 ≤ +∞, satisfying T0(R, aj) =

o

(
n∑

k=1

T0(R, egk)
)
, for every R such that 1 < R < R0, R ̸∈ E, (j = 0, 1, 2, ..., n).

If
n∑

j=1

aj(z)e
gj(z) ≡ a0(z) (2.3)

then there exists constant cj (j=1,2,...,n) at least one of them is not zero such
that

n∑
j=1

cjaj(z)e
gj(z) ≡ 0. (2.4)

Lemma 2.4. Let f and g be two non constant entire functions in A(R0), where
1 < R0 ≤ +∞. If f and g share 1 CM, one of the following three cases holds:

(i) T0(R, f) ≤ N0 (R, f)+N
(2

0 (R, f)+N0 (R, g)+N
(2

0 (R, g)+N0

(
R,

1

f

)
+N

(2

0

(
R,

1

f

)
+N0

(
R,

1

g

)
+N

(2

0

(
R,

1

g

)
+ S(R, f) + S(R, g)

the same inequality holding for T0(R, g);

(ii) f ≡ dg;

(iii) fg ≡ 1,

where N
(2

0 (R, 1/f) = N0

(
R, 1

f

)
−N

1)
0

(
R, 1

f

)
and N

1)
0

(
R, 1

f

)
is the counting

function of the zeros of f in {z : |z| ≤ R}.

3 Proof of Lemmas

1. Proof of Lemma 2.1: By Jensen’s formula in annuli, we have

N0

(
R,

1

f

)
−N0 (R, f) =

∫ 2π

0

log
1

|f(Reiθ)|
dθ

2π
+

∫ 2π

0

log |f(Reiθ)| dθ
2π

−
∫ 2π

0

log |f(eiθ)|dθ
π

for every R such that 1 < R < R0.

Consider,

N0

(
R,

f

g

)
−N0

(
R,

g

f

)
=

∫ 2π

0

log

∣∣∣∣f(Reiθ)

g(Reiθ)

∣∣∣∣ dθ2π +

∫ 2π

0

log

∣∣∣∣ g(Reiθ)

f(Reiθ)

∣∣∣∣ dθ2π +

∫ 2π

0

log

∣∣∣∣ g(eiθ)f(eiθ)

∣∣∣∣ dθπ
=

{∫ 2π

0

log

∣∣∣∣ 1

g(Reiθ)

∣∣∣∣ dθ2π +

∫ 2π

0

log
∣∣g(Reiθ)

∣∣ dθ
2π

−
∫ 2π

0

log
∣∣g(eiθ)∣∣ dθ

π

}
−
{∫ 2π

0

log

∣∣∣∣ 1

f(Reiθ)

∣∣∣∣ dθ2π +

∫ 2π

0

log
∣∣f(Reiθ)

∣∣ dθ
2π

−
∫ 2π

0

log
∣∣f(eiθ)∣∣ dθ

π

}
= (R, f) +N0

(
R,

1

g

)
−N0 (R, g)−N0

(
R,

1

f

)
.
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This completes the proof of Lemma 2.1

2. Proof of Lemma 2.2: Taking the derivative in both sides of identity
(2.1), we get

n∑
j=1

f
(k)
j = 0 (k = 1, 2, ..., n− 1) (3.1)

Since f1(z), f2(z), . . . , fn(z) are linearly independent, we see that D ̸≡ 0. (2.1)
and (3.1) imply

D = Dj (j = 1, 2, ..., n), (3.2)

where Dj is algebraic cofactor of fj in D. Hence

f1 =

D1

f2f3...fn
D

f1f2...fn

=
∆1

∆
, (3.3)

where ∆ =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
f ′
1

f1

f ′
2

f2
· · · f ′

n

fn

. . . . . . . . . . . .
f
(n−1)
1

f1

f
(n−1)
2

f2
· · · f

(n−1)
n

fn

∣∣∣∣∣∣∣∣∣
and ∆ is the algebraic cofactor of the elements at the first column and the
first row in ∆. From (3.3), we have

m0(R, f1) ≤ m0(R,∆1) +m0

(
R,

1

∆

)
≤ m0(R,∆1) +m0 (R,∆) +N0(R,∆)−N0

(
R,

1

∆

)
(3.4)

since ∆ = D
f1f2...fn

, which leads to

N0(R,∆)−N0

(
R,

1

∆

)
=

n∑
k=1

N0

(
R,

1

fk

)
−

n∑
k=1

N0 (R, fk) +N0 (R,D)−N0

(
R,

1

D

)
(3.5)

Note that m0

(
R,

f
(k)
j

fj

)
= S(R, fj) = S(R, f), (j=1,2,...,n and k=1,2,...,n-1).

We have
m0(R,∆1) +m0 (R,∆) = S(R, f) (3.6)

From (3.4), (3.5) and (3.6), we get

T0(R, f1) = m0(R, f1) +N0(R, f1)

≤
n∑

k=1

N0

(
R,

1

fk

)
+N0 (R, f1) +N0 (R,D)−

n∑
k=1

N0 (R, fk)−N0

(
R,

1

D

)
+ S(R, f)(3.7)

By the same method, we can prove other results similar to (3.7) for fj, (2 ≤
j ≤ n). Hence (2.2) holds.
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3. Proof of Lemma 2.3: If a0(z) ≡ 0, Lemma 2.3 is obviously true. In the

following, we assume that a0(z) ̸≡ 0. From (2.3), we have
n∑

j=1

aj(z)

a0(z)
egj(z) ≡ 1.

Let Gj(z) =
aj(z)

a0(z)
egj(z) (j=1,2,...,n). Then

n∑
j=1

≡ 1.

If G1(z), G2(z), . . . , Gn(z) are linearly independent, then from Lemma 2.1 we
have

T0(R,G) ≤
n∑

j=1

N0

(
R,

1

Gj

)
+N0(R,D) + S(R, f), (3.8)

where D is Wronskian W (G1, G2, ..., Gn), and S(r, f) = o(T0(R, f)) and T0(R, f) =
max1≤k≤n{T0(R, fk)}, as 1 < R < R0, R ̸∈ E. E is the set of finite linear
measure.
Note that

N0

(
R,

1

Gj

)
≤ N0

(
R,

1

aj

)
+N0 (R, a0) ≤ T0 (R, aj) + T0 (R, a0)

= o

(
n∑

k=1

T0(R, egk)

)
, (1 < R < R0, R ̸∈ E). (3.9)

and

N0 (R,Gj) ≤ N0 (R, aj) +N0

(
R,

1

a0

)
≤ T0 (R, aj) + T0 (R, a0)

= o

(
n∑

k=1

T0(R, egk)

)
, (1 < R < R0, R ̸∈ E).

We have

N0(R,D) ≤ n

n∑
j=1

N0 (R,Gj) = o

(
n∑

k=1

T0(R, egk)

)
, (1 < R < R0, R ̸∈ E). (3.10)

From (3.8), (3.9) and (3.10), we get

T0 (R,Gj) < o

(
n∑

k=1

T0(R, egk)

)
+ S(R, f), (1 < R < R0, R ̸∈ E), j = 1, 2, ..., n.

On the other hand, we have

T0 (R,Gj) = T0 (R, egk) + o

(
n∑

k=1

T0(R, egk)

)
(R ̸∈ E),

S(R, f) = o

(
n∑

k=1

T0(R, egk)

)
(R ̸∈ E).

Hence for j = 1, 2, ..., n we have

T0 (R, egk) = o

(
n∑

k=1

T0(R, egk)

)
(R ̸∈ E).
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Therefore

n∑
k=1

T0 (R, egk) = o

(
n∑

k=1

T0(R, egk)

)
(R ̸∈ E).

This is a contradiction. Hence G1(z), G2(z), . . . , Gn(z) are linearly dependent.
This completes the proof of Lemma 2.3.

4. Proof of Lemma 2.4: Set

ϕ =
f ′′

f ′ − 2
f ′

f − 1
− g′′

g′
+ 2

g′

g − 1
(3.11)

Since f and g share 1 CM, a simple computation on local expansions shows
that ϕ(z0) = 0 if z0 is a simple zero of f − 1 and g − 1. Next we consider two
cases ϕ ̸≡ 0 and ϕ ≡ 0.

If ϕ ̸≡ 0, then

N
1)
0

(
R,

1

f − 1

)
= N

1)
0

(
R,

1

g − 1

)
≤ N0

(
R,

1

ϕ

)
≤ T0 (R, ϕ) +O(1) ≤ N0 (R, ϕ) + S(R, f) + S(R, g)(3.12)

where N
1)
0 (R, 1/f − 1) is the counting function of the simple zeros of f − 1 in

{z : |z| ≤ R}. Since f and g share 1 CM, any root of f(z) = 1 can not be a
pole of ϕ(z). In addition, we can easily see from (3.11) that any simple pole of
f and g is not a pole of ϕ. Therefore, by (3.11), the poles of ϕ only occur at
zeros of f ′ and g′ and the multiple poles of f and g. If f ′(z0) = f(z0) = 0, then
z0 is a multiple zero of f. We denote by N0(R, 1/f ′) the counting function of
those zeros of f ′ but not that of f(f − 1). From (3.11), (3.12) and the above
observation that

N
1)
0

(
R,

1

f − 1

)
≤ N

(2

0 (R, f) +N
(2

0 (R, g) +N0

(
R,

1

f ′

)
+N0

(
R,

1

g′

)
+N

(2
0

(
R,

1

f ′

)
+N

(2
0

(
R,

1

g′

)
+ S(R, f) + S(R, g) (3.13)

On the otherhand, by the second fundamental theorem we have

T0(R, f) ≤ N0(R, f) +N0

(
R,

1

f

)
+N0

(
R,

1

f − 1

)
−N0

(
R,

1

f ′

)
+ S(R, f)

(3.14)
and by the first fundamental theorem we have

N0

(
R,

1

g′

)
−N0

(
R,

1

g

)
= N0

(
R,

g

g′

)
≤ T0

(
R,

g

g′

)
+O(1)

= N0(R, g) +N0

(
R,

1

g

)
+ S(R, g).
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This implies that

N0

(
R,

1

g′

)
= N0(R, g) +N0

(
R,

1

g

)
+ S(R, g).

It is easy to see from the definition of N
(0)
0 (R, 1/g′) that

N
(0)

0

(
R,

1

g′

)
+N

(2

0 (R,
1

g − 1
) +N

(2

0

(
R,

1

g

)
−N

(2

0

(
R,

1

g

)
≤ N0

(
R,

1

g′

)
.

The above two inequalities yield

N
(0)

0

(
R,

1

g′

)
+N

(2

0 (R,
1

g − 1
) ≤ N0 (R, g) +N0

(
R,

1

g

)
+ S(R, g). (3.15)

Since f and g share 1 CM, we have

N0

(
R,

1

f − 1

)
≤ N

1)

0

(
R,

1

f − 1

)
+N

(2

0

(
R,

1

g − 1

)
. (3.16)

Combining (3.13) to (3.16), we obtain (i). If ϕ(z) ≡ 0, we deduce from (3.11)
that

f ≡ Ag +B

Cg +D
, (3.17)

where A, B, C and D are finite complex numbers satisfying AD −BC ̸= 0.
Then, by the first fundamental theorem,

T0(R, f) = T0(R, g) + S(R, f). (3.18)

Next we consider three respective subcases.

Subcase 1. AC ̸= 0. Then

f − A

C
=

B − AD/C

Cg +D
.

By the second fundamental theorem, we have

T0(R, f) ≤ N0(R, f) +N0

(
R,

1

f − (A/C)

)
+N0

(
R,

1

f

)
+ S(R, f)

= N0(R, f) +N0(R, g) +N0

(
R,

1

f

)
+ S(R, f). (3.19)

we get (i).

Subcase 2. A ̸= 0, C = 0 Then f ≡ (Ag + B)/D. If B ̸= 0, by the sec-
ond main theorem

T0(R, f) ≤ N0(R, f) +N0

(
R,

1

f

)
+N0

(
R,

1

f − (B/D)

)
+ S(R, f)

= N0(R, f) +N0

(
R,

1

f

)
+N0

(
R,

1

g

)
+ S(R, f). (3.20)
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we get (i). If B = 0, then f ≡ Ag/D. If A/D = 1, then f ≡ g; this is (ii). If
A/D ̸= 1, then by the assumption that f and g share 1 CM, it is easy to see
that f ̸= 1 and g ̸= 1, which yields f ̸= 1, A/D. By the second fundamental
theorem we have

T0(R, f) ≤ N0(R, f) + S(R, f),

and (i) follows.

Subcase 3. A = 0, C ̸= 0 Then f ≡ B/(Cg + D). if D ̸= 0, by the sec-
ond fundamental theorem we have

T0(R, f) ≤ N0(R, f) +N0

(
R,

1

f

)
+N0

(
R,

1

f − (B/D)

)
+ S(R, f)

= N0(R, f) +N0

(
R,

1

f

)
+N0

(
R,

1

g

)
+ S(R, f). (3.21)

we get (i). If D = 0, then f ≡ B/Cg. If B/C = 1, then fg ≡ 1 and we
obtain (iii). If B/C ̸= 1, by the assumption that f and g share 1 CM, we have
f ̸= 1, B/C. By the second fundamental theorem we get

T0(R, f) ≤ N0(R, f) + S(R, f).

This implies (i). Thus the proof of Lemma 2.4 is complete.

4 Proof of Theorems

1. Proof of Theorem 1.2: We prove the theorem step by step as follows.
Step 1. We prove that

f ̸= 0, g ̸= 0. (4.1)

In fact, suppose that f has a zero z0 with order m. Then z0 is a pole of g (with
order p, say) by

fnf ′gng′ = 1. (4.2)

Thus, nm+m− 1 = np+ p+1, i.e.,(m− p)(n+1) = 2. This impossible since
n ≥ 6 and m, p are integers.

Step 2. We claim that

N0(R, f) +N0(R, g) ≤ 2m0

(
R,

1

fg

)
+O(1). (4.3)

By step 1 and (4.2) we deduce that

(n+ 1)N0(R, g) +N0(R, g) = N0

(
R,

1

f ′

)
. (4.4)
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From Lemma 2.1 we have

N0

(
R,

f

f ′

)
−N0

(
R,

f ′

f

)
= N0 (R, f) +N0

(
R,

1

f ′

)
−N0 (R, f ′)−N0

(
R,

1

f

)
= N0

(
R,

1

f ′

)
−N0 (R, f) .

By the first fundamental theorem, the left side is m0(R, f ′/f)−m0(R, f/f ′)+
O(1), so we have

N0

(
R,

1

f ′

)
= N0 (R, f) +m0

(
R,

f

f ′

)
−m0

(
R,

f ′

f

)
+O(1). (4.5)

Now we rewrite (4.2) in the form g′/g = (f ′/f)(1/fg)n+1. Then

m0

(
R,

f

f ′

)
≥ m0

(
R,

g′

g

)
− (n+ 1)m0

(
R,

1

fg

)
−O(1).

combining this, (4.4) and (4.5), we get

(n+1)N0 (R, g)+N0 (R, g) ≤ N0 (R, f)+m0

(
R,

f ′

f

)
−m0

(
R,

g′

g

)
+(n+1)m0

(
R,

1

fg

)
+O(1).

By symmetry,

(n+1)N0 (R, f)+N0 (R, f) ≤ N0 (R, g)+m0

(
R,

g′

g

)
−m0

(
R,

f ′

f

)
+(n+1)m0

(
R,

1

fg

)
+O(1).

By adding above two inequalities we obtain (4.3).
Step 3. We prove that fg is constant. Let h = 1/fg. Then h is entire by

Step 1, and (4.2) can be written as(
g′

g
+

1

2

h′

h

)2

=
1

4

(
h′

h

)2

− hn+1.

Let

α =
g′

g
+

1

2

h′

h

The above equation becomes

α2 =
1

4

(
h′

h

)2

− hn+1. (4.6)

If α ≡ 0, then hn+1 = 1
2
(h′/h)2 . Combining this with Step 1 we obtain

T0(R, h) = m0(R, h) = S(R, h); thus h is a constant. Next we assume that
α ̸≡ 0. Differentiating (4.6) yields

2αα′ =
1

2

h′

h

(
h′

h

)′

− (n+ 1)h′hn.
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From this and (4.6) it follows that

hn+1

(
(n+ 1)

h′

h
− 2

α′

α

)
=

1

2

h′

h

((
h′

h

)′

− α′

α

h′

h

)
(4.7)

If (n + 1)h
′

h
− 2α′

α
≡ 0, then there exists a constant c such that α2 = chn+1.

This and (4.6) give

(c+ 1)hn+1 =
1

4

(
h′

h

)2

.

If c = −1, then h′ ≡ 0, and so h is constant. If c ̸= −1, we have T0(R, h) =
S(R, h), and h is constant. Next we suppose that

(n+ 1)
h′

h
− 2

α′

α
̸≡ o.

Then, by (4.7) and the fact that h is entire,

(n+ 1)T0(R, h) = (n+ 1)m0(R, h)

≤ m0

(
R, hn+1

(
(n+ 1)

h′

h
− 2

α′

α

))
+m0

(
R,

1

(n+ 1)h′/h− 2α′/α

)
+O(1)

≤ m0

(
R,

1

2

h′

h

((
h′

h

)′

− h′

h

))
+ T0

(
R, (n+ 1)

h′

h
− 2

α′

α

)
≤ N0 (R, f) +N0 (R, g) +N0

(
R,

1

α

)
+ S(R, h) + S(R,α).

Now by (4.6) and (4.3) we have

T0(R,α) ≤ 1

2
(n+ 3)T0(R, h) + S(R, h),

and
N0(R, f) +N0(R, g) ≤ 2m0(R, h) +O(1).

Combining the above three inequalities we obtain

1

2
(n− 5)T0(R, h) ≤ S(R, h).

Thus h must be a constant.
Step 4. We prove our conclusion. By Step 3, h is constant. Then, by (4.2),

g′

g
= c, c = ih(n+1)/2.

Thus
g(z) = c1e

cz, f = c2e
−cz

where c, c1 and c2 are constants and satisfy (c1c2)
n+1c2 = −1 by (4.2). This

completes the proof of the theorem.
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2. Proof of Theorem 1.3: From

fnf ′gng′ = 1

and the assumption that f and g are entire we immediately see that f and g
have no zeros. Thus there exists two entire functions α(z) and β(z) such that

f(z) = eα(z), g(z) = eβ(z).

Inserting these in the above equality, we get

α′β′e(n+1)(α+β) ≡ 1.

Thus α′ and β′ have no zeros and we may set

α′ = eδ(z), β′ = eγ(z).

Differentiating this gives

(n+ 1)(eδ + eγ) + δ′ + γ′ ≡ 0.

By Lemma 2.3, δ = γ + (2m + 1)πi for some integer m. Inserting this in the
above equality we deduce that δ′ ≡ γ′ ≡ 0, and so δ and γ are constants, i.e.,
α′ and β′ are constants. From this we can easily obtain the desired result.

3. Proof of Theorem 1.1: Let F = fn+1/a(n+ 1) and G = gn+1/a(n+ 1).
Then condition that fnf ′ and gng′ share the value a CM implies that F ′ and
G′ share the value 1 CM. Obviously,

N0(R,F ′) = (n+ 1)N0(R, f) +N0(R, f),

N0(R,G′) = (n+ 1)N0(R, g) +N0(R, g), (4.8)

N0(R,F ′) = N
(2

0 (R,F ′) = N0(R, f) ≤ 1

n+ 2
T0(R,F ′) +O(1), (4.9)

N0

(
R,

1

F ′

)
+N

(2

0

(
R,

1

F ′

)
= 2N0

(
R,

1

f

)
+N0

(
R,

1

f ′

)
+N

(2

0

(
R,

1

f ′

)
≤ 2N0

(
R,

1

f

)
+N0

(
R,

1

f ′

)
(4.10)

≤ 2T0(R, f) +N0

(
R,

1

f ′

)
+O(1).
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Since

nm0(R, f) = m0

(
R, a

F ′

f ′

)
≤ m0 (R,F ′) +m0

(
R,

1

f ′

)
+O(1)

= m0 (R,F ′) + T0(R, f)−N0

(
R,

1

f ′

)
+O(1)

≤ m0 (R,F ′) + T0(R, f) +N0(R, f)−N0

(
R,

1

f ′

)
+m0

(
R,

f ′

f

)
+O(1)

≤ m0 (R,F ′) + T0(R, f) +N0(R, f)−N0

(
R,

1

f ′

)
+m0

(
R,

F ′

F

)
+O(1),

it follows from this,(4.8), and Theorem 2.A that

(n− 1)T0(R, f) ≤ T0(R,F ′)−N0(R, f)−N0

(
R,

1

f ′

)
+ S(R,F ′).

This and Theorem 2.A imply that

2T0(R, f) +N0

(
R,

1

f ′

)
=

2

n− 1

{
(n− 1)T0(R, f) +N0

(
R,

1

f ′

)}
+

n− 3

n− 1
N0

(
R,

1

f ′

)
≤ 2

n− 1
{T0(R,F ′) +N0 (R, f)}+ n− 3

n− 1

{
T0(R, f) +N0 (R, f)

}
+m0

(
R,

f ′

f

)
+O(1)

≤
(

2

n− 1
+

n− 3

(n− 1)2

)
T0(R,F ′) +

(
n− 5

n− 1
+

n− 3

(n− 1)2

)
N0 (R, f) + S(R,F ′).

combining this (4.9), and (4.10), we obtain

N0

(
R,

1

F ′

)
+N

(2

0

(
R,

1

F ′

)
≤ 4n2 − 6n− 2

(n− 1)2(n+ 2)
T0(R,F ′) + S(R,F ′). (4.11)

We similarly derive for G′ that

N0(R,G′) = N
(2

0 (R,G′) = N0(R, g) ≤ 1

n+ 2
T0(R,G′) + S(R,G′), (4.12)

N0

(
R,

1

G′

)
+N

(2

0

(
R,

1

G′

)
≤ 4n2 − 6n− 2

(n− 1)2(n+ 2)
T0(R,G′) + S(R,G′). (4.13)

Without loss of generality, we suppose that there exists a set I ⊂ [0,∞) such
that T0(R,G′) ≤ T0(R,F ′). Next we apply Lemma 2.4 to F ′ and G′, it follows
that there are three cases to be considered.

Case (i).

T0(R,F ′) ≤ N0(R,F ′) +N
(2

0 (R,F ′) +N0(R,G′) +N
(2

0 (R,G′) +N0

(
R,

1

F ′

)
+N

(2

0

(
R,

1

F ′

)
+N0

(
R,

1

G′

)
+N

(2

0

(
R,

1

G′

)
+ S(R,F ′) + S(R,G′).
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Setting (4.9), (4.11), (4.12), and (4.13) into the above inequality and keeping
in mind that T0(R,G′) ≤ T0(R,F ′), we get

n3 − 12n2 + 17n+ 2

(n+ 1)2(n+ 2)
T0(R,F ′) ≤ S(R,F ′). (4.14)

We denote by p(n) the numerator of the coefficient on the left hand side above.
Then p′(n) = 3n2 − 24n+17 > 0 for n ≤ 8. Note that p(11) = 68; thus p(n) is
positive for n ≤ 11. It follows from (4.14) that F ′ must be rational function.
But then, by the above derivatives, S(R,F ′) = O(1). Using (4.14) again, F ′

must be a constant, which is impossible.
Case (ii). F ′ = G′. Then we deduce that fn+1 = gn+1 + c (c ∈ C). Let

f = hg, and we have
(hn+1 − 1)gn+1 = c. (4.15)

If hn+1 ≡ 1, then h is (n + 1)th unit root and we obtain the desired result. If
hn+1 ̸≡ 1, then by (4.15),

gn+1 =
c

hn+1 − 1.

Thus h is not constant. We write this in the form

gn+1 =
c

(h− u1) . . . (h− un+1)
,

where u1, . . . , un+1 are different (n + 1)th roots of unity. Thus h has at least
n+ 1(≥ 14) multiple values. However, from Nevanlinna’s second fundamental
theorem we know that h has at most 4 multiple values, a contradiction.

Case (iii). F ′G′ ≡ 1, i.e., a−2fnf ′gng′ ≡ 1. Let f̂ = a−1/(n+1)f and

ĝ = a−1/(n+1)g. Then f̂n f ′ĝn g′ = 1. The conclusion follows follows from The-
orem 1.2.
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