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Abstract 

A range of phenomena, including changes in interface structure, mobility, cohesion, etc., are 

brought on by soluble decoration at grain boundaries (GB). Recent experimental studies on the 

interfacial segregation of steels are based on the microstructural characterization of the steels 

employing two correlative methods, namely Transmission Electron Microscopy-Atom Probe 

Tomography (APT) and Electron Backscatter Diffraction-APT. The current study aims to 

address the typical adsorption isotherms used for assessing interfacial segregation and provide 

an overview of the current status of experimental research in the area of GB segregation in 

steels in light of the increased interest in this field. An emphasis on the experimental challenges 

related to comprehending GB segregation in steels has also been placed on the areas where an 

understanding of GB segregation may be useful. 
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1. Introduction 

Grain boundaries (GBs) are planar (2D) defects that affect a variety of properties, including 

tensile strength, in polycrystalline metallic materials. corrosion resistance, endurance to 

hydrogen (H) attack, thermal and electrical conductivity, etc. [1]–[5]. A GB may also function 

as a source and sink for vacancies and dislocations since it is a region of partial atomic disorder 

with specified structure and direction. [6]–[9]. They also have five macroscopic degrees of 

freedom (DOFs), including misorientation axis and angle. [10]–[15]. A GB's structure is 

determined by the five DOFs [16]–[19]. The energy of a GB, often referred to as GB energy, 

is strongly impacted by GB structure and by the chemistry close to GBs [17], [18], [20]-[24]. 
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The reduction of GB energy is what motivates solute decoration at GBs [25]–[27]. As 

compared to random high-angle GBs (RHAGBs) (with high GB energies), special high-angle 

GBs (SHAGBs) with low GB energies have been claimed to have considerably higher 

resistance to corrosion, crack propagation, H diffusion, GB sliding, etc. [28]-[31]. As a result 

of these observations, GB engineering (GBE), which is based on substituting SHAGBs for 

RHAGBs in order to optimise the properties (of polycrystalline materials), has evolved. [32]–

[37]. However, it is important to take into account the influence of preferential segregation of 

various elements (with varying concentrations) at GBs [2], [38]-[42]. This is crucial since the 

majority of GB features, including fracture toughness, electrical and thermal properties, H 

embrittlement, resistance to dislocation pile-up, etc., are affected by segregation-induced 

changes [2], [43]. GB segregation engineering (GBSE) is the term used to describe this 

modification of the GB structure [2]. Co-segregation, the coefficient of segregation, and other 

thermodynamic and kinetic variables, like deformation-induced GB phase evolution, are all 

linked to GBSE [2], [44]–[46]. This implies that solute decorating at GBs is significantly 

impacted by time [2] in addition to thermomechanical treatment. Additionally, elemental 

segregation is used by GBSE as a site-specific manipulation technique that optimises a 

particular GB structure's composition and attributes [2].  

Additionally, polycrystalline metallic materials' strengths may be decreased or increased by 

GBs [1]. Due to the high stress concentration along GBs, the majority of metallic materials in 

service are likely to fail from an intergranular fracture by void nucleation and propagation [47]. 

The most typical explanation for such a failure is predominant GB embrittlement caused by 

plastic strains along GBs not being accommodated in the presence of segregating solute species 

[48], [49].  Metallic materials have "impaired plasticity" as a result of this embrittlement-

assisted failure [50]. The embrittlement that results from the segregation of H at various GBs 

in steels is a fairly prevalent example of this phenomena [2], [51]. The accommodation of 

plastic strains along GBs, particularly in the presence of solute segregation, has instead been 

the subject of several papers on the strengthening of GBs (in metallic materials) [40], [52]–

[54]. Thus, creating metallic materials with great overall toughness is the main goal. The former 

remark frequently holds true in the context of steels, which are the foundation of the world 

economy. To put it another way, designing high-performance steels may make use of solute 

ornamentation at internal interfaces [2]. The objective of the current review paper is to discuss 

typical thermodynamic methods for estimating the degree of interfacial segregation and to 

highlight the current experimental research in the area of GB segregation in steels. The 



potential applications of knowledge of GB segregation have also been addressed. Additionally, 

the solute segregation perspective has been used to briefly address the experimental difficulties 

related to GB research. 

2. Relevant topics 

2.1 Theoretical approaches towards quantifying interfacial segregation 

According to certain reports, the solute concentration at GB is up to several orders of magnitude 

greater than the solubility (of the solutes) in the interior of the grain [1], [2], [48], [55]-[57]. 

According to Raabe et al. [2], bulk solubility (the solubility of a specific solute inside a grain) 

can be used as a rough indicator of a solute's propensity for preferential segregation at GBs. In 

other words, the higher the solute enrichment factor (𝛽𝑖) of the solute at the GB, the smaller 

the bulk solubility, and the greater the inclination of the solute species towards GB segregation 

[2]. The fluctuation of 𝛽𝑖  as a function of the maximum solubility of several solutes in the α-

Fe matrix is depicted in Fig. 1. 



 

Fig. 1 Variation of 𝛽𝑖in relation to the maximum solubility of several solutes in the α-Fe matrix, 

as in Ref. [2]. The data points in this plot can be utilised to find suitable solute species that 

have a propensity to segregate into GBs. 

Additionally, the thermodynamics involved in GB segregation may be expressed in terms of 

the Gibbs adsorption isotherm and is a near analogue of monolayer gas adsorption at solid 

surfaces [16], [58]. This isotherm can be used to determine the excess concentration of a 

specific solute species at a GB, also known as GB excess: [16] 

                                     𝛤𝑖 =  − (
1

𝑅𝑇̅̅ ̅̅ ) (
𝑑𝛾𝐺𝐵

𝑑𝑥𝑖
)

𝑉,𝑇
                                          (1) 

Where: R is the universal gas constant ( 8.314 J/molK), xi is the molar concentration of the 

element (solute) i in the bulk (or grain interior), 𝑑𝛾𝐺𝐵 is the change in GB energy upon 



segregation at a certain temperature T and volume V, and T is the absolute temperature (in K). 

[16]. Theoretically, 𝛤𝑖 can be calculated by measuring 𝑑𝛾𝐺𝐵 as a logarithmic function of 𝑑𝑥𝑖. 

The other type of Gibbs adsorption isotherm, which connects 𝑑𝛾𝐺𝐵 with 𝛤𝑖 
 and changes in the 

chemical potential of solute i (dμi), is frequently utilised in the context of GB segregation. It is 

written as: [58] 

                                     𝑑𝛾𝐺𝐵 =  − ∑ 𝛤𝑖dμ𝑖𝑖                                                      (2) 

The Gibbs adsorption isotherm is based on a crude method for estimating GB segregation from 

a thermodynamic perspective. The aforementioned isotherm, however, cannot be used to assess 

GB segregation as a function of bulk concentration and temperature [59], [60]. Since it 

quantifies GB segregation by balancing both the adsorption and desorption rates of solute 

species at a GB, the Langmuir-McLean isotherm has been extensively employed in this context 

[60]. As of [60], this isotherm is given as:  
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where 𝑥𝑖
𝐺𝐵 denotes the molar concentration of the solute i at GB, 𝑥𝑖

𝐺𝐵 ,0 denotes the solubility 

limit of the solute i at GB, 𝑥𝑖
𝐵 denotes the molar fraction of the solute i in the bulk of the grain, 

and ∆𝐺𝑖
𝐺𝐵denotes the Gibbs molar free energy of segregation of the solute i [60]. Equation (3) 

can be made simpler by assuming that the system is diluted as follows: [60] 

                                  𝛽𝑖 =
𝑥𝑖

𝐺𝐵 

𝑥𝑖
𝐵 =  exp (−

∆𝐺𝑖
𝐺𝐵

𝑅𝑇
)                                             (4) 

The value of ∆𝐺𝑖
𝐺𝐵 is typically unknown. Equations (3) and (4) suggest that GB segregation 

occurs when ∆𝐺𝑖
𝐺𝐵< 0, and that this tendency of solute to segregate at GBs decreases with 

increasing temperature [60]. The main drawback of the Langmuir-McLean isotherm is that, in 

contrast to the Gibbs adsorption isotherm [2], [61], it does not take GB energy into account 

when quantifying GB segregation. Additionally, this isotherm presupposes that, in the event of 

several decorating solutes, dynamic equilibrium is reached between the segregating solute 

species and that, at GBs, solute decoration is restricted to a single monolayer [60]. However, 

neither of the aforementioned isotherms takes into account the interaction between segregating 

solute species at GBs and instead treats GB as a separate phase with characteristics that are 

distinct from those in the interior of the grain [2]. 



In α-Fe based alloys, the phenomena of entropy-dominated GB segregation has recently been 

reported for low solute concentration at various SHAGBs and RHAGBs [62]. The notion that 

the phenomena of GB segregation is only governed by the enthalpy of segregation (ΔHi, for 

solute i) and not by the entropy of segregation (ΔSi) has reportedly been linked to the main 

restriction of the Langmuir-McLean isotherm [62], [63]. Furthermore, it has been theoretically 

demonstrated that, particularly at homologous temperatures > 0.4Tm (Tm: melting points (in 

K)), entropy-dominated segregation phenomena is prevalent for solutes with poor solid 

solubility in a given matrix (solvent). Sb and Sn are the two often segregating species with low 

solid solubility in the context of α-Fe based matrices [62], [64]. At temperatures below 450°C, 

these elements have been shown to exhibit dominant entropy-dominated GB segregation [62].  

Lejcek and Hoffmann [65]–[67] have demonstrated that solubility limits for various solute 

atoms at various GBs vary with GB character in α-Fe based on GB segregation maps at various 

temperatures. Therefore, it may be inferred that GB segregation diagrams help us comprehend 

how solutes segregate in dilute binary systems. To determine the degree of solute segregation 

at various GBs, it is always more advantageous to understand GB segregation in 

multicomponent alloys where mutual interactions and site competition both concurrently play 

a significant role [50], [67]-[70]. When this occurs, 𝛽𝑖 is unable to accurately forecast how 

much solute segregation will occur at GBs [65], [68], [71]–[77]. For a ternary system with 

matrix M and the other solute j, according to Guttmann [78]-[80], ΔHi is given by: 

                        ΔHi =  ΔHi
0 −   2αMi(𝑥𝑖

𝐺𝐵 −  𝑥𝑖) + αij(𝑥𝑗
𝐺𝐵 −  𝑥𝑗)                              (5) 

where xi
GB, xj

GB, and xi, xj are the GB and bulk mole fractions respectively of two solutes, i and 

j. ΔHi is influenced by the chemical reactions taking place between the constituents, namely 

the binary interaction with the Fowler interaction coefficient αMi and the ternary interaction 

coefficient αij
’ with the other solute species [81]. Even for a multicomponent system, ΔHi

0 

denotes the enthalpy of segregation for the diluted binary system M-i and is temperature and 

composition independent [80]. As a result, ΔHi
0 in equation (5) is a separate feature of the 

segregation of solute i in matrix M [81]. As a result, it may be acceptable to claim that a more 

fundamental thermodynamic parameter, such as ΔHi, better describes a solute's inclination to 

segregate at GBs compared to βi in multicomponent systems. 

2.2. Characterising GB segregation in steels 

2.2.1 Common techniques for the characterisation of GB segregation 



A number of characterisation techniques have been used to investigate GB segregation such as 

Auger Electron Spectroscopy (AES), Transmission Electron Microscopy (TEM), Scanning 

Transmission Electron Microscopy (STEM), Electron Backscatter Diffraction (EBSD), 

Transmission Kikuchi Diffraction (TKD), Electron Energy Loss Spectroscopy (EELS), Field 

Ion Microscopy (FIM), Secondary Ion Mass Spectroscopy (SIMS) and Atom Probe 

Tomography (APT). When employed singly for characterising GB segregation, each of these 

methods has a number of drawbacks, mainly the absence of crystallographic information and 

high spatial resolution GB segregation data [2]. Furthermore, because GB segregation occurs 

on an atomic scale, it is difficult to gather information about GB segregation that is accurate, 

statistically significant, and reproducible all at once [2]. The current disparity between the 

theoretical and experimental approaches to tackling GB segregation has been emphasised by 

Wynblatt and Chatain [82].  

Correlative microscopy, which enables the simultaneous determination of both structural and 

chemical information from an area surrounding a solute-decorated GB, is one of the recently 

developed approaches for characterising GB segregation. The two correlative characterisation 

approaches used (to date) for the assessment of GB segregation in steels are based on the direct 

lattice reconstruction from a provided APT data of solute-decorated GBs (Correlative TEM-

APT and EBSD-APT approach) [2], [83]-[85]. Additionally, a variety of factors can affect the 

GB segregation information discovered using electron microscopy methods (such TEM and 

EBSD). First, the angular resolution of the employed electron microscopy method needs to be 

considered. Depending on the instrument and analysis software utilised, using the TEM-based 

nanobeam diffraction approach, it is possible to achieve an angular resolution of 1° as opposed 

to the (1-3°) attained using the EBSD technique [86]. Second, using the Focused Ion Beam 

(FIB)-based liftout process in a scanning electron microscope (SEM) to produce APT tips 

(including the GB region) is fraught with ambiguity [2], [87]. Prior orientation mapping on the 

APT tips using TEM and/or FIM techniques was previously used to alleviate this issue. In 

addition to the restricted range of view, employing these approaches to get exact orientation 

information (from APT tips) calls for a high level of competence. The field of view of the TKD 

technique is greater than that of the TEM and FIM procedures [88, [89]. Additionally, TKD is 

significantly simpler to use than TEM and/or FIM procedures for getting orientation 

information [90]. The impact of projection and lens effects on the allocation of atoms to a 

certain GB [91]–[93] is one of APT's limitations. The lens effect is connected to field 

evaporation at solute-decorated GBs and causes inaccuracies in the positioning of field 



evaporated atoms, while the projection effect is based on the magnetic field around the APT 

tip [91].  

2.3 Experimental investigations towards understanding GB segregation in steels 

2.3.1 Conventional methodology 

Grabke et al. [94] investigated the segregation of Ti, Nb, Mo, and V and associated carbides at 

RHAGBs in Fe-P based ternary and quaternary alloys (bulk composition is specified in Ref. 

[94]) using FIM, APT, and AES techniques. In Fe-Ti-P ternary alloys, Ti and Nb addition was 

shown to inhibit the segregation of P at GBs (via the creation of Ti and Nb-based phosphides) 

[94]. However, it was noted that neither Mo nor V had an impact on propensity of P towards 

segregation [94]. GB segregation of P in Fe-Nb-C-P and Fe-Ti-C-P quaternary alloys increases 

with C concentration up to the point at which NbC precipitates form [94]. Using AES, Christien 

et al. [95] have demonstrated a linear relationship between the concentration of P isolated at 

GBs in a 17-4PH martensitic stainless steel and the intergranular grooves created during 

metallographic etching. The segregation of C and N atoms at various GBs in Fe-0.006C-

0.001N-0.04Al (C60) and Fe-0.005C-0.0054N-0.04Al (N60) (wt.%) ferritic steels has been 

studied by Takahashi et al. [96] using APT. It was noted that, based on the observations, C 

segregates at RHAGBs in C60 while N segregates at RHAGBs in N60 [96]. However, it was 

shown that N in N60 had a lower tendency to segregate than C in C60 [96]. Additionally, it 

was noted that the segregation of C atoms at RHAGBs (in C60) and not the segregation of N 

atoms at RHAGBs (in N60) had an impact on the Hall-Petch coefficient of ferrite grains [96]. 

Rosa et al. [97] used nano-SIMS and APT techniques to examine the effects of B addition on 

high strength Fe-0.34C-2.45Mn-0.0100B-0.03Ti (at.%) steel (with a single-phase austenitic 

structure). The segregation of B at RHAGB is caused by the dissolution of boride (Fe2B and 

M23(B,C)6) precipitates in grain interior [97]. Additionally, it was noted that the degree of B 

segregation at austenite GBs increased with temperature [97]. B segregation at austenite GBs 

was claimed to follow the Langmuir-McLean adsorption isotherm [97], despite the fact that 

this goes against the thermodynamically supported trend of decreased solute segregation with 

increasing temperature. B segregation at austenite GBs was claimed to follow the Langmuir-

McLean adsorption isotherm [97], despite the fact that this goes against the thermodynamically 

supported trend of decreased solute segregation with increasing temperature. The enthalpy of 

dissolution (ΔHdiss) of borides and the ΔHi of B (at austenite GB) were computed based on this 

isotherm to be greater (by 51% and 9.4%, respectively) than the corresponding values (of ΔHi 



and ΔHdiss) published in the earlier literatures [98]-[100]. Using APT, AES, and fractography 

techniques, Fedotova et al. [101] examined irradiation-induced GB segregation of P, Mn, Ni, 

and Si at RHAGBs in Fe-(0.04-0.07)C-(1.6-1.89)Ni-(0.006-0.01)P (wt.%) reactor pressure 

vessel steels. According to reports, the degree of these elements' segregation (at RHAGBs) 

increased with the bulk concentration [101]. Additionally, inter-granular fracturing was seen 

to be promoted by P segregation at RHAGB [101]. Similar P tendencies have been seen in 

neutron-irradiated AISI 304 austenitic stainless steel [103], [104], and Fe-(0.083-0.19)C-(0.26-

0.38)Si-(1.22-1.41)Mn-(0.007-0.012)P (wt.%) reactor pressure vessel steels. 

Using the aberration-corrected STEM-EELS technique, Shigesato et al. [105] studied the non-

equilibrium segregation of B at austenite RHAGBs in Fe-0.05C-0.5Mo-0.001B (wt.%) steel. 

Additionally, this work [105] evaluated the effects of specimen thickness, electron beam 

broadening, and GB plane orientation on the GB segregation of B. The broadening of the B 

concentration profile was calculated using the Gaussian broadening model [105]. Specimen 

thickness increases the degree of widening [105]. The widening of the B concentration profile 

was found to be 10% [105] for specimen thickness of 30 nm. Additionally, it was noted that 

the B concentration profile was asymmetric for GB plane inclination angles greater than 1.5° 

[105]. In a duplex medium Mn steel (composition: Fe-11.7Mn-2.9Al-0.064C (wt.%)), Ma et 

al. [106] have demonstrated that segregation of C at ferrite/austenite interphase boundary (IB) 

leads to an increase in the energy barrier for dislocation emission from RHAGBs, resulting in 

discontinuous yielding of the material at room temperature. It has been suggested that the 

discontinuous yielding phenomena is influenced by C-decoration at the aforementioned IB in 

conjunction with dislocation nucleation and subsequent multiplication [106]. Additionally, 

contrary to earlier results [107]–[109], it was shown that Gibbs and Langmuir-McLean 

adsorption isotherms are not responsible for the segregation of solutes at IBs. 

2.3.2 Correlative methodology 

TEM-APT methodology 

Herbig et al. [86] have characterised C-decorated GBs in a nanocrystalline cold-drawn pearlitic 

steel (composition: Fe-4.40C-0.30Mn-0.39Si-0.21Cr (at.%)) using correlative TEM-APT 

methodology and reported the variation of C excess (obtained using APT) as a function of GB 

misorientation angle for coherent Σ5 and both coherent and incoherent Σ3 GBs (Fig. 2). The 

overlay of C decoration at various GBs in an APT needle is depicted in Fig. 2(a). The 

fluctuation of C excess as a function of GB misorientation angle is depicted in Fig. 2(b). C-



excess was discovered to be significantly larger for incoherent Σ3 GBs than for coherent Σ5 

and Σ3 GBs [86]. Additionally, it was determined that the presence of misfit dislocations, 

which are likewise accountable for the significant C-excess at the aforementioned GB (Fig. 

2(b)), was the cause of the deviation from the optimum 60° misorientation (for incoherent Σ3 

GBs) [86]. For the aforementioned GBs, it was also shown that the C excess vs. GB 

misorientation angle plot had a strong association with the GB energy vs. misorientation angle 

plot [86]. The similar methodology was utilised by Abramova et al. [110] to demonstrate how 

Mo, Si, and Cr segregation at austenitic RHAGB causes GB strengthening in ultra-fine grained 

AISI 316 austenitic stainless steel. Han et al. [111] have reported using the aforementioned 

technique that delamination is significantly influenced by competitive segregation of C and P 

(at RHAGBs) in the context of Fe-1.62Mn-0.18Si (wt.%) ferritic steel. Additionally, it was 

noted that RHAGBs with high P and low C content induce delamination cracks, whereas 

RHAGBs with low P and high C content were shown to be resistant to delamination cracking 

[111]. 

 

Fig. 2 Correlative TEM-APT analysis for cold drawn pearlitic steel with the following 

composition: Fe-4.40C-0.30Mn-0.39Si-0.21Cr: APT needle prepared using FIB-based liftout 

approach (a) Overlay of C decoration at various GBs (b) Variation of C excess as a function of 

GB misorientation angle [86]. 

EBSD-APT methodology 

This methodology was utilised by Kuzmina et al. [112] to demonstrate how Mn segregation 

causes martensite RHAGBs in Fe-9Mn-0.05C (wt.%) steel to become embrittled at 450°C. In 



that situation, it was reported that the addition of 0.0027 wt.% B strengthened the GB and 

prevented the segregation of Mn at martensite RHAGB by encouraging martensite to austenite 

reversion during a protracted holding period of around 336 hours at 450°C [112]. Benzing et 

al. [113] observed a similar finding in relation to Fe-12Mn-3Al-0.05C (wt%) steel. This 

methodology was used by Ravi et al. [114] to investigate the effects of C segregation in Fe-

0.2C-3Mn-2Si (wt.%) bainitic steel. They found that C segregation at austenite RHAGBs 

facilitates austenitic to bainitic transformation during isothermal holding at bainitic 

transformation temperature (400°C, in this case). 

The segregation of B, C, P, Si, and Cu at an FCC RHAGB and coherent Σ3 annealing twin 

boundaries in Fe-28Mn-0.3C (wt.%) twinning-induced plasticity (TWIP) steel was 

characterised by Herbig et al. [115] using the same method (Fig. 3). Image quality (IQ)+GB 

map based on EBSD is shown in Fig. 3(a). The APT-based 3D concentration profiles of B, C, 

Si, P, Mn, and Cu at the two GBs highlighted in Fig. 3(a) are shown in Figs. 3(b) and 3(c). 

According to Figs. 3(b and c), the degree of Mn segregation was found to be essentially the 

same for both RHAGB and at Σ3 GB. According to Figs. 3(b and c) [115], B and P were shown 

to segregate substantially more strongly at RHAGB than at coherent Σ3 annealing twin 

boundaries. This was explained by the fact that RHAGB has a higher GB energy than coherent 

Σ3 GB [115]. According to a study, adding C atoms to RHAGB (Fig. 3(b)) increased the local 

stacking fault energy (SFE), which in turn caused high resolved shear stress for mechanical 

twinning (at RHAGB) [115]. On the other hand, it was noted that C depletion (at Σ3 GB; Fig. 

3(c)) decreased the local SFE and caused the development of the ε-martensite (HCP) phase at 

austenite Σ3 boundaries [115]. Additionally, it was examined whether elements (B, C, P, and 

Si) preferentially segregated at deformation and/or annealing twins in a deformed Fe-22Mn-

0.6C (wt.%) TWIP steel [115]. Although they have identical crystal structures, deformation 

twins exhibit a significantly reduced propensity to develop C atom decorating than annealing 

twins [115]. The extremely poor mobility of C atoms during the production of deformation 

twins at room temperature may be the reason for this tendency of deformation twins [115]. 



 

Fig. 3 Correlative EBSD-APT analysis for Fe–28Mn–0.3C (wt.%) TWIP steel: (a) EBSD-

based IQ+GB map showing the two GBs: GB1 and GB2 (enclosed in black outlined rectangular 

boxes) analysed using APT, APT-based 3D elemental maps for different elements in (b) GB1 

and (c) GB2. In part (a), LAGB abbreviates for low-angle grain boundary and general GB 

refers to RHAGB. To the bottom right of part (c), Density map (of Fe) shows the position of 

GB2 [115].  

Araki et al. [116] developed a systematic correlation between the critical shear stress for 

dislocation emission from GB and the concentration of C at (a) grain interior and (b) RHAGB 

in Fe-50C (ppm) ferritic steel using the aforementioned correlative methodology in conjunction 

with the nanoindentation technique. Based on this research, it was found that (i) dislocation 

nucleation and multiplication occur much more readily at RHAGB than in grain interiors due 

to the high frequency of "pop-ins" (in load-displacement curves) at RHAGB, and (ii) pinning 



of dislocations by C atoms segregated at RHAGB results in a high critical shear stress for 

emission of dislocations from RHAGB, leading to GB strengthening [116]. Additionally, 

before the commencement of "pop-in events" in nanoindentation-based load-displacement 

curves, the critical shear stress necessary for dislocation emission from RHAGB was estimated 

using Hertz contact theory, taking into account elastic contact between the nanoindenter and 

the sample surface [116]. The extant literature on the use of TEM-APT and EBSD-APT based 

correlative approaches to characterise GB segregation in steels is compiled in Table 1. 

Table. 1 A summary of reports based on correlative approach towards characterising GB 

segregation in steels (till date) [19]. 

Correlative 

approach 

Steel composition (or grade) Segregating 

solute species  

Type of GB Reference 

TEM-APT Fe–4.40C–0.30Mn–0.39Si–

0.21Cr (at. %) 

C Coherent Σ5, 

coherent and 

incoherent Σ3   

[86] 

AISI 316 Mo, Si, Cr RHAGB [110] 

Fe-1.62Mn-0.18Si (wt.%) C, P RHAGB [111] 

EBSD-APT Fe-9Mn-0.05C (wt.%) Mn RHAGB [112] 

Fe-12Mn-3Al-0.05C (wt.%) C, Mn RHAGB, IB, 

triple 

junctions 

[113] 

Fe–0.2C–3Mn–2Si (wt.%) C RHAGB [114] 

Fe–28Mn–0.3C (wt.%) B, C, P, Si coherent Σ3 [115] 

Fe–22Mn–0.6C (wt.%) B, C, P, Si Σ3 

deformation 

twins 

[115] 

Fe-50C (ppm) C RHAGB [116] 

 

2.4. Towards utilising GB segregation: Examples 

2.4.1 Alloy design 

One use of GB segregation in the context of steel design is to stabilise nano-sized grains by 

lowering the overall GB energy through solute decorating at GBs. As an illustration, 



discontinuous grain growth (caused by high GB energy) is a frequent occurrence that has been 

seen in a variety of materials, particularly steels. In that situation, GB segregation is beneficial 

in two different ways. It first lowers the GB energy and then the capillary force linked to the 

competitive growth of two adjacent grains. Second, selecting suitable solutes (for decorating 

at GBs) improves GB cohesive strength. According to Yuan et al. [117], the segregation of C 

at martensite GBs increases the ultimate tensile strength and total elongation (by around 

233.33% and 53%, respectively) in Fe-13.6 Cr-0.44 C (wt.%) martensitic steel. This was 

explained by the segregation of C at martensitic GBs, which promotes the transition from the 

martensite to austenite phase [117]. In Fe-3.66C-0.48Mn-0.39Si-0.01P-0.01S (at.%) pearlitic 

steel, Li et al. [118] found a direct association between the amount of tensile deformation and 

the concentration of segregated C at ferrite RHAGBs. Additionally, in hypereutectoid Fe-

4.40C-0.30Mn-0.39Si-0.21Cr-0.003Cu-0.01P-0.01S (at.%) pearlitic steel, a similar correlation 

for the situation of C separated at ferrite sub-grain (or, low angle) boundaries has been shown 

[119], [120]. 

Designing steels with resistance to H embrittlement (HE) is another application for which 

knowledge of GB segregation may be useful. One of the most frequent issues with automotive 

grade steels is HE [121]–[129]. Being the smallest atom (atomic radius 0.037 nm), H easily 

diffuses into materials (particularly steels) and causes engineering components to break 

catastrophically and without precedent while in use [122]. In addition, it is difficult to map the 

precise location of H in a material due to the extraordinarily high atomic mobility of H (caused 

by the small atomic radius). As a result, it is very difficult to validate a number of existing 

tactics (developed for steels such as the addition of carbides). Chen et al. [124] recently created 

a deuterium charge based cryo-transfer process to locate H atoms separated at various GBs in 

Fe-0.23C-0.92Mn-0.24Si-0.049Nb (wt.%) steel using characterisation techniques like TEM, 

TKD, and cryo-APT. Two different forms of microstructures: completely martensitic and 

wholly ferritic were examined using this technique [124]. Deuterium was shown to segregate 

at the incoherent interfaces between NbC and ferrite in the completely ferritic microstructure 

and between NbC and martensite laths in the completely martensitic microstructure [124]. This 

was the first observation made through experiment regarding a carbide's capacity to hold 

hydrogen atoms. C was also seen to significantly segregate at low-angle lath boundaries in the 

case of the fully martensitic microstructure [124]. C was shown to be substantially segregated 

at ferrite RHAGBs in the case of the completely ferritic microstructure [124]. Additionally, it 

has been noted that the GB misorientation angle in ferrite RHAGBs affects the GB segregation 



tendency for C atoms [124]. Both C and H atom segregation (at various GBs) were observed 

in both microstructures at the same time [124]. Despite the great affinity of C for the H atom, 

it was reported that H was trapped at GBs [124]. 

2.4.2 Stress and segregation-induced phase transformation at a GB 

According to Raabe et al. [2], local elastic stresses and solute decoration (at GBs) can be used 

to encourage localised phase change. This is frequently noticed when martensite to austenite 

reversion occurs at martensite GBs. The energy of martensite GBs has an impact on the 

reversion phenomenon [130]. Additionally, it has been noted that the transformed region (at 

GBs) can accommodate localised elastic stresses, leading to a localised transformation induced 

plasticity (TRIP) effect at the transformed austenite GBs, which facilitates additional phase 

change [120], [130]. The shape of the martensite phase has a significant impact on the 

martensite GB energy [49]. For instance, a variety of martensite GBs, such as lath, needle, and 

packet boundaries, have been described in the literature [2], [119]. Lath boundaries, out of all 

of these boundaries, are linked to the least amount of GB energy [2], [131]-[134]. According 

to reports, the aforementioned reversion is a very successful technique for stopping 

intergranular fracture spread along martensite GBs. However, a variety of criteria have been 

documented by the current literatures [135]-[138] for the occurrence of this reversion. First, it 

is necessary to select solute species with a high βi [138]. Second, at martensite GBs, the solute 

species must prefer to go through preferred segregation [49]. Third, the solute species must be 

more likely to segregate at GBs than to form precipitates (for example, many transition 

elements like Ti, V, Cr, Nb, etc. forming carbides) [49]. Fourth, the separated solute species 

must lower the temperature at which martensite transforms to austenite [135], [136]. In 

addition, strengthening at GBs must be facilitated by austenite nucleation at GBs [2], [5] and 

related localised elastic stresses [137].  

2.4.3 Influence of GB segregation on GB cohesive strength 

In the past, Seah [48] studied the effects of solute adsorption on interface decohesion in 

commercially pure α-Fe and initially thought about the differences between two types of 

boundary separation as influenced by solute adsorption: (i) quasi-equilibrium separation with 

the chemical potential of the solute maintained uniform throughout the system, and (ii) "rapid" 

separation in a manner that the excess amount of solute initially residing in the boundary 

remains at the boundary It has been used as the foundation for a model that theoretically 

calculates GB cohesive strength using atomic sizes and sublimation enthalpies [139]. 



Additionally, it has been noted that during fracture, dislocations are released in the vicinity of 

the crack tip and aid in the plastic deformation of the fracture [140]. Failure can occur at lower 

stress levels if the GB strengthening tendency is inhibited, which also results in a reduction in 

the amount of plastic surgery required overall [1]. Thermochemical model, which postulated 

that GB splits without redistribution of the solute atoms during fracture, was utilised for the 

theoretical investigation of GB cohesion prior to 1979 [1]. However, Seah [48] provided a 

streamlined numerical evaluation of the behaviour of embrittlement in α-Fe using a Pair 

Bonding or quasi-chemical model. According to the Pair Bonding hypothesis, the amount of 

energy actually needed to break the bonds throughout the GB may be easily calculated by 

counting the dangling bonds in a given location and summing their energies [48], [141]-[143]. 

According to the model, in α-Fe matrix, Bi, S, Sb, Se, Sn, and Te will be highly embrittling 

and will cause intergranular separation when mechanical stress is applied, followed by P, As, 

Ge, Si, and Cu in decreasing order of effect [2], [48]. N, B, and C are listed in ascending order 

of their ability to avoid intergranular fracture and, as a result, increase overall ductility in α-Fe, 

by keeping the GB intact [1], [2], [48].  

Gibson and Schuh [142], [144] developed GB segregation and associated cohesion maps to 

determine whether a specific mixture of solute and solvent species will result in GB 

embrittlement/strengthening and proposed a Bond-breaking model to calculate the change in 

GB cohesive energy as a function of equilibrium segregation of solute species in α-Fe. 

According to this model, the energetic barrier to intergranular cleavage is represented by the 

following equation: [144] 

                         𝐸𝐺𝐵𝐶𝐸 = 2𝛾𝑠 − 𝛾𝐺𝐵                                          (6) 

where 𝛾𝑠 is the surface energy. The temperature and composition of the alloy have a significant 

impact on both of these energies. For solute species separated at GBs, Hirth and Rice [145] 

have given a mathematical framework for expressing GB cohesive energy (EGBCE) as a function 

of 𝛤𝑖. This thermodynamic approach is predicated on the idea that solute atom segregation at 

GBs during intergranular cleavage does not occur [145], [146]. The following is the model: 

[145] 

                                        EGBCE(𝛤) =  EGBCE(𝛤 = 0) − ∫ (𝜇𝐺𝐵(𝛤) − 𝜇𝑆(
𝛤

2
)) 𝑑𝛤

𝛤

0
                (7) 

where 𝜇𝐺𝐵 and 𝜇𝑆 are, respectively, the chemical potentials at the GB and surface. The integral 

in equation (7) illustrates how the addition of solutes [145], [147]-[151] alters a pure metal's 



EGBCE. However, for multi-element segregation at GBs, there is no focus on the interaction 

between several solute species. Additionally, equation (7) lacks a factor to take GB energy into 

consideration. 

The degree of solute segregation at GBs and free surfaces (FS) has a significant impact on the 

cohesive strength of GBs [140]. The amount of binding (or segregation) energy present at GB 

and FS determines whether a solute prefers to segregate there [140], [146]. For instance, the 

solute atoms operate as potential GB embrittlers when GB cohesive strength is reduced and 

GB segregation energy is higher than FS segregation energy [140]. The solute atoms increase 

the GB cohesive strength when the FS segregation energy is greater than the GB segregation 

energy [140]. The Rice-Wang Model [134] serves as the foundation for this inference's 

thermodynamic justification. The effect of substitutional factors (like V and P) on the GB 

cohesive strength of symmetrical tilt Σ5(210) (θ=53.13°) SHAGBs in α-Fe has been 

theoretically examined by Rajagopalan et al. [140]. It has been demonstrated that P decreases 

the GB cohesive strength by about Σ5 GB, but V increases the same value [140]. The proposed 

theoretical methods for calculating GB cohesive energy as a function of solute decoration at 

RHAGB in α-Fe are listed in Table 2. 

Table 2. Theoretical models on determining GB cohesive energy as a function of solute 

decoration at RHAGB in α-Fe [19]. 

Proposed model Main feature (or assumption) Reference 

Thermochemical  GB cleavage occurs without solute redistribution.  [47] 

Pair Bonding or quasi-

chemical  

Energy required to break the bonds across a GB 

may be determined by calculating the number of 

dangling bonds per unit area and adding their 

energies. 

[48] 

Hirth-Rice  Constant chemical potential of the segregating 

species is maintained during GB cleavage. 

[145] 

Rice-Wang  GB cleavage occurs without any local stress 

concentration.  

[146] 

Bond-breaking  Solute (segregated at a GB) does not undergo 

diffusion during GB cleavage 

[147] 

 



By connecting the thermodynamics of GB segregation in solid solutions with GB character, 

Silva et al. [152] have developed a model for associating GB segregation with intergranular 

embrittlement and GB phase nucleation. Through research using Atom Probe Tomography 

(APT) in Fe-Mn binary alloys, the proposed model was experimentally validated [152]. In the 

case of Fe-Mn alloys, it has been demonstrated that an increase in solute concentration at 

RHAGBs (BCC RHAGBs) causes an increase in 𝛥𝐻𝑖 and initiates GB embrittlement at room 

temperature [152]. The solute decoration at RHAGBs, however, drastically decreases once 

austenitic transformation takes place, increasing the cohesive strength of the GB [152]. The 

previously indicated model has also been used to steels based on Fe-9Mn (wt%) [19], [113], 

[153], [154]. According to Yoo et al. [155], adding 0.15 at.% Mo increases the HE resistance 

of a 32MnB5 hot-stamping steel. This was explained by the decrease in H diffusivity caused 

by Mo [155]. Additionally, Mo has been shown to increase GB cohesive strength and decrease 

strain localization along austenite RHAGBs, which results in a change from an intergranular 

to a transgranular mode of fracture propagation [155]. According to reports, segregation of P 

(at ferrite RHAGBs) significantly lowers the cohesive strength of GB in the context of Fe-

1.62Mn-0.18Si (wt.%) ferritic steel [111]. On the other hand, it has been noted that the presence 

of C (at RHAGBs) promotes strengthening at GBs [111]. 

3. Future directions 

To address all five macroscopic and three microscopic DOFs (related to GBs) is a significant 

issue for GB research. Despite the fact that the 3D EBSD technique (suggested in Ref. [156]) 

handles all five DOFs (in a GB), it has yet not been possible experimentally to address the three 

microscopic DOFs. Additionally, the 3D EBSD approach requires an extra FIB setup in a SEM 

and is quite time-consuming. Because of this, this characterization cannot be carried out in a 

standard SEM, unlike conventional 2D-EBSD approach. Limitations in linking the GB 

structure and solute decorating with their overall impact on the mechanical performance of the 

material result from the inability to address the eight DOFs. However, the only information 

necessary when using GB segregation information to minimise the overall grain size is the 

degree of GB segregation. A comprehensive 5D GB analysis is not necessary in this case since 

information regarding the GB plane may be disregarded [2]. Additionally, 3D-EBSD employs 

serial sectioning, making it potentially harmful [156], [157]. In other words, since the region 

being studied is already lost during 3D-EBSD mapping and is not accessible for APT analysis, 

it is not possible to develop a correlative 3D-EBSD-APT methodology to obtain both structural 

and chemical information from the same region in a microstructure [157]. However, there is 



currently a lack of knowledge on how the density of segregating solute species and the 

dislocation density (at pile-ups near GBs) affect the cohesive strength of GBs. This might be 

attributable to the multiple experimental difficulties involved in figuring out how a GB interacts 

with the species of decorative solute. To overcome the aforementioned issue, it may be possible 

to employ the correlative approach of microstructural characterisation (described in section 

3.2.2) in conjunction with the relevant theoretical studies. 

4. Summary and conclusions 

There are a number of phenomena that are typically caused by solute decorating at internal 

interfaces, such as strain-induced phase change (at the internal interfaces), bulk phase creation, 

phase reversion, and intergranular embrittlement. From a metallurgical perspective, interfacial 

segregation can be used to manipulate internal interfaces chemically and structurally. The main 

goal of the aforementioned modification is to improve steels' general mechanical performance. 

Nevertheless, this is also an area where correlative microscopy may be used in conjunction 

with the relevant theoretical assessments as a design tool towards manufacturing high-

performance steels. 
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