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Abstract 

The most continual malignancy found in women is breast cancer. The good news is that 

if detected early, it is one of the most treatable forms of cancer. High-dimensional data results 

in large number of computation redundancy but also advances diagnostic techniques. As a 

result significant information must be extracted and the feature dimension must be reduced for 

good prediction and a precise treatment decision. However, past studies for diagnosing breast 

cancer have relied mostly on labelled data that is difficult to get. To solve this problem, two 

different sorts of perspectives, such as CC and MLO are employed to improve diagnostic 

effectiveness. This chapter comprises segmentation, feature extraction and classification of 

images. The two perspectives from a mammography picture are segmented using the adaptive 

K-means clustering approach. The Gabor filter is used in conjunction with the traditional k-

means clustering method during the feature extraction stage to extract the features of the CC 

and MLO perspectives. The mammography image is finally classified into benign and 

malignant using a unique Shrunk Kernel K-Nearest Neighbor (SKKNN) classifier.  

Keywords: SKKNN, MLO view, CC View, adaptive K-means segmentation, Gabor filter, 

Mammogram 

1. INTRODUCTION 

Modern society faces a cancer pandemic. Breast Cancer, which primarily affects women, 

spreads from the breast due to uncontrolled growth in cells. Only skin cancer is more frequent 

in women than in BC.  Over-50-year-old women are the ones most likely to be affected. Though 

it's uncommon, BC may also affect males. Men make up less than 1% of instances of male BC, 

which affects around 2,600 men annually in the US. Transgender women are more likely to 

acquire BC than cisgender males. Transgender males are also less likely to acquire BC than 

cisgender women.  6,85,000 people died worldwide and 2.3 million women were diagnosed 

with BC in 2020 (Lei et al., 2021). By 2020, 7.8 million women had been diagnosed with BC, 
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making it the most frequent cancer worldwide. BC occurs in every country of the world in 

women at any age after puberty but with increasing rates in later life. Over the last several 

decades, researchers have shown that it is possible to automate the basic level of tumor 

classification and identification. 

Kulkarni (2019) sought to categorize mammographic lesions using Pixel N-gram 

features and a variety of classifiers like MLP, KNN and SVM, and it was discovered that the 

performance showed the effect of improving N. The obtained results were evaluated and it was 

observed that performance attained with MLP classifier excels that achieved with KNN or 

SVM or classifiers.  

A Radial Basis Function Network (RBF)-based system was introduced by Ibrahim et al 

(2020). Using RBF network classifiers, the decision-making system aids in the categorization 

of malignancies. The MLP method obtained 54.1667% accuracy overall, whereas the RBF 

neural network achieved a classification accuracy of 79.166%, demonstrating the efficacy of 

the RBF neural network in categorizing the mammography images. 

The back propagation neural network (BPNN) classification model was used by 

Mughal (2019). The method correctly recognises the tumour in its early stages with 99.0% 

classification accuracy on MIAS and DDSM datasets. 

Lakshmi (2019) provided the implementation of employing a KNN classifier to 

diagnose breast cancer, which largely distinguishes between breast masses and cancer, using 

the supplied inputs, a portion of the breast region's cancer-affected cells is located. For the aid 

of their collected characteristics and the corresponding labels for each picture generated from 

the breast image dataset, the KNN classifier is trained. The proposed approach achieves a total 

accuracy close to >90%. 

Using the Mini-MIAS dataset of 322 images, Prabh Kaur (2019) put forward a study 

that discusses about an inventive scheme that includes pre-processing stage and K-mean 

clustering feature extraction for Speed-Up Robust Features (SURF) selection.  According to 

the findings, a decision tree model is outperformed by the automated DL strategy that is 

suggested, which applies K-mean clustering with MSVM. The results of the studies 

demonstrate that the suggested methodologies achieved average accuracy (ACC) rates of 95%, 

94%, and 98%. When SVM is utilized, the increased sensitivity rate is realized at 3%, 

specificity is at 2%, and ROC area is at 0.99.  



Viswanath (2019) proposed three significant classifiers, including Support Vector 

Machine (SVM), Random Forest (RF), and k-Nearest Neighbors (K-NN) with the goal of 

determining how accurate they are at generating decisions. Moreover, the influence of pre-

processed mammogram images prior to its submission into the classifier is discussed, yielding 

efficient classification. 

Kayode et al (2019) utilized a modified version of SVM classification for an automated 

CAD System for mammogram classification. The technology could prove to be a valuable tool 

for radiologists to support their decision-making when interpreting mammograms, according 

to the findings of performance analysis. The effectiveness of the radiologists' diagnostic 

proficiency could be increased by using this to make a precise and proactive judgement. 

Arooj (2022) proposed effective  technique for the quick identification of breast cancer. 

This method employed a stack made up of the three algorithms decision tree, SVM and KNN, 

and adopts the CRISP-DM procedure to develop a collaborative model. The meta-classifier 

performance is compared using the three collaboration model to that of the individual works 

of DT, SVM, and KNN. Chi-square analysis is used to evaluate the top characteristics.  The 

recommended model produced the best accuracy of 78% and least log loss of 0.56.  The result 

of one-tailed t-test at α= 0.05 gave P-value of 0.014. 

Dewangan et al (2022) exhibited the reduced sensitivity and efficacy during breast 

cancer identification. An innovative Back Propagation Boosting Recurrent Widening Model 

(BPBRW) with a Hybrid Krill Herd African Buffalo Optimization (HKH-ABO) technique was 

generated in this research that uses breast MRI data. The initial training of the system is 

achieved with the help of MRI breast images. Python is helpful in the model simulation. It is 

shown that the accuracy rate of this model is about 99.6%. 

Lin et al (2022) developed the model to increase detection precision and decrease breast 

cancer misdiagnosis. The dataset was put into ANN and SVM for breast cancer tumor 

classification and comparison. The best classification accuracy is 91.6% for the SVM using 

radial features and 76.6% for the ANN. Consequently, SVM was utilized for demonstrating the 

significance of breast screening.  

Alruwaili & Gouda (2022) introduced a model that depends on the concept of transfer 

learning. To avoid fitting problem and provide constant results through the enlargement of 

numerous mammography images, various augmentation methods were used, including 

rotation, scale, and shifting. On the MIAS database, ResNet50 achieved 89.5% accuracy and 



NASNet-Mobile 70%. The efficiency and effectiveness of Pre-trained categorization networks 

are quite remarkable, rendering them highly desirable for diagnostic performance. 

Alshammari (2021) recommended a machine learning-based algorithm for classifying 

cancer. It was found from this research that multivarious conditions can influence the 

outcomes, which was not considered after the examination. This research emphasizes the usage 

of the optimized SVM or Nave Bayes that yields an accuracy of 100%. 

In Jayandhi et al, (2022), the Deep Residual learning model is combined with a 

Decision Tree Machine Learning mechanism to accomplish breast cancer prediction with 

efficiency. Hence, the proposed study was referred to be RDT model. Recall, accuracy, 

accuracy, and specificity are used to develop and verify the RDT model. HDL model offers 

better prediction accuracy in terms of the traditional mechanisms. 

In Diaz et al., 2019, introduced the first order procedure of feature determination which 

is baseline for the classification using KNN. The highest accuracy levels were obtained with K 

= 5 for classification with cross-validation and K = 15 for classification without cross-

validation, both of which produced accuracy values of 91.8%. 

The examination of single views has served as the foundation for the majority of CAD 

system development. The development of CAD methods that make use of information from 

several perspectives such as bilateral views of the same breast is of great interest to reduce the 

amount of false positives and increase consistency (Bandyopadhyay, 2010). In order to find 

abnormal asymmetry densities, radiologists are trained to compare the left and right breasts. 

Earlier screening views are utilized to spot developing density. Screening with two 

mammograms medio lateral oblique MLO and craniocaudal (CC) is also recommended (Li et 

al., 2022) which increases the detection accuracy of breast abnormalities. Two projections may 

show lesions hidden by glandular tissue in one projection (Gennaro et al., (2013).  

2. PROPOSED METHODOLOGY 

The CBIS-DDSM dataset was used in this study (Kouser, 2018) which contains the biopsy-

proven annotated mammograms. Pre-processing, segmentation, and feature extraction were 

performed when the training images are supplied to the computer. The suspicious regions are 

segmented from the mammography region using the adaptive K-Means segmentation 

technique. The segmented regions are passed to the feature extraction step, where the KMC-

GF algorithm is used. The KMC-GF procedure consists of two steps: the first involves applying 

the adaptive K-Means clustering approach to a segmented region to cluster it, and the second 



involves using the Gabor filter to extract features from the cluster region. In order to classify  

mammography area, the SKKNN classifier is used. Figure 2.1 describes the proposed 

architecture using SKKNN in BC Detection. 

 

Figure 2.1 Proposed Architecture using SKKNN in BC Detection 

2.1 Data Set 

In this research, we make use of the biopsy-proven annotated mammograms from the 

CBIS-DDSM dataset (Kouser, 2018). The collection includes bilateral breast scans taken from 

CC and MLO perspectives. Based on the diagnosis of the radiologists, we extract 1418 normal, 

852 benign and 897 malignant mammograms from the database. So total of 6334 mammograms 

are used. Training and testing data sets are created from the data. The training includes 1240 

mammograms with normal results and 1507 mammograms with abnormal results (738 benign 

and 769 malignant). In the test set, there are 178 normal and 242 abnormal ones (114 benign and 

128 malignant). The specification for the datasets divided is shown in Table 2.1.  

Table 2.1 Partitioning Specification of Dataset 

Data / Type Normal Benign Malignant Total 

Train 1240 738 769 2747 

Test 205 205 205 615 

Total 1445 943 974 3362 

 

2.2 Image Pre-Processing 
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The quality of the image is increased through image pre-processing.  Background noise, 

tape artifacts, high-intensity rectangle labels, edge shadowing effects, and low-intensity labels 

in mammography images are the types of noise that have been noticed. Due to the complexity 

and variability of breast tissue, the mammographic image has low contrast and therefore the 

doctor only extracts a limited amount of information from the image. Misdiagnoses occur as a 

consequence of even skilled doctors being unable to identify hidden MC. We used several 

preprocessing methods in this work to smooth, brighten, denoise, and identify edges in breast 

pictures to enhance their look. Sharp edges were preserved while noise was reduced using 

adaptive median, Gaussian, and bilateral filtering. Artifact and pectoral muscle were eliminated 

by denoising. Tissue density in the non-breast region was substantially correlated, which might 

affect future mammography analyses. 

To increase the image quality and smoothness, this research used image enhancement 

techniques based on wavelet analysis, CLAHE, and adaptive unsharp masking, as illustrated in 

Figure 2.2 The suggested method reduces superfluous background data, highlights the image's 

weak borders and calcification spots, and accentuates tiny calcification sites. In order to 

accurately assess the impact of image edge enhancement and to measure the image's denoising 

to confirm the efficacy of the procedure, this research employed the contrast improvement 

index (CII). Additionally, in order to assess the improved performance of mammography 

images, we assessed the CII  and PSNR. A greater denoising effect is shown by higher PSNR 

and CII values 

 

Figure 2.2 Pre-processing - (a) original Mammogram Image, (b) Adaptive Unsharp 

Masking, (c) Image Enhancement (CLAHE), (d) Dilation, (e) Erosion 

2.3 Adaptive K Means Segmentation 

 Starting with a selection of k inputs from the provided database, the adaptive k means 

clustering method is run. The K randomly chosen elements are used to create the clusters. Each 



K element that makes up an element has a set of qualities that combine to generate the cluster 

properties. Figure 2.3 shows the flowchart of the adaptive K-Means segmentation procedures. 

Based on the aforementioned algorithm, the distance between the provided element and 

the clusters is calculated.  The distance should be taken into consideration depending on the 

qualities, which is a crucial factor that is also normalized. Consequently, none of the qualities 

either dominate or are neglected by the result. The most common use of the Euclidean distance 

is given by Equation 2.1. 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(E11 − E12)2  + (E12 − E22)2 + ⋯ + (E1n − E2n)2                  (2.1 

 

 

Figure 2.3 Flowchart of AKM Segmentation 

For the purpose of dropping the square root function, the derived distance function must 

be adjusted. To compare properties in this method, several weights are needed for each 
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property. It is determined and stored as a triangular matrix how far apart each cluster is from 

the others. For every element that isn't in a cluster, the distance is determined. For this element, 

there are three possible scenarios. 

 If the distance is zero, place the appropriate element in that cluster and then begin the 

procedure from that element. 

 If the distance is less than the minimum distance, the element should be assigned to the 

cluster that is nearest to it if. As a result, the cluster or centroid's representation may 

alter. The centroid is recalculated using mean values of new clustered group. Recalculate 

the minimum distance between each cluster and the distance to the damaged cluster. 

 Finally, new cluster is established by the addition of new members into the empty 

cluster. At last, a new estimate of the distance between each cluster identifies the two 

nearest clusters. 

 The above processes are repeated until all the elements have been clustered. 

 The obtained k values are given in Gabor filter for the extraction of features from 

mammogram image. 

2.4 Proposed Gabor Filter for Feature Extraction 

Gabor filters have been used for image coding, image representation, texture 

segmentation, target recognition, edge detection, retina identification, and more. 

The Gabor family of filters has gained popularity in recent years because they can imitate the 

properties of some cells in the visual brain of animals. The primary visual cortex is thought to 

undertake identical orientation and Fourier space decomposition tasks, according to biological 

studies, making them appear reasonable for a technological vision  system. Additionally, it has 

been shown that these 2D band-pass filters offer the best localization capabilities in the spatial 

and frequency domains, making them ideal for extracting image edges or features that are 

oriented in a particular frequency range. 

As a sinusoidal plane modulated by a GE, a Gabor filter may be thought of as having a 

certain frequency and direction. Equation 2.2 is a possible representation. 

GE(x, y) = e

1

2
[

x2

Σx
2+

y2

Σy
2]

e−j2Φ(u0x+v0y)                                            (2.2) 

Two 2D Gaussian functions GF from Equation 2.3 make up the filter's response in the 

Fourier frequency domain. 



GF(u, v) = GE1 + GE2                                                             (2.3) 

where Σu =
1

2πΣx
 and Σv =

1

2πΣy
assuming that the Fourier transform's origin has been 

centered and are the standard deviation along two orthogonal directions. To create the edge 

histogram descriptors that will serve as the classification features, a collection of edge 

histogram descriptors for each alarm segment is produced with its n counterparts present in n 

Gabor-filtered images. After clustering the EHD features with Adaptive  

k-means clustering method, a SKKNN classifier is used to reduce the number of false alarms  

(Sundara Vadivel, 2019). The histogram that is produced by EHD indicates the local frequency 

of four distinct kinds of edges at each band. These corners have angles of 90o vertical, 0 degrees 

horizontal, 45o diagonal, and 135o diagonal. The vertical histogram frequency for a particular 

segment at each band is defined as the proportion of pixels in the vertical edge-extracted image 

with the highest intensity values in comparison to the   pixel values in the other three directional 

edge-extracted images (horizontal, 45° diagonals, and 135° diagonal). Four directional 

frequencies may be combined to generate a four-dimensional EHD signature, and the remaining 

three directional frequencies can be calculated in a similar manner. The EHD characteristics are 

expressed as in Equation 2.4. 

EHD (m, n) =
No.of max intensity pixels  at direction n

Alarm segment area
  (2.4) 

m =  1, 2, 3, 4, 5;  n =  1, 2, 3, 4 

The EHD computation is identical to counting the quantities of pixels with maximum 

intensity in each band's direction. For instance, if band 1's EHD signature has the biggest 

vertical frequency, band 1 will be dominated by vertical edges. Such a cancer segment EHD 

characteristic displays information on both directional edges and frequency scales from low to 

high frequencies. Regardless of the absolute intensity settings, the statistical properties of the 

EHD are consistent and dependable. Both the MLO and  CC views of the mammography are 

used to extract features. So we can have two  feature vectors. 

The GLCM matrix is created by applying a Gabor filter on the cropped ROI after it has 

been trimmed. Co-occurrence matrix characteristics such as contrast, energy, entropy, mean, 

standard deviation, homogeneity, correlation, entropy, cluster shade, and cluster prominence are 

among the second order statistical features that may be derived from this information and computed 

with the use of characteristics mentioned in Figure 2.4. 



 

Figure 2.4 Texture Features Extracted from Each View Mammogram in  

Gabor Filter 

The following explanations provide the previous attribute’s physical significance. 

Contrast: The intensity contrast between a pixel and its neighbour over the source image. 

Correlation: Measures the degree to which pixels in the whole image are statistically 

associated with one another; range = [-1 1]. A fully positively or negatively correlated image 

has a correlation of either 1 or -1. 

Energy: Squared element GLCM summation; range = [0 1]. For an unchanging image, energy 

equals 1. 

Homogeneity: Range = [0 1] indicates how nearly the GLCM element distribution follows the 

GLCM diagonal. For a diagonal GLCM, homogeneity is 1. 

Entropy: It is a randomness measure which is used to describe the texture of the input image. 



Cluster shade and cluster prominence: Indicators of the skewness, or lack of symmetry, of 

the matrix. 

After the features are determined for each view, Feature fusion is applied.  

To create a single feature vector that is more discriminative than either of the input feature 

vectors, two feature vectors are combined in a process known as feature fusion. Feature level 

fusion is done by DCAFUSE employing a Discriminant Correlation Analysis (DCA)-based 

methodology.  It gathers the train and test data matrices and accompanying class labels from 

two modalities X and Y and merges them into a single feature set Z. 

2.5 Proposed SKKNN for BC Detection 

Although KNN is effective at classifying data, when the training set grows large, the 

computational cost often prevents its use in practical projects. This section introduces an 

effective and quick model based on the KNN baseline model for enhancing classification 

performance and improving training effectiveness. In this part, the kernel method is presented 

together with the KNN model. It employs the characteristic of kernel method for expanding 

the dimension of features and enhances the performance of classification in the baseline model 

KNN. The Shrunk Kernel technique is then introduced, which primarily aims to cut down on 

kernel computation. 

The fundamental principle of the reduced kernel technique is to compute the kernel 

matrix using just a portion of the training data from each class. According to this research, the 

training training samples are used to construct the kernel matrix. This kind of feature 

representation is equivalent to or superior to the traditional kernel matrix.  

The following equation 2.5 illustrates how the Shrunk kernel mathematical works. 

SK̅̅̅̅
tr = G(𝒰s, 𝒱, σ)                    (2.5) 

The low-dimensional characteristics are converted to high-dimensional features through 

the kernel approach. Use the Gaussian Kernel technique to process the characteristics in this 

research. The following equation 2.6 displays its mathematical formula: 

G(𝒰s, 𝒱, σ) = e
(−

(𝒰−μ𝒰)
2

+(𝒱−μ𝒱)
2

2σ2 )

                                (2.6) 

where μ𝒰and μ𝑣 are the average of the input data 𝒰 and 𝒱, respectively, and  

σ denotes the user-defined kernel parameter. SK̅̅̅̅  is the reduced kernel matrix, s is the chosen 

kernel matrix computation percentage, and 𝒰s denotes the chosen s input data sample units. 



Following equations 2.7 and 2.8 may be used to generate the Shrunk kernel matrix of training 

and testing data. 

SK̅̅̅̅
tr = G(𝒰trs

, 𝒰tr, σ)                   (2.7) 

SK̅̅̅̅
te = G(𝒰tes

, 𝒰te, σ)                           (2.8) 

where 𝒰trs
indicates the training observation class percentages 𝒰tr. Choosing a certain 

proportion of training samples, along with speeding up the calculation of the kernel matrix, the 

reduced kernel methodology maintains the high-dimensional features of the original kernel 

method. The pseudocode of SKKNN is depicted in algorithm 2.1. 

Algorithm 2.1 Pseudocode of SKKNN 

Input: Training matrix 𝒰tr; Testing  matrix 𝒰te; Number of training data 𝕃; Parameter 

of SKKNN SK; Kernel parameter σ; The percentage of Shrunk kernel matrix s;  

Step 1 : Choose s percentage samples from the training data for each class as Xtr P;  

Step 2 : Using equation SK̅̅̅̅
tr, determine the reduced kernel matrix for the training 

features.  

Step 3: Create the reduced kernel matrix using equation SK̅̅̅̅
te to test features.  

Step 4 : Loop: for i ∈1, … , 𝕃 do  

               Find the distance between training and testing samples  

end for 

Step 5 : Sort the distance in the ascending order;  

Step 6 : Selecting the top K vectors from the sorted collection to serve as an index Step 

7 : Set the forecasting the class label Y based on the most frequent class of processed 

index.  

Step 8 : end for return Y 

 

3. RESULTS AND DISCUSSION 

The working platform of MATLAB was used to construct the suggested breast cancer 

detection system. The confusion matrix is used to estimate the proposed framework's performance 

indicators. For both perspectives, the performance metrics are calculated. Performance metrics 

include the following terms: TP (True Positive): The abnormal region is appropriately 

classified as abnormal by the classifiers. False Positive (FP): The classifiers misclassify a 

region that is normally occurring as abnormal. TN (True Negative): The normal zone is 



appropriately classified as normal by the classifiers. FN (False Negative): The aberrant region 

is misclassified as normal by the classifiers. To evaluate the transfer learning models, the 

following metric's detail and mathematical expression are used: 

Accuracy =  
TP+TN

TP+TN+FP+FN
              Sensitivity or Recall =  

TP

TP+FN
  

Specificity =  
TN

TN+FP
               AUC =

sensitivity + Specificity

2
                   

Precision =  
TP

TP+FP
                                Prediction Error =

 FP +FN

 FP + FN + TP + TN
              

F1 Score = 2 
Precision∗Recall

Precision+Recall
                    FPR =  

FP

FP+TN
                                          

FNR =  
FN

FN+TP
                                        

Younden ′ sindex =  Sensiivity −  (1 −  Specificity)                

The comparison of the suggested two-view feature SKKNN's performance with that of the single 

view feature is shown as given in Table 3.1 

Table 3.1  Numerical Results of BC Detection 

SKKNN 
Accura

cy (%) 

Sens

itivit

y  

Specif

icity 

AU

C 

Prec

ision 

Predi

ction 

Error 

F1 

Score 
FPR FNR 

Youd

en’s 

Index 

CC View 

Features 
81.8 71.2 81.09 89.9 76.7 12.0 84.2 18.9 17.6 179.8 

MLO View 

Features 
81.9 81.3 76.72 82.5 72.7 18. 88.9 23.2 11.6 165.1 

Two View 

Feature 

Fusion 

82.5 83.8 82.75 95.2 93.9 4.5 94.5 6.44 3.1 190.4 

 

The comparison graph of accuracy, sensitivity, specificity, AUC, precision and f1-score for 

each is appeared in Figure 3.1 
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Figure 3.1 Chart Comparison of Linear Binary Pattern, SVM and SKKNN 

The accuracy, senstitivity , specificity, AUC, precision, F1-measure for SKKNN was 

82.56%, 83.8%, 82.75%, 95.2%, 93.93%, and 94.5% which are higher comparing single view 

features. The FPR, FNR and prediction error for SKKNN was 6.44, 3.15 and 4.5 which is lower 

comparing single view features.  The Youden’s Index for SKKNN was 190.41 which is higher 

comparing singe view features. In spite of the fact that the execution of the fundamental show 

is marginally distinctive on size of information, the proposed system has moved forward the 

execution of the essential show. 

4. CONCLUSION 

In comparison to single view, using a double view yields superior results. Breast 

cancer detection in this chapter is done using MLO and CC view mammography images. The 
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segmentation of regions is done using the Adaptive K-means approach.  In this study, the 

KMC-GF feature extraction approach is used. The benefit of the KMC-GF approach is that it 

gives shape and orientation characteristics while also extracting fine texture features from the 

clustered area. KMC-GF characteristics provide a good result for breast cancer early 

diagnosis when compared to GLCM features. The view of mammography images is then 

classified as normal or malignant using the SKKNN classifier. As a result, this technique 

could be employed in the medical field to diagnose breast cancer and also produce few false 

positive results. The main benefit of this strategy is that it lightens the burden for radiologists.  

References 

1. P. Kulkarni, (2019). Fine grained classification of mammographic lesions using pixel 

NGRAMS, AJCT. 

2. A.O. Ibrahim, (2020). Classification of mammogram images using radial basis function 

neural network, Emerging Trends in Intelligent Computing and Informatics. Springer. 

3. R. Vijayarajeswari, P. Parthasarathy, S. Vivekanandan, A. Alavudeen Basha, (2019), 

Classification of mammogram for early detection of breast cancer using SVM classifier 

and Hough transform, Measurement 146, 800–805, https:// 

doi.org/10.1016/j.measurement.2019.05.083, ISSN 0263-2241. 

4. Bushra Mughal, (2019). Early Detection and Classification of Breast Tumor From 

Mammography, COMSATS Institute of Information Technology, Islamabad. 

5. N.S. Lakshmi, M. Chitra, E. Christina, (2019), Breast cancer detection using KNN 

classifier, IRE J. 2 (10), 76–79. 

6. P. Kaur, G. Singh, P. Kaur, (2019). Intellectual detection and validation of automated 

mammogram breast cancer images by multi-class SVM using deep learning 

classification, Inf. Med. Unlocked 100239, https://doi.org/10.1016/j. imu.2019.100239. 

7. H. Viswanath, L. Guachi-Guachi, and S. P. Thirumuruganandham, (2019).  Breast 

Cancer Detection Using Image Processing Techniques and Classification Algorithms 

Breast Cancer Detection Using Image Processing Techniques and Classification 

Algorithms, 1(1). 

8. A.A. Kayode, N.O. Akande, A.A. Adegun, M.O. Adebiyi, (2019). An automated 

mammogram classification system using modified support vector machine, Med 

Devices (Auckl) 12, 275–284, https://doi.org/10.2147/MDER. S206973. 



9. Arooj, S., Zubair, M., Khan, M. F., Alissa, K., Khan, M. A., & Mosavi, A. (2022). 

Breast cancer detection and classification empowered with transfer learning. Frontiers 

in Public Health, 10. 

10. F. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, (2016). A dataset for breast 

cancer histopathological image classification,” IEEE Transactions of Biomedical 

Engineering, 20(16). 

11. Dewangan KK, Dewangan DK, Sahu SP, Janghel R. (2022). Breast cancer diagnosis in 

an early stage using novel deep learning with hybrid optimization technique. Multimed 

Tools App, 81,13935–60. 10.1007/s11042-022-12385-2. 

12. Lin RH, Kujabi BK, Chuang CL, Lin CS, Chiu CJ. (2022). Application of deep learning 

to construct breast cancer diagnosis model. Appl Sci, 12,1957. 10.3390/ app12041957. 

13. Alruwaili M, Gouda W. (2022). Automated breast cancer detection models based on 

transfer learning. Sensors.  

14. Alshammari MM, Almuhanna A, Alhiyafi J. (2021). Mammography image-based 

diagnosis of breast cancer using machine learning: a pilot study. Sensors, 22,203. 

10.3390/s22010203. 

15. Nasiri, Y., Hariri, M., & Afzali, M. (2015). Breast cancer detection in mammograms 

using wavelet and contourlet transformations. 2nd International Conference on 

Knowledge-Based Engineering and Innovation (KBEI), IEEE,  923-926).  

16. Qayyum, A., & Basit, A. (2016). Automatic breast segmentation and cancer detection 

via SVM in mammograms. nternational conference on emerging technologies (ICET), 

IEEE, 1-6. 

17. Jayandhi, G., Jasmine, J. L., Seetharaman, R., & Joans, S. M. (2022). Breast Cancer 

Prediction Based on Mammographic data by Hybrid Resnet and Decision Tree. 

International Conference on Sustainable Computing and Data Communication Systems 

(ICSCDS), IEEE, 234-238. 

18. Diaz, R. A. N., Swandewi, N. N. T., & Novianti, K. D. P. (2019). Malignancy 

determination breast cancer based on mammogram image with  

k-nearest neighbor. 1st International Conference on Cybernetics and Intelligent System 

(ICORIS), IEEE, 1, 233-237. 



19. Ghongade, R. D., & Wakde, D. G. (2017). Detection and classification of breast cancer 

from digital mammograms using RF and RF-ELM algorithm.  

1st International Conference on Electronics, Materials Engineering and Nano-

Technology (IEMENTech), IEEE, 1-6. 

20. Jothilakshmi, G. R., & Raaza, A. (2017). Effective detection of mass abnormalities and 

its classification using multi-SVM classifier with digital mammogram images.  

International Conference on Computer, Communication and Signal Processing 

(ICCCSP), IEEE, 1-6. 

21. Al-Ayyoub, M., AlZu'bi, S. M., Jararweh, Y., & Alsmirat, M. A. (2016). A gpu-based 

breast cancer detection system using single pass fuzzy c-means clustering algorithm. 

5th International Conference on Multimedia Computing and Systems (ICMCS), IEEE, 

650-654. 

22. Nedra, A., Shoaib, M., & Gattoufi, S. (2018). Detection and classification of the breast 

abnormalities in Digital Mammograms via Linear Support Vector Machine. IEEE 4th 

Middle East Conference on Biomedical Engineering (MECBME), IEEE, 141-146. 

23. Chitradevi, B., & Srimathi, P. (2014). An overview on image processing 

techniques. International Journal of Innovative Research in Computer and 

Communication Engineering, 2(11), 6466-6472. 

24. Acharya, T., & Ray, A. K. (2005). Image processing: principles and applications. John 

Wiley & Sons. 

25. Willemink, M. J., Koszek, W. A., Hardell, C., Wu, J., Fleischmann, D., Harvey, H., ... & 

Lungren, M. P. (2020). Preparing medical imaging data for machine 

learning. Radiology, 295(1), 4-15. 

26. Cheng, H. D., Jiang, X. H., Sun, Y., & Wang, J. (2001). Color image segmentation: 

advances and prospects. Pattern recognition, 34(12), 2259-2281. 

27. Cloete, I., & Zurada, J. M. (Eds.). (2000). Knowledge-based neurocomputing. MIT 

press. 

28. Islam, M. J., Wu, Q. J., Ahmadi, M., & Sid-Ahmed, M. A. (2007). Investigating the 

performance of naive-bayes classifiers and k-nearest neighbor classifiers. In 2007 

international conference on convergence information technology (ICCIT 2007), IEEE, 

1541-1546. 



29. Ahmad, H. A., Yu, H. J., & Miller, C. G. (2014). Medical imaging modalities. 

In Medical imaging in clinical trials , Springer, London, 3-26. 

30. Mattila, J., Koikkalainen, J., Virkki, A., Simonsen, A., Van Gils, M., Waldemar, G., ... & 

Alzheimer's Disease Neuroimaging Initiative. (2011). A disease state fingerprint for 

evaluation of Alzheimer's disease. Journal of Alzheimer's Disease, 27(1), 163-176. 

 

 


