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Abstract 

In recent times, data analytics in health informatics have become increasingly important due to the tremendous 

increase in multimodal data. Deep learning has emerged as a powerful tool in medical imaging, influencing many 

facets of the diagnostic and treatment processes. Recent developments in artificial intelligence, particularly in the 

field of deep learning, are assisting in the detection, categorization, and quantification of patterns in medical 

images. One of the most important developments is the ability to use hierarchical feature representations acquired 

entirely from data rather than features developed by hand using domain-specific expertise. Deep learning is 

becoming the state-of-the-art, resulting in improved outcomes across a range of medical applications. Within the 

realm of medical imaging, deep learning has ushered in a new era of remarkable advancements in disease 

detection. In this chapter, the remarkable applications of deep learning in disease detection are explored across 

diverse fields like neurology, cancer detection, ophthalmology, all through the lens of medical imaging. The 

transformative power of deep learning algorithms emerges as they navigate the intricate landscapes of medical 

imaging, unveiling hidden patterns and anomalies. From unraveling neurological disorders to cancer detection, 

these intelligent systems reshape the landscape of medicine, offering hope and healing with every pixel they 

analyze. 

 

1. Introduction  

Deep learning (DL) has made a significant impact across a wide range of scientific field [1] . It has resulted in 

notable advancements in speech recognition [2] and image recognition [3], leading to substantial improvements. 

In addition to these, deep learning has found its applications in various other fields which include natural language 

processing, robotics, healthcare, finance, generative models, recommendation systems, drug discovery and many 

more. With the significant advancement in image acquisition technology, the amount of medical image data has 

grown exponentially, presenting both challenges and opportunities for analysis. Manual analysis by medical 

experts is subjective, time-consuming, and prone to errors. To address this, machine learning techniques have 

emerged as a potential solution, but traditional methods fall short when dealing with complex problems. The 

combination of high-performance computing and deep learning holds great promise in effectively handling large 

medical image datasets, automating diagnosis, and extracting meaningful features. Deep learning not only aids in 

disease detection but also enables predictive modeling and provides actionable insights for physicians, improving 

efficiency and accuracy in diagnosis. 

Undoubtedly, this technology finds significant relevance in medical imaging. Numerous introductions to the 

subject can be discovered in the literature, spanning from concise tutorials and reviews [4–7], interactive Jupyter 

notebooks, to comprehensive books [8,9]. Each of these resources serves a unique purpose and offers diverse 

perspectives on this rapidly evolving and dynamic topic. Medical imaging techniques, including computed 

tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), mammography, 

ultrasound, and X-ray, play a vital role in the early detection, diagnosis, and treatment of diseases. These 

techniques provide detailed images of internal structures, allowing healthcare professionals to identify 

abnormalities, assess disease progression, and develop appropriate treatment plans. By utilizing deep learning and 

imaging modalities, medical imaging enables early detection of diseases. These imaging techniques aid in accurate 

diagnosis, guiding physicians in making informed decisions for timely intervention and effective treatment, 

ultimately improving patient outcomes and prognosis. 

This chapter offers an extensive analysis of DL based algorithms as they have been applied to the various 

problems of medical image processing. The objective of this chapter is to discuss the fundamental principles of 

deep learning and explore the latest and most advanced techniques for its application in medical image processing 

and analysis. 

 

2. Deep Learning over Machine Learning 

DL is a subset of machine learning that has gained prominence and preference over traditional machine learning 

approaches in certain domains, including medical imaging. There are several reasons why deep learning is often 

favored over conventional machine learning methods: 



 

Representation Learning: Deep learning algorithms can automatically learn hierarchical representations of data. 

Unlike traditional machine learning methods that require manual feature engineering, deep learning algorithms 

can learn complex features directly from raw data. This ability to automatically learn hierarchical representations 

enables deep learning models to capture intricate patterns and relationships within the data, which can be 

especially beneficial in complex tasks like image analysis. 

 

Scalability: Deep learning algorithms are highly scalable. They can handle large and high-dimensional datasets, 

making them well-suited for medical imaging, which often involves massive amounts of data. Deep learning 

models can effectively utilize powerful computing resources, such as GPUs to process and analyze large volumes 

of medical images efficiently. 

 

Performance: Deep learning models have demonstrated remarkable performance in various domains, including 

medical imaging. They have achieved state-of-the-art results in tasks such as image classification, object 

detection, and segmentation. Deep learning algorithms can often outperform traditional machine learning 

approaches when provided with abundant labeled data for training as indicated in figure 1. This increased 

performance can lead to improved accuracy in disease detection, diagnosis, and treatment planning. 

 

End-to-End Learning: Deep learning allows for end-to-end learning, where the model learns to directly map input 

data to desired outputs. This eliminates the need for manual intermediate steps and simplifies the overall pipeline. 

In medical imaging, deep learning models can take raw image data as input and directly generate predictions or 

assist in decision-making without relying on explicitly engineered features or pre-processing steps. 

 

Adaptability: Deep learning models are highly adaptable and can learn from diverse types of data. They can handle 

different imaging modalities, such as CT, MRI, PET, and ultrasound, by effectively learning from the specific 

characteristics of each modality. Additionally, deep learning models can learn from large, heterogeneous datasets, 

incorporating a wide range of patient demographics, disease subtypes, and imaging variations, which can 

contribute to improved generalization and robustness. 

While deep learning offers numerous advantages, it is important to note that traditional machine learning 

methods still have their own merits and may be more suitable for certain tasks with limited data or interpretability 

requirements. The choice between deep learning and traditional machine learning depends on the specific 

problem, available data, computational resources, and interpretability needs. 

 

 
          Figure 1. Performance of deep learning with data. 

3. Deep Learning Architectures 

Deep learning architectures are complex neural network structures that consist of multiple layers of interconnected 

artificial neurons. These architectures are designed to learn and extract meaningful representations from raw input 

data, enabling them to solve complex problems. The taxonomy of commonly used deep learning architectures is 

illustrated in Figure 2. Table 1 entails the pros and cons of various DL architectures.  

3.1 Convolutional Neural Networks (CNNs) 

CNNs are extensively utilized in computer vision applications, particularly for image analysis. CNNs consist of 

several essential layers, including convolutional layers, pooling layers, and fully connected layers [10]. The central 

concept underlying CNNs revolves around the utilization of convolutional layers, which conduct localized 

receptive field operations, enabling the network to capture spatial patterns and features within images [11]. These 

layers employ filters or kernels to scan the input data for creating feature maps which emphasize specific patterns 

or objects. Pooling layers reduce the spatial dimensions of the feature maps while preserving the most pertinent 

information. Fully connected layers, also referred to as dense layers, play a vital role in making ultimate 

predictions based on the acquired features.  



Table 1. Pros and Cons of different DL architectures. 

Network Type Network Details Pros Cons 

Convolutional 

Neural Network 

(CNN)  

It is a specialized type of DNN 

designed to effectively process 

grid-like data, such as images 

or time series, by using 

convolutional layers that 

capture local patterns and 

hierarchies of features. 

1.Effective Feature 

Learning 

2.Translation 

Invariance 

3.Parameter Sharing 

and Efficiency 

1. Lack of Global Context 

2. Large Memory and 

Computation Requirements 

3. Limited Data Efficiency 

Recurrent Neural 

Network (RNN) 

It is a type of NN designed for 

sequential data processing, 

where the output of a previous 

step is fed as input to the 

current step. This architecture 

enables RNN’s to capture 

temporal dependencies and 

effectively model time series, 

natural language processing, 

and other sequential tasks. 

1.Sequential Modeling 

2.Variable-Length 

Inputs 

3.Temporal Dynamics 

1.Vanishing and Exploding 

Gradients 

2.Sequential Computation 

3.Difficulty with Long 

Sequences 

Auto-Encoder (AE) It is a type of neural network 

architecture that is trained to 

reconstruct its input data at the 

output layer, effectively 

learning a compressed 

representation of the data in 

the hidden layers. 

1.Dimensionality 

Reduction and Feature 

Learning 

2. Data Compression 

and Denoising 

3.Generative Modeling 

1.Overfitting and 

Reconstruction Bias 

2.Lack of Interpretable Latent 

Space 

3.Difficulty Scaling to Large 

Datasets 

Generative 

Adversarial 

Networks (GANs) 

 

This framework comprises 

two neural networks: a 

generator and a discriminator, 

engaged in a competitive 

process. The generator's 

objective is to acquire the 

ability to produce synthetic 

data that closely resembles 

real data, while the 

discriminator is tasked with 

distinguishing between 

authentic and counterfeit data. 

This competition between the 

two networks ultimately 

results in the creation of 

synthetic samples that are 

exceptionally realistic and 

diverse. 

1.High-Quality Data 

Generation 

2.Creative and Diverse 

Outputs 

3.Adversarial Training 

1.Expensive Computational 

Requirements 

2.Training Instability 

3.Mode Dropping and 

Evaluation 

Transformer The Transformer is a NN 

architecture that utilizes self-

attention mechanisms to 

capture global dependencies in 

sequential data, making it 

highly effective in tasks such 

as machine translation, text 

generation and natural 

language understanding. It 

eliminates the need for 

recurrent connections, 

enabling parallelization and 

improving performance. 

1.Capturing Long-

Range Dependencies 

2.Parallelization and 

Scalability 

3. Interpretability and 

Visualization 

1.High Memory Requirements 

2.Lack of Sequential Order 

3.Limited Efficiency for Small-

Scale Tasks 

 

3.2 Recurrent Neural Networks (RNNs) 

RNNs are specifically designed for processing data that unfolds sequentially, such as time-series information. 

Unlike feedforward networks, RNNs incorporate recurrent connections, allowing information not only to flow 

from input to output but also to persist across different time steps [12]. This distinctive architecture empowers 

RNNs to capture temporal relationships and retain a memory of previous inputs. RNNs are composed of recurrent 

units, including the basic RNN unit, Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). These 



are RNN variants which effectively address issues like the vanishing gradient problem, and makes them highly 

suited for capturing long-term dependencies. RNNs find extensive applications in various domains, including 

NLP, sentiment analysis, speech recognition, and time-series prediction. 

 

3.3 Autoencoders 

Autoencoders represent neural networks designed to learn a condensed representation known as the latent space 

and are subsequently trained to reconstruct input data. This architecture comprises an encoder network responsible 

for mapping input data into the latent space and a decoder network that performs the task of reconstructing the 

original input based on this latent representation [13]. Autoencoders are classified as unsupervised learning 

models capable of extracting meaningful features from input data. They find application in various tasks, including 

data compression, anomaly detection, noise reduction, and dimensionality reduction. 

 

3.4 Transformers 

The Transformer architecture has gained prominence in natural language processing tasks. Transformers are 

designed to capture global dependencies between input and output sequences without the need for recurrent 

connections. They use a self-attention mechanism to compute attention scores between all positions in the input 

sequence, allowing the model to focus on relevant information and establish long-range dependencies. 

Transformers are composed of two essential components: an encoder and a decoder. In this architecture, the 

encoder handles the input sequence, while the decoder is responsible for generating the output sequence. 

Transformers have demonstrated remarkable performance, reaching the forefront in tasks such as machine 

translation, language comprehension, and text generation. 

3.5 Generative Adversarial Networks (GANs) 

GANs are structured with two key neural networks: a generator and a discriminator network. In the training of 

GANs, the generator network's goal is to create synthetic data samples, while the discriminator network is focused 

on differentiating between genuine and counterfeit data. The generator network improves its ability to produce 

more authentic samples by incorporating feedback from the discriminator network. The discriminator network, in 

turn, improves its ability to discriminate between real and fake data by analyzing both real and generated samples. 

GANs have shown impressive results in image synthesis, style transfer, data augmentation, and generating 

realistic synthetic data. 

Figure 2 . Taxonomy of variants of deep learning architectures. 

4. Deep Learning in Disease Diagnosis 

In this section, a substantiated overview is presented, highlighting the wide-ranging applications of deep learning 

in the context of diagnosing various diseases. It offers an exhaustive analysis of how deep learning techniques 

have been utilized to address a spectrum of healthcare challenges. The exploration delves into how these 

methodologies are applied to interpret medical images, predict disease outcomes, and integrate disparate data 

sources. The review also highlights the significant role that deep learning plays in enhancing early detection, 

aiding medical professionals in radiology and pathology.  

 



4.1. Neurological Disorders 

Neurodegenerative diseases include Alzheimer's and Parkinson's pose serious threats to the elderly population, 

lacking effective cures. In recent years, the potential of DNNs in medical image analysis and diagnostics has 

gained traction, and this study is based on the application in detecting Alzheimer’s and Parkinson's diseases. The 

research outlines the pertinent medical examinations for these ailments and delves into various DL models, 

discussing their frameworks and applications. 

 

Alzheimer’s disease (AD) 

In the context of exploring biomarkers and intelligently classifying AD using structural MRI, a novel DL model 

called "modified 3D EfficientNet" is introduced in [14]. This model incorporates the 3D MBConv block, which 

comprises depthwise convolution and a squeeze-and-excitation module. The results show that the proposed model 

achieves impressive classification accuracies, specifically reaching 95.00% for NC versus AD, 80.00% for NC 

versus all MCI, 86.67% for NC versus pMCI, and 83.33% for sMCI versus pMCI comparisons. These results 

demonstrate the model's effectiveness in detecting early Alzheimer's disease and high-risk mild cognitive 

impairment, surpassing the performance of traditional networks and existing methods in AD detection and 

prediction. 

In the research detailed in [15], an examination was conducted using a compact MRI image dataset to evaluate 

the effectiveness of CNN-based classification. A convolutional neural network with a streamlined convolutional 

layer design was created to identify AD in medical image patches. The results demonstrate that the proposed 

model achieved an impressive accuracy rate of 98%, surpassing the performance of conventional SVM, NB, and 

CNN models. 

 
Figure 3. A coronal T1-weighted MRI scan comparison between a patient with Alzheimer's disease (AD) on the right, 

exhibiting hippocampal atrophy  and a healthy individual on the left, featuring an intact hippocampus [16]. 

 
Figure 4.  A PET scan contrast, with the left side representing a normal individual and the right side showcasing an Alzheimer's 

patient. The PET scan highlights the presence of amyloid deposits through the PiB compound [17]. 

In [18], a novel DL algorithm was introduced for the rapid and automated diagnosis of AD using MRI images. 

This method incorporates 2D CNN models, dynamic medical images, and structural reparameterization, resulting 

in an impressive AUC of 0.9849 and accuracy of 0.9625. To capture slice-to-slice variations in MRI images, a 

temporal pooling technique is employed, while structural reparameterization enhances pre-existing network 

architectures without introducing additional evaluation-time computational costs. This innovative approach not 

only reduces diagnosis time but also achieves higher levels of accuracy. Figures 3 and 4 depict coronal T1-

weighted MRI and PET scans of a healthy individual and an Alzheimer's patient. 



In [19], an assessment was conducted on an advanced and interpretable network algorithm called TabNet. The 

study aimed to compare the performance of TabNet with that of XGBoost, a commonly employed classifier. Brain 

segmentation was carried out using commercially approved software, and both algorithms were trained using 

either volume data or radiomics features. Results showed similar diagnostic performances for AD and MCI 

groups, with TabNet showing an AUC of 0.951 for volume features and XGBoost showing similar performance 

in MCI. The other notable contributions for the AD detection is tabulated in Table 2. 

 

Parkinson’s disease 

In [20], a novel pipeline based on deep learning was introduced for the automatic diagnosis of PD using 

Quantitative Susceptibility Mapping (QSM) and T1-weighted images. This pipeline incorporates a CNN model 

along with an SE-ResNeXt50 model. The model effectively performed brain nuclei segmentation and achieved 

impressive AUCs of 0.901 and 0.845 when tested on independent cohorts. To identify the nuclei contributing to 

Parkinson's disease diagnosis at the patient level, Gradient-weighted Class Activation Mapping (Grad-CAM) 

heatmaps were used. Figure 5 provides a visual representation of imaging findings derived from MRI studies and 

nuclear imaging. 

 
Table 2. Summary of different deep learning approaches for the Alzheimer’s disease detection. 

Author Image Modality Models Employed Results 

Mehmood et al.[21] 

 

MRI VGG – 16 Accuracy: 99% 

Basher et al.[22] sMRI CNN and DNN AD vs NC (based on right hippocampal volume) 

Accuracy: 94.02%   

AD vs NC (based on left hippocampal volume) 

Accuracy: 94.8%  

Zhang et al.[23] 

 

T1 weighted 3D CNN AD vs NC: - Accuracy: 97.35% 

pMCI vs sMCI: - Accuracy:  78.7% 

NC vs pMCI: - Accuracy: 87.8% 

Feng et al.[24] 

 

 

MRI and PET 3D CNN AD vs NC: - Acc: 94.8% 

pMCI vs NC: - Acc: 86.3% 

sMCI vs NC: - Acc: 65.3% 

Bi et al.[25] 

 

rs-fMRI ELM and RNN On recur-ELM 

Using 3-class:- Accuracy: 0.847 ± 0.038CI  

Using NC-AD:- Accuracy: 0.913 ± 0.011CI  

Using NC-MCI:- Accuracy:0.805 ± 0.095CI  

Using MCI-AD:- Accuracy: 0.824 ± 0.039CI 

Nguyen et al.[26] 

 

MRI, CSF and 

PET 

minimal-RNN mAUC: - 0.944 + 0.014 

Ebrahimi and Luo[27] 

 

3D MRI LSTM Accuracy: 96.88% 

Basheera and Ram 

[28] 

 

 

T1 and T2 

weighted 

MRI 

 

CNN AD vs NC: - Acc:92% 

MCI vs NC: - Acc: 88.2% 

AD vs MCI: - Acc: 91.6% 

 

This research [29] examines binary classification using FDOPA PET scan textural features. They used 443 

and 100 PET/CT scans from separate systems for feature selection and model testing. They constructed logistic 

regression models using LASSO regularization, incorporating a set of 43 biomarkers that encompass 32 textural 

characteristics. The AUROC of the model improves by 63.91 using textural features. With GLCM Correlation as 

the most independent variable, the model has great sensitivity and specificity. Textural traits may help diagnose 

parkinsonian disorders. 

In [30], a deep learning framework is introduced for Parkinson's disease diagnosis by leveraging the learning 

of sMRI T2 slice features. This framework incorporates a DCNN, an adaptive weighted attention algorithm, a 

dropout layer, and a softMax layer to achieve precise classification results and capture a wide range of feature 

information. The most notable achievement of this proposed approach was an impressive accuracy rate of 92%. 

Additionally, it exhibited a sensitivity of 94%, an F1 score of 95%, and specificity of 90%, and all of which were 

instrumental in effectively distinguishing between individuals with PD and healthy controls. 



 
Figure 5. Visual representation summarizing imaging observations extracted from both nuclear imaging and MRI studies. 

Abbreviations: NMC = non-manifesting carrier, PD = Parkinson’s disease, FC = functional connectivity, HC = healthy control, 

sPD = sporadic PD, , NMNC = non-manifesting non-carrier, vol = volume, DAT = dopamine transporter, GMV = gray matter 

volume [31]. 

In [32], the primary goal was to create and assess a robust and interpretable DL architecture for classifying PD 

using a dataset comprising 2,041 T1-weighted MRI scans from 13 different studies. The preprocessing steps 

involved skull stripping, resampling, bias field correction, and registration to the MNI PD25 atlas. A state-of-the-

art CNN was trained using Jacobian maps and clinical parameters. To enhance interpretability, saliency maps 

were generated to highlight the brain regions contributing significantly to the classification process. The CNN 

model demonstrated strong performance, achieving an accuracy of 79.3%, precision, specificity, sensitivity and 

an AUC-ROC score of 80.2%, 81.3%, 77.7%, and 0.87 respectively when evaluated on the test dataset. Other 

noteworthy attempts [33–37]for the PD detection is supported in the literature mentioned in Table 3.  

 
Table 3. DL approaches for the classification of Parkinson’s disease. 

Author Image Modality Models Employed Results 

Z. Maalej et al [38] PET LSTM Accuracy: 84% 

B Battula et al [39] MRI ResNeXt Accuracy: 100%. 

T.M. Tassew [40] DaTScan and T2-

weighted MRI  

 

YOLOv7x and 

UNet 

Using YOLOv7x 

for DaTScan images 

mAP_0.5:0.95 of 70.39 %  

for MRI images 

mAP_0.5:0.95 of 64.16 %  

I D. Apostolopoulos [41] MRI AFF-VGG19 Accuracy: 0.9565 

S. Sivaranjini [42] MRI AlexNet  Accuracy: 88.9% 

M Thakur et al [43] single-photon emission 

computerized 

tomography 

(SPECT) images 

DenseNet-121 Accuracy: 99.2%; AUC-ROC: 99% 

Sensitivity: 99.2%; specificity: 99.4%  

F1-score: 99.1%  

 

4.2 Cancer Diagnosis 

Deep learning has emerged as a powerful technique for tackling the challenges of lung cancer and breast cancer. 

In lung cancer, deep learning models excel at detecting nodules in medical images like CT scans, aiding in early 

diagnosis. Similarly, in breast cancer, these models analyze mammograms, MRIs, ultrasound, and histopathology 

images to identify abnormalities, estimate risk, and guide personalized treatment plans. These models aid in 

identifying subtle patterns and anomalies that might be missed by traditional methods. Despite these 

advancements, challenges such as data availability, interpretability, and regulatory approval remain important 

considerations for real-world clinical implementation. This section encompasses a discussion on diverse DL 

techniques employed for the detection of breast cancer and lung cancer. 

 

 

https://link.springer.com/article/10.1007/s11042-019-7469-8#auth-S_-Sivaranjini-Aff1


Lung cancer 

This work  [44] proposed a comprehensive system to detect lung cancer (LC) in CT scan images. This system 

comprises of two core components: firstly, a segmentation module built upon the UNETR network, and secondly, 

a classification module employing a self-supervised network to categorize the segmented output into benign or 

malignant. By leveraging 3D-input CT scan data, their model emerges as a robust tool for timely lung cancer 

diagnosis. Through rigorous experimentation on the Decathlon dataset, they achieved 97.83% of accuracy for 

segmentation and 98.77% of accuracy for classification. Figure 6 shows various imaging findings for chest CT 

scans. Other research attempts for the lung cancer detection are listed in Table 4.  

A novel deep learning framework called LCD-CapsNet has been introduced in [45], which combines the 

capabilities of a CNN and a Capsule Neural Network (CapsNet). This fusion leverages the strengths of both 

networks to efficiently handle extensive data and achieve spatial invariance. The primary objective of this 

framework is to classify the lung cancer using CT scans, specifically utilizing the Lung Image Database 

Consortium (LIDC) datasets for evaluation. Remarkably, this deep learning model outperforms CapsNet in 

various metrics, boasting an average precision, a recall, an F1-score, a specificity, an AUC of 95%, 94.5%, 94.5%, 

99.07%, 0.989, and an accuracy rate of 94% for distinguishing between benign and malignant data. 

The study in [46], aimed to evaluate the effectiveness of the Swin Transformer in the tasks of LC classification 

and segmentation. The pre-trained Swin-B model achieved an impressive top-1 accuracy of 82.26% in 

classification, which outperformed ViT by a margin of 2.529%. Furthermore, the Swin-S model demonstrated 

superior segmentation performance compared to alternative methods, as indicated by its mean Intersection over 

Union (mIoU). These findings highlight the efficacy of pre-training as a valuable strategy to enhance the precision 

of the Swin Transformer model specifically for these tasks. 

 

 
Figure 6. (A) a chest CT image in axial view displays a 7 × 4 mm solid nodule (indicated by an arrow) situated in the lower 

right lobe. (B) and (C): Utilizing a classical machine learning-based computer-aided detection (CADe) approach, the nodule 

is accurately identified, accompanied by four false positives (one false positive is marked in C). D and E: Employing another 

CADe tool rooted in classical machine learning, the nodule is also correctly detected. Adjusting the sensitivity for 3-mm nodule 

detection introduces multiple false positives (D), while setting the threshold at 6-mm eliminates false positives (E). (F): A 

CADe tool built on deep learning principles successfully recognizes the nodule without any false positives [47]. 

In [48], a novel, comprehensive, and efficient deep learning technique called E2EFP-MIL (end-to-end feature 

pyramid deep multi-instance learning model) was introduced for weakly supervised learning. This approach 

incorporates three key modules: an iterative sampling module, a trainable feature pyramid module, and a resilient 

feature aggregation module. E2EFP-MIL adopts an end-to-end learning strategy, enabling the automatic 

extraction of generalized morphological features, which in turn facilitates the identification of unique 

histomorphological patterns. The model is trained on a dataset comprising 1007 whole slide images (WSIs) of LC 

from TCGA and achieves impressive AUC values ranging from 0.95 to 0.97 on test sets. When validated on 

diverse real-world cohorts, encompassing approximately 1600 WSIs from both the United States and China, 

E2EFP-MIL consistently demonstrates robust performance, achieving AUCs between 0.94 and 0.97, even with a 

limited training dataset of 100 to 200 images. This performance surpasses existing MIL-based methods, and 

notably, E2EFP-MIL combines high accuracy with modest hardware requirements, underlining its potential for 

clinical applications. 



 
Table 4. DL models for the classification and detection of lung cancer. 

 

 

Breast cancer 

In [55], a novel DL model to classify the breast cancer was introduced. This model draws inspiration from 

GoogLeNet and incorporates elements of residual blocks. By integrating adopted granular computing, shortcut 

connections, two trainable activation functions (in contrast to traditional activation functions), and an attention 

mechanism, the model demonstrates the potential to significantly improve diagnostic accuracy. Remarkably, the 

model achieves an accuracy rate of 93% when applied to ultrasound images and an even higher accuracy of 95% 

when dealing with breast histopathology images. 

 

 
Figure 7.  Image samples of Normal, benign and malignant of breast mammograms and ultrasound [56].  

 
Figure 8. Thermal image samples with Positions (a) Front, (b) Right Lateral 45°, (c) Right Lateral 90°, (d) Left Lateral 45°, 

(e) and Left Lateral 90° [57]. 

Author Image Modality Models Employed Results 

K.Barbouchi [49] PET/CT Transformer based DNN Intersection over union (IOU): 0.8 

For classification of T-stage:- accuracy = 0.97   

For histologic subtypes:- accuracy = 0.94 

V. Bishnoi [50] Histopathological 

images 

Color-based 

Dilated CNN  

 

Across the Cancer Genome Atlas dataset, the 

Clinical Proteomic Tumor Analysis Consortium 

cohorts, and the LC25000 dataset 

Accuracy: 0.97 to 0.99; while precision, recall, and 

F1 scores consistently reached values between 0.97 

and 0.98. 

AUC: 0.970 to 0.984; kappa score : 0.986. 

B.R.Pandit [51] CT images CNN Classification  accuracy : 99.5% - 98.9% 

I Naseer [52] CT scans For segmentation: 

modified U-Net 

For classification:  

modified AlexNet + 

support vector machine 

Accuracy: 97.98%,  sensitivity :98.84%,  

specificity: 97.47%,  precision 97.53%, 

F1- score : 97.70%  

M A Balci [53] CT scans U-shape convolutional 

neural networks 

Accuracy : 92.84% 

S Nigudgi [54] CT scans For feature extraction:  

AlexNet, VGG and 

GoogleNet 

For classification: SVM 

Accuracy : 97% 



Table 5. DL models for the classification and detection of breast cancer. 

Author Image 

Modality 

Models Employed Results 

A Sahu et al [58] Mammogram 

Ultrasound 

ShuffleNet-ResNet On mini-DDSM dataset: 99.17% and 98.00% of 

accuracies in detecting abnormalities and malignancy.  

On BUSI dataset: 96.52% and 93.18% of accuracies in 

detecting abnormalities and malignancy  

On BUS2 dataset: 98.13% of accuracy in malignancy 

detection 

K Atrey et al [59] Mammogram 

Ultrasound 

CNN + LSTM On mammogram dataset :-Accuracy : 97.16%  

On ultrasound dataset :-Accuracy : 98.84% 

F Prinzi et al[60] Mammogram YoloV5 mAP: 0.838 ± 0.042; recall: 0.722 ± 0.096; precision: 

0.917 ± 0.077,  

J.Zuluaga Gomez 

et al [61] 

Thermal 

images 

CNN Accuracy: 92% 

F1-score: 92% 

S S Boudouh et al 

[62] 

Mammogram Xception, InceptionV3, 

ResNet101V2, 

ResNet50V2, ALexNet, 

VGG16, and VGG19 

Using ResNet50V2 

Accuracy: 99.9%,  

Using InceptionV3 

 Accuracy: 99.54%  

T Liao [63] Mammogram DenseNet convolution 

neural network  

Specificity (0.909 vs. 0.835, 0.790, X2=8.21 and 17.22, p

＜0.05) and precision (0.872 vs. 0.763, 0.726, X2=9.23 and 

5.22, p＜0.05)  

S Civilibal [64] Thermal 

images 

Mask R-CNN + 

Transfer learning 

Accuracy: 97.1%  

S Gupta [65] Ultrasound Modified ResNet50 Accuracy: 97.8%; recall: 97.68%; precision: 99.21%;  

F1-score: 98.44%. 

 

The research [66] introduced a deep learning CNN, which effectively distinguishes between benign and 

malignant tumor categories. The model's effectiveness is assessed using key metrics, including sensitivity, 

precision, accuracy, F1-score, and the AUC. A five-fold cross-validation approach was used for evaluation. The 

findings affirm the effectiveness of the proposed model, showcasing a robust accuracy of 98.2% in successfully 

identifying breast cancer anomalies. 

In [67], a hybrid model was created, combining a CNN with a LSTM-RNN for the purpose of classifying four 

different subtypes of benign and malignant breast cancer. This model underwent evaluation using the BreakHis 

image dataset, which consists of 2480 benign and 5429 malignant cases. During experimentation, it was 

determined that the Adam optimizer yielded the best results, achieving minimum model loss and maximum 

accuracy. This model attained an exceptional 99% of accuracy for binary classification, effectively distinguishing 

between benign and malignant cases. Additionally, for the more challenging multi-class classification involving 

both cancer types, the model achieved an accuracy rate of 92.5%. Figures 7 and 8 provide visual representations 

of various imaging modalities used in breast cancer detection. 

In  [68], a study was conducted where they introduced an ensemble DL system designed to detect breast cancer. 

This system leverages Suspected Nodule Regions (SNRs) extracted using an optimal dynamic thresholding 

method. The ensemble itself comprises four CNNs along with a binary SVM. When tested on ROI images, this 

system exhibited outstanding performance, achieving a remarkable 94% of accuracy for the classification of 

malignant and benign classes and an even higher 95% of accuracy for the classification of malignant and benign 

mass nodules. Additionally, Table 5 provides an overview of the various applications of deep learning models in 

the context of breast cancer detection. 

 

Ophthalmology 

Deep learning is being increasingly applied in the field of ophthalmology for various detection tasks, ranging from 

disease identification to anomaly detection. This innovative approach leverages large datasets and complex neural 

networks to improve the efficiency of diagnosing ophthalmic conditions. By training deep neural networks on 

diverse ophthalmic data, including retinal images, OCT scans, and visual field data, significant advancements 

have been made in automating the detection of conditions like diabetic retinopathy, glaucoma, age-related macular 

degeneration, etc. Figure 9 and Figure 10 depicts the OCT scans and fundus images of healthy subjects and 

glaucoma patients. Table 6 lists other notable contributions for the detection of various eye diseases. 

 



 
Figure 9. Images of the left ocular organ. A) An OCT image illustrating the retinal strata utilized in the identification of 

Glaucoma: The innermost ILM layer, followed by the RNFL layer, Ganglion cell layer, and concluding with the RPE layer. 

B) A Fundus image displaying the optic disc, optic cup, the surrounding rim area, and the vasculature. [69]. 

In study [70], an assessment was conducted for the evaluation of an automated artificial intelligence algorithm 

known as EyeArt v2.1. The algorithm's objective was to triage retinal images from the English Diabetic Eye 

Screening Programme (DESP) into two categories: test-positive and test-negative. The sensitivity of EyeArt for 

detecting referable retinopathy was determined to be 95.7%, with a 95% confidence interval ranging from 94.8% 

to 96.5%. This sensitivity included values of 98.3% for mild-to-moderate non-proliferative retinopathy with 

referable maculopathy, 100% for moderate-to-severe non-proliferative retinopathy, and 100% for proliferative 

disease. Regarding EyeArt's alignment with human grading, which represents the absence of retinopathy 

(specificity), it was observed in 68% of cases, with a range between 67% to 69%. However, when combined with 

non-referable retinopathy, the specificity decreased to 54.0%, with a range of 53.4% to 54.5%. 

In the research [71], the study delved into the application of ultrawide-field fundus images in combination 

with a DCNN to identify treatment-naive proliferative diabetic retinopathy (PDR). Their approach involved 

training the DCNN using a dataset consisting of 378 photographic images, comprising 132 cases of PDR and 246 

cases of non-PDR. The subsequent evaluation included assessing metrics like AUC, sensitivity, and specificity. 

The model obtained a specificity of 97.2%, sensitivity of 94.7% and an AUC value of 0.969. 

 
Figure 10. OCT and Fundus visuals representing individuals with controlled and those with glaucoma; The images of the 

controlled subject are presented in (A) and (G). The delineation of the corresponding ILM and RPE layers can be observed in 

(B) and (C). Depictions of OCT and Fundus imagery for subjects with glaucoma can be found in (D) and (H), while manually 

extracted ILM and RPE layers are accentuated in (E) and (F) [69]. 



Table 6. applications of various deep learning architectures in the ophthalmology disease detection. 

Author Image Modality Models 

Employed 

Results 

J ko et al [72] spectral domain optical 

coherence tomography 

(SD-OCT) scans 

(CNN-LSTM) Accuracy: 94.2% 

YB Chou et al [73] Color fundus photographs 

OCT scans 

novel bi-modal 

DL model  

Accuracy: 80.76%; Sensitivity: 83.67% 

Specificity: 84.72; AUC-ROC: 88.57% 

J Loo et al [74] OCT scans CNN Sensitivity: 0.94; Specificity: 0.80 

average Dice similarity coefficient: 

0.94±0.07  

H Stegmann et al [75] OCT scans CNN For the DSA  

Sensitivity: 96.36%; Specificity: 99.98%  

Jaccard index: 93.24%   

For the LSA 

Sensitivity:96.43%; Specificity 99.86%  

Jaccard index:93.16%  

H Abdelmotaal et al [76] Color-coded Scheimpflug 

images 

CNN For the training set  

Accuracy:0.983 

For the test set 

Accuracy: 0.958 

H K Yang [77] Fundus photographs ResNet 50 Sensitivity: 93.4%  

Specificity: 81.8% 

 
In [78], the objective was to develop diagnostic technology capable of automatically grading the severity of 

diabetic retinopathy using both ultra-widefield fluorescein angiography (UWFA) and the Early Treatment 

Diabetic Retinopathy Study (ETDRS) 7-standard field images. A cross-sectional study was conducted using a 

dataset of 280 diabetic patients and 119 individuals without diabetes for training and testing an artificial 

intelligence model. The results demonstrated an accuracy of 88.50% when using original UWFA images and 

73.68% accuracy when using simulated 7-SF images. Notably, a simple linear regression function highlighted a 

significant relationship between the ischemic index and leakage index and the severity of diabetic retinopathy. 

Furthermore, by optimizing the cycle generative adversarial network and convolutional neural network model 

classifier, the accuracy of diabetic retinopathy grading was improved, with slightly better results obtained when 

using UWFA images. 

In [79], the research focused on assessing the influence of a multi-input deep learning strategy for analyzing 

optical coherence tomography (OCT), OCT angiography (OCT-A), and color fundus photographs. The aim was 

to improve the accuracy of a CNN in the diagnosis of intermediate dry age-related macular degeneration (AMD). 

The research involved 75 participants categorized into three groups. Training the CNN on multiple image 

modalities simultaneously resulted in increased accuracy: 94% for OCT alone, 91% for OCT-A, and 96% when 

combining multiple modalities for AMD diagnosis. The study demonstrates the potential of deep learning 

combined with multimodal image analysis for achieving superior diagnostic accuracy. 

 

5. Conclusion 

Recent advances in machine learning, particularly in the domain of DL, have triggered substantial progress in the 

detection, categorization, and quantification of inherent patterns within medical images. A significant 

breakthrough lies in the capacity to leverage hierarchical feature representations acquired solely from data, 

eliminating the necessity for manually crafted features reliant on domain-specific expertise. Deep learning 

algorithms consistently demonstrate enhanced performance across a broad spectrum of medical applications. 

In the realm of medical imaging, the emergence of DL has ushered in a novel era characterized by remarkable 

advancements in the areas of disease detection. This chapter explores the captivating array of deep learning 

applications across various disciplines like neurology, cancer identification, ophthalmology, each examined 

through the lens of medical imaging. The transformative power of deep learning algorithms is fully realized as 

they navigate the intricate landscapes of medical imaging, revealing concealed intricacies and deviations. Their 

exceptional capability deciphers the complexities of neurodegenerative disorders such as Parkinson's and 

Alzheimer's, and in the precision of detecting cancers like those affecting the lungs and breasts. Ophthalmology 

also benefits significantly from these intelligent systems, fundamentally altering the trajectory of medical practice. 

Overall, deep learning has revolutionized medical imaging and significantly enhanced disease diagnosis and 

patient care. 
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