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                                                          ABSTRACT  

In contrast to past studies that only evaluated transient stability, this paper advocates using a deep learning 

neural network (DLNN) technique to assess both transient and small signal stability. The complexity of power system 

dynamic features has increased due to the introduction of new components like power electronics, electric vehicles, 

and renewable energy generation, making TSA and SSA essential considerations. Today, the stability and security of 

the electrical network are impacted by the growing development of renewable energy sources. Wide area monitoring 

systems for the electrical system have emerged, creating "big data," which has ushered in new paradigms for tackling 

these issues. A wide range of stakeholders are paying attention to transient stability and small signal stability issues 

because they have the potential to create catastrophic outages. This study's objective is to evaluate the numerous 

stability issues relating to the electrical system using feature selection and DLNN methodology. The 28-bus test case 

power system's dynamic simulations were used to provide Nigerian time-domain data. A data processing pipeline for 

feature selection is built using the Relief-F feature selection approach. If a system is transiently stable, the prediction 

model will advise the power system operator of the damping of low frequency local and interarea oscillations. The 

DLNN approach also provides information on the system's oscillatory dynamic response and transient stability, 

enabling the application of essential control measures. Calculations are made to determine the proper amount of 
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adjustment, the correct minimum damping ratio, and system stability under the constraints of stability and power 

balance. The DIgSILENT/Python tool, which is powered by an Intel Pentium core i5 2GHz CPU, is used to carry out 

this study. The Nigeria 28 bus system is used to test the suggested model's higher performance, and the IEEE 9 bus 

system is used to confirm it. The 28-bus system in Nigeria was evaluated as having an accuracy performance of 90.16 

percent for TSA and 100 percent for SSA. This study evaluates and validates the strength of the proposed model. 

  

Keywords- Small Signal stability assessment, Transient stability assessment, Deep Learning Neural Network, Long 

Short-Term Memory, Transient stability, Power system stability, Relief F, Recurrent Neural Network  

  

                                                       I.   INTRODUCTION  

Power system stability refers to a power system's ability to recover from a disruption, reach equilibrium, and 

resume normal operations. Rotor angle instability brought on by synchronism loss has long been linked to the 

instability issue [7]. The instability problem has long been associated with rotor angle instability brought on by 

synchronism loss [7]. Depending on the intensity of the disturbance, rotor angle stability can also be divided into small 

signal and large signal stability. The ability of a power system to maintain synchronism in the face of little and major 

interruptions is often referred to as tiny signal stability and transient stability, respectively [2]. A collection of highly 

nonlinear Differential and Algebraic Equations (DAE) [2] and [7] describe the behavior of synchronous generators in 

respect to their related control systems, loads, renewable energy output, flexible AC transmission devices (FACTs), 

and the transmission network. The DAE model can be linearized all the way around the equilibrium point when a 

power system experiences small change. Small-signal stability is made possible by electrical torque changes in 

synchronous machines with the proper synchronizing and dampening torque component. The DAE model must be 

numerically solved for each circumstance using time domain simulations since it cannot be linearized around an 

operating point when a power system undergoes major changes [7]. The rotor angle of a synchronous generator may 

occasionally drift and oscillate if there is insufficient synchronizing and damping torque [2].  Transient instability, 

which also has the potential to reduce a power system's overall performance, is the main cause of power outages [4].   

TSA, a type of time domain simulation, is expensive and computationally difficult, particularly for large power 

systems with an almost unlimited number of operating points and eventualities. The prediction model is trained using 

a Deep Learning technique (LSTM) and a data set for a variety of operating circumstances in order to accomplish 

these goals. The Long Short Term Memory (LSTM), which is trained to remember the oscillatory response of a 

projected stable system, progressively captures the significant weekly damped low frequency oscillation. The TSA 

and SSA's computational complexity is gradually decreased, increasing prediction accuracy, and this is also the case 

for the LSTM. The suggested model's enhanced performance is demonstrated using the Nigeria 28 Bus System, and 

its support by the IEEE 9 Bus system is provided. 



              II.   TRANSIENT AND SMALL SIGNAL STABILITY OF A POWER SYSTEM  

In this study, deep learning neural network approaches are used to build a prediction model for the transient 

and small signal stability issues in Nigeria's 28 bus system. This section explains the mathematical procedure for 

transient and small signal stability. 

  

A.   Transient Stability  

A synchronous machine's ability to maintain synchronism in a power system in the wake of an interruption 

is referred to as rotor angle stability. Due to the fact that not all power system disturbances have the same effects on 

generation, some generators will slow down due to increased load from adaptive operation, while the remaining 

generators will increase their speed to maintain grid frequency. A change in the rotor's tilt with respect to the stator is 

brought on by an increase in generator speed [6]. The rotor alternately accelerates and decelerates continuously to 

maintain balance between the mechanical input torque and the electrical output torque. By engaging in this activity, 

the generator's ability to produce power is reduced, and the generator, prime mover, and transformers are all damaged. 

So, it's essential to protect the synchronous machine [8]. 

The dynamic reaction of a power system to disturbances is controlled by a collection of DAE, and their compact form 

is:  

  

  

  

The state as well as the algebraic variables x and y are shown. Additionally, h and g display the vectors of the relevant 

DAE. To obtain time-varying trajectories, the algebraic variables y, such as bus voltages and active power injections, 

and the state variables x, such as rotor angles and frequencies, are solved. To do this, the set of differential equations 

is discretized using numerical methods, such as the trapezoidal approach equation (1). At each time step (2), the 

created algebraic equations and the remaining algebraic equations are solved using the Newton's method. The dynamic 

trajectories over the simulation time window are observed to assess transient stability. This approach offers a precise 

evaluation of the temporary for a particular circumstance. [1].   

  

B.  Small signal stability  

Insufficient oscillation Small signal stability is indicated by damping in frequency, rotor angle, or voltage 

stability indications. The amplitude of oscillatory activity is constant across time when damping is zero. Negative 

damping raises the oscillations' amplitude regardless of the initial disturbance. High damping ratios make the power 

system's critical mode larger and decrease oscillation behavior. This is because it is the component of the system that 

is least stable [7]. The smallest damping ratio can be used to test the stability of small signals. Small signal stability 

problems can be local or worldwide in scope. Interarea mode oscillations are larger disturbances created by a group 

of generating stations than local mode oscillations, which are smaller disturbances brought on by a single producing 

station. Power System Stabilizer (PSS) and Flexible AC Transmission System (FACTS) controllers are widely used 

to improve oscillation stability in multi-machine power systems. By generating additional signals to combat 



oscillations in generator excitation systems, these devices [5] and [7] reduce damping. The main factor affecting how 

synchronous machines respond to oscillations is their electrical torque. Electrical torque is made up of two 

components: the Synchronizing Torque (TS), which oscillates in phase with the rotor angle deviation, and the 

Damping Torque (TD), which oscillates in phase with the components that affect the speed deviation. Both kinds of 

torques have an effect on the stability of tiny signals [5]. The set of algebraic and differential equations stated in (1) - 

(2) can be linearized around an equilibrium point for mild disturbances, as shown in equations (3) - (4).  

  

  

  

To investigate small signal or local stability at an equilibrium point in the presence of a slight disturbance in a power 

system, the linearized model in (3)–(4) is utilized. To do this, one employs the Lyapunov first technique, which entails 

determining the eigenvalues of the characteristic equation as follows. [3].  

  

det(𝐴𝑠𝑦𝑠 − 𝐼) = 0                                 (6)  

Where, 𝐴𝑠𝑦𝑠=𝐴−𝐵 (𝐷−1)𝐶 𝑎𝑛𝑑 =( 1,   2……………………………. 𝑛)  

  

Either real or complex estimated eigenvalues result in non-oscillatory or oscillatory responses. Additionally, conjugate 

pairs of complex eigenvalues are present, each of which indicates an oscillatory mode [5].  

  

C.   LSTM NETWORK FOR TSA AND SSA   

The RNN variants known as LSTM networks are capable of retrieving historical data from time series data. By 

encoding incremental temporal domain inputs into long-lasting internal hidden states, the network learns. Recalling 

earlier information over time is a typical behavior. LSTMs are helpful for time-series prediction because they can 

remember prior inputs [7]. LSTMs interact in a variety of ways thanks to their chain-like structure and four 

interacting layers. LSTMs are frequently employed in voice recognition, music production, and pharmaceutical 

research in addition to time-series predictions [7] and [10]. LSTM is used to address the long-term dependency 

problems. At each point, LSTM offers the choice to read, write, or reset the sale [10]. Equation 7 displays the 

mathematical computations for the LSTM. 

  

  

    



 

  

The operator denotes the pointwise multiplication of two vectors, where ct stands for the state of the LSTM cell, and 

Wi, Wc, and Wo are the weights. The input gate selects what fresh information can be entered while updating the cell 

state, while the output gate selects what information can be output based on the cell state. The LSTM cell shown in 

equation 8 can be mathematically characterized as follows based on the connections:  

  

 

  

Which information from the cell state will be destroyed is decided by the forget gate. When the forget gate, ft, has a 

value of 1, this information is stored, and when it has a value of 0 [10], it is fully discarded. The structure of the 

LSTM is shown in Figure 1.  

  

( 7)   

( 8 )   



 

  

Figure 1:  LSTM Network Diagram [11].  

  

  

                                                   III. NETWORK STRUCTURE OF THE MODEL  

In order to create a Deep learning NN for TSA and SSA, this paper builds the six-layer network model are 

explained below   

i. Data collection: The National Control Center (NCC), Oshogbo, is where appropriate data for modeling the 

28-bus Nigeria network are acquired.   

ii. Using DIgSLIENT, the Nigeria 28 bus system was network modeled.  

iii. Data collection for DLNN: The Relief-F technique is applied to remove unusual data from redundant ones.   

iv. DLNN (LSTM): A DLNN based on LSTM is modelled using the data that is available, trained, tested, and 

confirmed to complete the required TSA and SSA evaluation.   

v. Performance evaluation: The effectiveness of the LSTM model is then assessed using the Root Mean 

Squared (RMS), Specificity, Accuracy, and Precision metrics.  

vi. Compare outcomes: The results are evaluated against the IEEE 9 bus system.  

  

  



Figure 2, shows the proposed model for assessing Transient and Small signal stability. It is made up of two different 

model. The two model contains four inputs namely, voltage, rotor angle, active power and reactive power.  

  

  

 

   Bias=1  

                          Figure 2:  Schematic design model of TSA & SSA   

   

                                              IV.   DATA PREPARATION  

The National Control Center (NCC) provided the bus and transmission line data to the 330KV, 28 bus networks 

in Nigeria that was utilized as the case study (TCN). Figure 3 depicts the 28-bus power network, which consists of 

28 buses, 9 generation stations, and 52 transmission lines. Table 1 displays the transmission line and bus data. The 

modeling is done in the DIgSILENT power facility. The bus bars were either PV or PQ models when it came to the 

transmission lines, depending on where the load and generator were positioned. The loads were lumped loads based 

on PQ data. Using the required information and synchronous generator characteristics, the generators were 

accurately modeled.  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

In   

  

  

  

TS A 

SSA 

  

X 1   

X 2   

X 3   

X 4   

Y 1   

Y 2   

Y 3   

Y 4   

Stable/   

unstable   

Stable/   

unstable   



 

                                           Figure 3:  The Nigerian 28 bus power system [9].  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



Table 1: Network Data of the Nigerian 28 Bus Power System [9].  

Bus Identification  Bus Loads   Transmission Lines Data   

NO  Name  MW  MVAR  Bus  R(pu)   X(pu)  

1  Egbin  68.90  51.70  FROM  TO      

2 Delta  0.00  0.00  1  3  0.0006  0.0044  

3 Aja  274.40  205.80  4  5  0.0007  0.0050  

4 Akangba  244.70  258.50  1  5  0.0023  0.0176  

5 Ikeja-West  633.20         474.90  5  8  0.0110  0.0828  

6 Ajaokuta  13.80  10.30  5  9  0.0054  0.0405  

7 Aladja  96.50  72.40  5  10  0.0099  0.0745  

8 Benin  383.30  287.50  6  8  0.0077  0.0576  

9 Ayede  275.80  206.8  2  8  0.0043  0.0317  

10 Osogbo  201.20         150.90  2  7  0.0012  0.0089  

11 Afani  52.50           39.40  7  24  0.0025  0.0186  

12 Alaoji  427.00         320.20  8  14  0.0054  0.0405  

13 New-Heaven  177.90         133.40  8  10  0.0098  0.0742  

14 Onitsha  184.60         138.40  8  24  0.0020  0.0148  

15 B/Kebbi  114.50         85.90  9  10  0.0045  0.0340  

16 Gombe  130.60         97.90  15  21  0.0122  0.0916  

17 Jebba  11.00           8.20  10  17  0.0061  0.0461  

18 Jebba G  0.00             0.00  11  12  0.0010  0.0074  

19 Jos  70.30           52.70  12  14  0.0060  0.0455  

20 Kaduna  193.00         144.70  13  14  0.0036  0.0272  

21 Kanji  7.00             5.20  16  19  0.0118  0.0887  

22 Kano  220.60  142.90  17  18  0.0002  0.0020  

23 Shiroro  70.30           36.10  17  23  0.0095  0.0271  

24 Sapele  20.60           15.40  17  21  0.0032  0.0239  

25 Abuja  110.00  89.00  19  20  0.0081  0.0609  

26 Makurdi  290.10         145.00  20  22  0.0090  0.0680  

27 Mambila  0.00            0.00  20  23  0.0038  0.0284  

28 Papalanto  0.00            0.00  23  25  0.0038  0.0284  

        12  26  0.0071  0.0532  

        19  26  0.0059  0.0443  

        26  27  0.0079  0.0591  



        5  28  0.0016  0.0118  

 
    

  

                                            V.   RESULT AND DISCUSSION    

The test is run using the Relief-f algorithm and the LSTM. Python/DIgSLIENT is utilized to carry out this study's 

implementation. The Nigerian 28-bus power system for TSA and SSA is depicted in Figure 4 below using a 

DIgSILENT model.  Data were collected from DIgSILENT for TSA and SSA purposes under various situations.  

  

  

                              Figure 4:  Modelling of Nigerian 28-Bus System  

  

In this study the user interface gives user the privilege to load dataset, select relevant information from the huge 

amount of data, using the Relief-F feature selection algorithm, it helps preprocess and selects relevant subset of the 

data. Table 2 shows the loaded data.  

  

  



                                     
Table 2:  Loaded Data Nigerian 28-Bus System  

V(p.u)  P(KW)  Q 

(KVAr  
(ϴ)  TSA  

Targ  

SSA 

Targ  

0.388583  -271.618  0.454232  -63.3957  0  1  

0.469965  563.2468  -306.641  97.48929  0  1  

0.255932  -209.335  151.7141  -102.012  0  1  

0.533196  409.5992  -385.232  58.1159  0  1  

0.147646  19.65125  190.0627  -142.138  0  1  

0.540542  127.6128  -338.973  17.22918  0  1  

0.220532  318.4933  72.08323  176.2186  0  1  

0.484492  -151.327  -180.955  -25.1795  0  1  

0.370508  535.4349  -148.529  133.0507  0  1  

0.366197  -274.478  26.74668  -69.1091  0  1  

0.489727  539.7334  -341.938  88.36538  0  1  

0.209501  -156.153  174.4907  -114.545  0  1  

0.543035  309.6819  -389.185  42.17829  0  1  

0.154649  150.4527  153.4337  -161.475  0  1  

0.514599  -27.5849  -260.075  -5.50633  0  1  

0.310105  458.6298  -49.8561  150.0938  0  1  

0.403731  -252.811  -30.6135  -54.6958  0  1  

0.465345  553.8266  -304.05  100.1514  0  1  

0.233219  -197.255  154.0606  -105.39  0  0.135  

0.54455  350.7548  -412.666  48.70475  0  0.135  

0.261644  -207.228  163.5346  -100.006  1  1  

0.533944  476.4872  -393.262  69.36015  1  1  

0.18805  -114.21  196.6741  -121.668  1  1  

0.558244  357.5287  -423.106  46.91436  1  1  

0.143834  28.34095  192.7953  -144.893  1  1  

0.557052  193.1078  -381.217  22.91489  1  1  

0.174444  207.5377  142.6571  -169.663  1  1  

0.529761  5.899559  -279.595  -2.62709  1  1  

  



The loaded data in this study includes 81,802 instances and 6 attributes, with the targets Stable/Unstable and Eigen 

value. The loaded data is preprocessed and analyzed using Relief-f with DLNN. Relief-F is used to preprocess the 

loaded data before passing the chosen or pertinent feature to DLNN. The DLNN consists of input layers, hidden layers, 

and LSTM-based output layers. The ANN Fitting perspective for the data is shown in Figure 5.   

  

 

Figure 5:  Fitting Layers of the Data  

  

TSA and SSA produce either stable or unstable results. When a system is stable, the TSA denotes it as 1, and when it 

is unstable, it denotes it as 0.  In contrast, for SSA, the system is stable or oscillatory free if the real portion of the 

eigenvalue is negative and the damping ratio is positive, but unstable if the real part of the eigenvalue is positive. The 

deep learning neural network architecture of TSA and SSA is displayed in Table 3.  

  

Table 3: Deep learning Neural Network Data and Structure of TSA & SSA  

Feature and Structure Of LSTM  TSA AND SSA  

Number of inputs  4  

Number of neurons in the hidden layer  6  

Output  1 each  

Training data  66560  

Testing data  8256  

Validation data  6273  

Training algorithm   LSTM  

Epoch   31  

Transfer function  Relu and Sigmoid  
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Y     X 3   
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The model confusion matrix utilized to determine the evaluation performance of the developed model, including 

accuracy and precision, using the DLN technique is shown in Figure 6. After 10 epochs, the system converges, and 

the model accuracy for TSA and SSA achieves 90.16 percent and 100 percent, respectively. Tables 4 and 5 display 

the model evaluation performance of the methodology.  

  

  
Figure 6: Confusion Matrix for the TSA Developed Model. TP=14335; TN=275; FP=225; FN=1526  

  

Table 4: Evaluation Performance for TSA  

Measure  Evaluation (%)  Derivations  

Sensitivity  90.38  TRP=TP/(TP+FN)  

Precision  98.45  PPV=TP/(TP+FP)  

Accuracy  90.16  ACC+(TP+TN)/(P+N)  

  

  



 
  

   Figure 7: Confusion Matrix for the SSA Developed Model. TP=7251; TN=9110; FP=0; FN=0  

  

Table 5:  Evaluation Performance for SSA  

Measure  Evaluation (%)  Derivations  

Sensitivity  100  TPR=TP/(TP+FN)  

Precision  100  PPV=TP/(TP+FP)  

Accuracy  100  ACC=(TP+TN)/(P+N)  

  

 A.   Compare Results on IEEE 9 Bus System  

This part is illustrated in Figure 8 and uses modeling of the IEEE 9 bus system in the DIgSILENT power 

factory to validate the assessment outcomes from the TSA and SSA. For these systems, time-domain simulations and 

eigenvalue computation are performed using DIgSILENT. The generator rotor angle, voltage level, active power, and 

reactive power at all buses are also reported along with the oscillation modes. Additionally, a time difference of 0.3 

seconds is used during the simulations' 10 second run. Table 6 displays loaded data for the IEEE 9 bus system 

developed and utilized for training and testing, consisting of 62,500 target values, because neural networks require a 

lot of data to train. For the IEEE 9-Bus system, recovered samples included 18,750 testing samples and 43,750 training 

samples with appropriate target values. This system exhibits oscillations with eigenvalues that are compatible with 

both local and inter-area modes. The simulation for SSA indicated significant eigenvalue errors. The LSTM forecasts 



for this system were accurate and closely corresponded with the dynamics of the simulated oscillatory modes, in 

contrast to the TSA, whose LSTM predictions provided straightforward evaluation performance estimates.   

  

 
  

                                     Figure 8: Modelling of IEEE 9 Bus System in DIgSILENT  

  

  

  

  

  

  

  

  

  

  



                          Table 6: Loaded data for IEEE 9 bus system  

V(p.u)  P(KW)  Q 

(KVAr)  
(ϴ)  TSA  

Target  

SSA  

Target  

0.17958  -123.513  171.9536  -121.034  0  1  

0.541271  191.1149  -377.243  26.03689  0  1  

0.21862  312.9513  61.45572  172.7484  0  0  

0.437684  -202.49  -101.296  -40.9198  0  0.982346655  

0.441616  528.1544  -257.218  105.0707  0  0.982346655  

0.210953  -162.216  160.9706  -109.329  0  0.10730671  

0.542129  238.5471  -392.568  35.91947  0  0.10730671  

0.194307  277.8757  75.5049  -179.199  0  0.085283166  

0.459572  -195.994  -154.359  -34.6968  0  0.085283166  

0.428978  542.6657  -250.911  109.4685  0  0  

0.228289  -186.864  148.0511  -106.753  0  0  

0.534469  254.3771  -375.392  36.6825  0  0  

0.198982  272.5964  83.33363  179.7563  0  0  

0.441242  -197.513  -114.59  -37.5489  0  0  

0.445292  530.6067  -272.797  104.8101  0  0  

0.194562  -150.778  160.4638  -113.223  0  0  

0.542532  191.7196  -392.29  28.39765  0  0  

0.227462  338.5404  33.06602  169.661  1  0.982346655  

0.418274  -235.976  -78.9364  -49.4565  1  0.982346655  

0.468614  509.4048  -308.579  91.10054  1  0.10730671  

  

  

The TSA model confusion matrix, which was calculated using the DLNN technique to determine the evaluation 

performance of the developed model, including accuracy and precision, is shown in Figure 9 and Table 7. The outputs 

of the TSA's confusion matrix model are TP=2300, TN=5900, FP=4000, and FN=370. After 82 epochs, the system 

converges, and the model accuracy for TSA is 65%.  

  

  

  

  
  



  

  

 
  

                                            Figure 9:  Confusion matrix for the TSA IEEE 9 bus system  

  

Table 7:  Evaluation Performance for TSA of IEEE 9 bus system  

Measure   Evaluation (%)  Derivations  

Sensitivity   94  TPR=TP/(TP+FN)  

Precious  86  PPV=TP/(TP+FP)  

Accuracy   65  ACC=(TP+TN)/(P+N)  

  

Because the goal values have so many floats and so few integers, the SSA outcome is a Regression method. After 40 

epochs, the system converges, producing a Mean Squared Error of 0.183 and a Root Mean Squared Error of 

0.4277849927. Figure 10 depicts the Residual Distribution Curve, where the prediction is both over and under 

estimated because the majority of the estimated values fall between -0.5 and 0.5. 

print (‘MSE:   ‘   +   str(mse) ) print 

(‘MSE:   ‘   +   str(rmse) ) print 

(‘Epochs:   ‘   +   str(5) )  

MSE:    0.183  

 RMSE:     0.4277849927   

  
  

  



  

  

  

 
  

                                                    Figure 10:  Residual Distribution Curve     

A number of studies on TSA and SSA were compared to the outcomes utilizing different machine learning approaches. 

The accuracy of various methods for predicting TSA and SSA is compared in Table 8. The proposed method is tested 

utilizing the IEEE 58, IEEE 60, and New England 39 bus systems after being compared to CNN and LSTM in Table 

8 to anticipate TSA and SSA. The MSE, RMSE, Accuracy, Sensitivity, and Precision are the primary comparing 

measures. The Nigeria 28 bus system has faultless assessment performance for both TSA and SSA because to the 

usage of LSTM to increase its accuracy, sensitivity, and precision. Because there were so many floats in the input 

data, TSA's accuracy was low. The accuracy of the evaluation performance when using the IEEE 9 bus system was 

65%. To improve TSA accuracy in this case, random hyperparameter tweaking can be employed, although a longer 

training period is required. While in SSA, the MSE can be improved by using random search hyperparameter 

adjustment and can also be improved by adding more LSTM layers to make sure that it won't overfit the data.  

  

  

  

  

  

  

  



Table 8:  Comparison of performance with TSA and SSA methods  

Related works 

on (TSA and  

SSA)   
   

MSE  RMSE  

Nigeria 28 Bus  

System 

(proposed work)  

LSTM  90.16  

100  

90.8  

100  

98.45  

100  

  

_  

  

_  

  

  

IEEE 9 Bus  

System 

(proposed work)  

  

LSTM  

  

65  

  

94  

  

86  

  

0.183  

  

0.42778  

  

IEEE 50 Bus 

System[7].  

  

CNN and  

LSTM  

  

98.31  

  

_  

  

_  

  

  

0.00000016  

  

  

0.0004  

  

New England 39 

Bus System[7].  
  

  

CNN  

and  

LSTM  

  

  

94.5  

  

  

_  

  

  

_  

  

  

0.00001024  

  

  

  

0.0032  

  

IEEE 68 Bus 

System[7].  

CNN and 

LSTM  

97.22  

  

_  _  0.00001681  0.0041  

    

                                         VI.  CONCLUSION  

It is now simpler to convert the current power systems into a new generation of power systems with a high 

penetration of renewable energy and power electronics thanks to the integration of power electronics technology and 

renewable energy sources. This change makes it very difficult to evaluate the electrical networks' transient and small 

signal stability. Datadriven TSA with SSA methods establish a relationship between system operational parameters 

and stability status before determining stability results without the need for a power system's physical model or 

parameter information, in contrast to conventional time domain simulation and energy function methods. For the safe 

and dependable operation of electricity networks, transient stability and small signal stability are essential In order to 

evaluate small signal stability and transient stability, feature-based deep learning methods (LSTM) are introduced in 

this study. The findings of the study will benefit those who are interested in the topic by improving their understanding 

of LSTM in assessing transitory and tiny signal stability.   
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