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Abstract 
It is undoubtful that artificial intelligence (AI) is being the trend of computer science and this 

trend is still ongoing in the far future even though technologies are being developed suddenly 

fast because computer science does not reach the limitation of approaching biological world 

yet. Machine learning (ML), which is a branch of AI, is a spearhead but not a key of AI because 

it sets first bricks to build up an infinitely long bridge from computer to human intelligence, 

but it is also vulnerable to environmental changes or input errors. There are three typical types 

of ML such as supervised learning, unsupervised learning, and reinforcement learning (RL) 

where RL, which is adapt progressively to environmental changes, can alleviate vulnerability 

of machine learning but only RL is not enough because the resilience of RL is based on iterative 

adjustment technique, not based on naturally inherent aspects like data mining approaches and 

moreover, mathematical fundamentals of RL lean forwards swing of stochastic process. 

Fortunately, artificial neural network, or neural network (NN) in short, can support all three 

types of ML including supervised learning, unsupervised learning, and RL where the implicitly 

regressive mechanism with high order through many layers under NN can improve the 

resilience of ML. Moreover, applications of NN are plentiful and multiform because three ML 

types are supported by NN; besides, NN training by backpropagation algorithm is simple and 

effective, especially for sample of data stream. Therefore, this study research is an introduction 

to NN with easily understandable explanations about mathematical aspects under NN as a 

beginning of stepping into deep learning which is based on multilayer NN. Deep learning, 

which is producing amazing results in the world of AI, is undoubtfully being both spearhead 

and key of ML with expectation that ML improved itself by deep learning will become both 

spearhead and key of AI, but this expectation is only for ML researchers because there are 

many AI subdomains are being invented and developed in such a way that we cannot 

understand exhaustedly. It is more important to recall that NN, which essentially simulates 

human neuron system, is appropriate to the philosophy of ML that constructs an infinitely long 

bridge from computer to human intelligence. 

 

Keywords: artificial neural network (ANN), neural network (NN), machine learning (ML), 

artificial intelligence (AI). 

 

1. Introduction 
Artificial neural network (ANN) is the mathematical model based on biological neural network 

but neural network (NN) in this research always indicates artificial neural network. NN consists 

of a set of processing units which communicate together by sending signals to each other over 

a number of weighted connections (Kröse & Smagt, 1996, p. 15). Each unit is also called 

neuron, cell, node, or variable which is quantified by a real variable. Each weighted connection, 

which is considered a neural cord, is often quantified by a real parameter called weight or 

connection weight. According to Kröse & Smagt, each unit is responsible for receiving input 

from neighbors or external sources and using this input to compute an output signal which is 

propagated to other units (Kröse & Smagt, 1996, p. 15). The most important thing here is that 

the signal propagation is done by the means of weighed connections which are imitated as 
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biological neurotransmission with neurons and neural cords. According to Kröse & Smagt 

(Kröse & Smagt, 1996, pp. 15-16), there are three types of units: 

- Input units receive data from outside the network. These units structure input layer. As 

a convention, there is one input layer. In literature, input layer is not counted, which 

will be explained later. 

- Hidden units own input and output signals that remain within NN. These units structure 

hidden layer. There can be one or more hidden layers. 

- Output units send data out of the network. These units structure output layer. As a 

convention, there is one output layer. 

Please distinguish input unit from input and distinguish output unit from output because input 

is the input value of any unit and output is the output value of any unit. These are conventions 

in this research. Units in NN are also considered variables. The figure (Wikipedia, Artificial 

neural network, 2009) below shows a simple structure of an NN with three layers such as input 

layer, hidden layer, and output layer. The structure of NN is often called topology. 

 
Figure 1.1. Simpler topology of NN with three layers such as input layer, hidden layer, and 

output layer 

However, the simplest topology has two layers such as input layer and output layer where 

output layer is also hidden layer. Later on, the NN having such simplest layer is called single 

layer NN which will be explained later. Note that the main reference of this report research is 

the book “An Introduction to Neural Networks” by Ben Kröse and Patrick van der Smagt 

(Kröse & Smagt, 1996). 

According to Daniel Rios (Rios), there are two main topologies (structures) of NN: 

- Feedforward NN is directed acyclic graphic in which flow of signal from input units to 

output units is one-way flow and so, there is no feedback connection. The NN in this 

section is feedforward NN. As a convention, the ordering of layers is counted from left 

to right, in which the leftmost one is input layer, the middle ones are hidden layers, and 

the rightmost one is output layer. 

- Recurrent NN is the one whose graph (topology) contains cycles and so, there are 

feedback connections. 

It is necessary to evolve NN by modifying the weights of connections so that they become 

more accurate. In other words, such weights should not be fixed by experts. NN should be 

trained by feeding it teaching patterns and letting it change its weights. This is learning process 

or training process. According to Daniel Rios (Rios), there are three types of learning methods: 

- Supervised learning: According to Daniel Rios (Rios), the network is trained by 

matching its input and its output patterns. These patterns are often known as classes 

which can be represented by binary values, integers for nominal indices, or real 

numbers. 
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- Unsupervised learning: The network is trained in response to clusters of patterns behind 

the input. According to Daniel Rios (Rios), there is no a priori set of categories into 

which the patterns are to be classified. 

- Reinforcement learning: The learning algorithms receive partially information along 

with input from environments and then, adjust partially and progressively the weighted 

connections by adaptive way to such input. Reinforcement learning is the intermediate 

form between supervised learning and unsupervised learning. 

This introduction section focuses on supervised learning in which input and output are realistic 

quantities (real numbers). For NN, the essence of supervised learning is to improve weighted 

connections by matching input and output. Learning NN process is also called training NN 

process as usual. Given unit i, let xi and yi denote input and output of unit i, which are real 

numbers. In NN literature, a unit will be activated if its output is determined and so the output 

yi is also called activation of unit i. If a unit is input unit (in input layer) then its input contributes 

to input of NN. If a unit is output unit (in output layer) then its output contributes to output of 

NN. Each connection between two successive units such as unit i and unit j is defined by the 

weight wij determining effect of unit i on unit j. In the normal topology, an output unit is 

composition of other hidden units which in turn are compositions of others input units. The 

composition (aggregation) of a unit is represented as a weighted sum which will be evaluated 

to determine the output of this unit. The process of computing the output of a unit includes two 

following steps (Han & Kamber, 2006, p. 331): 

- An adder called summing function sums up all the inputs multiplied by their respective 

weights. It is essential to compute the weighted sum. This activity is referred to as linear 

combination. 

- An activation function controls amplitude of output of a unit. This activity aims to 

determine and assert output of a unit. Note that outputs of previous units are inputs of 

current unit. 

Figure 1.2 (Han & Kamber, 2006, p. 331) describes the process of computing output of a unit. 

 
Figure 1.2. Process of computing output of a unit 

For example, as seen in figure 1.2, given a concerned unit k, suppose there are previous units 

whose outputs yj (s) are considered as inputs of unit k. According to the process of computing 

output of a unit, we have following equation (Han & Kamber, 2006, p. 331), (Kröse & Smagt, 

1996, pp. 16-17) for computing output value of a unit. 

𝑥𝑘 =∑𝑤𝑗𝑘𝑦𝑗
𝑗

+ 𝜃𝑘

𝑦𝑘 = 𝑓𝑘(𝑥𝑘)

 (1.1) 

Or shortly: 

𝑦𝑘 = 𝑓𝑘 (∑𝑤𝑗𝑘𝑦𝑗
𝑖

+ 𝜃𝑘) 
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The equation above for output processing is called propagation rule. Note, wjk is weight of the 

connection from unit j to unit k and θj is bias of unit j while fj(.) is activation function acting on 

unit j. If all units use the same form of activation function, we can denote f(.) = fj(.). 

𝑥𝑘 =∑𝑤𝑗𝑘𝑦𝑗
𝑗

+ 𝜃𝑘

𝑦𝑘 = 𝑓(𝑥𝑘)

 

As a convention, propagation rule can be denoted by succinct way as follows: 

𝑦𝑘 = 𝑓 (𝑥𝑘 =∑𝑤𝑗𝑘𝑦𝑗
𝑗

+ 𝜃𝑘) (1.2) 

The parameters of propagation rule are weights wjk and biases θk in which weights are most 

important. Conversely, it is possible to consider propagation rule as function of variables wjk 

and θk. In a distributed environment, NN can be evolved asynchronously when the computing 

processes on different units can be computed by distributed way. Given time point t, 

propagation rule at time point t + 1 is rewritten as follows: 

𝑦𝑘(𝑡 + 1) = 𝑓 (𝑥𝑘(𝑡 + 1) =∑𝑤𝑗𝑘𝑦𝑗(𝑡)

𝑗

+ 𝜃𝑘) (1.3) 

The formulation of propagation rule with time points emphasizes the process of changing NN 

in time series but its meaningfulness is not changed. 

As a convention, input units in input layer are indexed by i (for instance, xi and yi), hidden 

units in hidden layer are indexed by h (for instance, xh and yh), and output units in output layer 

are indexed by o (for instance, xo and yo). Therefore, indices j, k, l, etc. indicate normal units 

having both input and output. However, in some cases, the convention of input indices i, hidden 

indices h, and output indices o may not be applied, for example, when writing pseudo code for 

learning NN algorithm. For input units, we assume that xi = yi and θi = 0. A NN is valid if it 

has two or more layers and so there is a convention that a n-layer NN has n+1 actual layers, 

which means that input layer is not counted for this convention. This convention is reasonable 

because propagation rule is not applied to input units. The simplest NN is single layer NN 

owning one input layer and one output layer where the output layer can be considered as hidden 

layer. 

Output values of units are arbitrary, but they should range from 0 to 1 (sometimes –1 to 1 

range). In general, every unit k has following aspects: 

- Each unit k has input xk and output yk. Moreover, let vk be the actual value of unit k 

taken from experts, environment, database, states, etc. The actual value vk can be equal 

to or different from the output vk with note that vk is derived from propagation rule. The 

actual value vk is called desired output of unit k. When a unit k is put in NN, which 

means that it connects to other units via weighted connections, then unit k is called 

clamped in NN. Besides, clamped units also are ones that are concerned in training 

process or some special tasks. Input of a clamped unit k is denoted sk. By default, all 

units are clamped and so, the clamped input sk is the same to the input xk as sk = xk by 

default. 

- A set of units j connects to it. Each connection is quantified by a weight wjk. 

- A bias value θk will be added to the weighted sum. 

- The weighted sum is computed by summing up all inputs modified by their respective 

weights. Summing function or adder is responsible for this summing task. 

- Its output yk is outcome of activation function f(.) on weighted sum. Activation function 

is crucial factor in NN. The combination of summing function and activation function 
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constitutes propagation rule, but propagation rule can be more complicated with some 

enhancements. 

Given unit k, there are many desired outputs of unit k, for example, vk
(1), vk

(2),…, and hence, 

given a pattern p (Kröse & Smagt, 1996, p. 19) there is a desired output vk
(p) corresponding to 

pattern p. For easily understandable explanation, if vk
(p) is taken from a database table, p 

indicates the pth row in the table. As a convention, let xk
(p), yk

(p), vk
(p), and sk

(p) be input, output, 

desired output, clamped input of unit k within the p pattern, respectively or they can be called 

the pth input, output, desired output, and clamped input of unit k, respectively. With pattern p, 

propagation rule is rewritten exactly as follows: 

𝑠𝑘
(𝑝) = ∑ 𝑤𝑗𝑘𝑦𝑗

(𝑝)

𝑗∈𝑁(𝑘)

+ 𝜃𝑘

𝑦𝑘
(𝑝) = 𝑓 (𝑠𝑘

(𝑝))

 (1.4) 

Where N(k) denotes a set of previous (clamped) units to which the current clamped unit k 

connects. Given time point t, propagation rule is rewritten fully as follows: 

𝑠𝑘
(𝑝)(𝑡 + 1) = ∑ 𝑤𝑗𝑘𝑦𝑗

(𝑝)(𝑡)

𝑗∈𝑁(𝑘)

+ 𝜃𝑘

𝑦𝑘
(𝑝)(𝑡 + 1) = 𝑓 (𝑠𝑘

(𝑝)(𝑡 + 1))

 

Propagation rule essentially transforms inputs to outputs but an output yk may not totally equal 

to desired output vk when it is often approximated to vk. Propagation rule with optimal weights 

and optimal bias is a good enough presentation of NN when NN tries its best to approach the 

desired function v(.) that produces desired outputs vk = v(sk) (= v(xk)). Therefore, in NN 

literature, representation power (Kröse & Smagt, 1996, p. 20) implies the approximation of 

NN and the desired function v(.) and so, the ideology under any learning NN algorithms is to 

make such approximation. 

There are some other conventions for learning NN from sample or training dataset. The set 

of inputs x1, x2,…, xk,… is denoted as x = (x1, x2,…, xk,…)T which is called input vector where 

the superscript “T” denotes transposition operator of vector and matrix. The set of outputs y1, 

y2,…, yk,… is denoted as y = (y1, y2,…, yk,…)T which is called output vector. The set of desired 

outputs v1, v2,…, vk,… is denoted as v = (v1, v2,…, vk,…)T which is called desired output vector. 

The set of clamped inputs s1, s,…, sk,… is denoted as s = (s1, s2,…, sk,…)T which is called 

clamped input vector. Input vector, output vector, desired vector, and clamped input vector 

with p pattern are denoted x(p), y(p), v(p), and s(p), respectively. The set of input vector over entire 

input layer and desired output vector over entire output layer composes a sample or training 

dataset D = {x(p), v(p)} for learning NN where p = 1, 2, 3, etc. By default, all units are clamped 

in NN and so we have D = {x(p), v(p)} = {s(p), v(p)} by default. 

Activation function f(.), which is an important factor of NN, is squashing function which 

“squashes” a large weighted sum into possible smaller values ranging from 0 to 1 (sometimes 

–1 to 1 range). According to Daniel Rios (Rios), there are some typical activation functions: 

- Threshold function takes on value 0 if weighted sum is less than 0 and otherwise. The 

formula of threshold function is: 

𝑓(𝑥) = {
1 if 𝑥 ≥ 0
0 if 𝑥 < 0

 

- Piecewise-linear function takes on values according to amplification factor in a certain 

region of linear operation. The formula of piecewise-linear function is: 
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𝑓(𝑥) =

{
 
 

 
 0 if 𝑥 ≤ −

1

2

𝑥 if −
1

2
≤ 𝑥 ≤

1

2

1 if 
1

2
≤ 𝑥

 

- Sigmoid function or logistic function takes on values in range [0, 1] or [–1, 1]. A popular 

formula of sigmoid function is: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (1.5) 

Where e(.) or exp(.) denotes exponent function. Exponential logistic function is the most 

popular activation function. 

Recall that the essence of learning NN (training NN) is to improve weighted connections by 

matching input and output. Given a weight wjk from unit j to unit k, a new version of wjk after 

learning process at time point t is updated by weight deviation Δwjk as follows: 

𝑤𝑗𝑘(𝑡 + 1) = 𝑤𝑗𝑘(𝑡) + ∆𝑤𝑗𝑘 

Or shortly: 

𝑤𝑗𝑘 = 𝑤𝑗𝑘 + ∆𝑤𝑗𝑘 (1.6) 

The equation above is called weight update rule and hence, weight update rule focuses on how 

to calculate weight deviation Δwjk which is also called the change in weight. Learning NN 

algorithms also improve biases beside improving weights. Given bias θk of unit k, a new version 

of θk after learning process at time point t is updated by bias deviation Δθk as follows: 

𝜃𝑘(𝑡 + 1) = 𝜃𝑘(𝑡) + ∆𝜃𝑘 

Or shortly: 

𝜃𝑘 = 𝜃𝑘 + ∆𝜃𝑘 (1.7) 

The equation above is called bias update rule and hence, bias update rule focuses on how to 

calculate bias deviation Δθk which is also called the change in bias. In general, a normal 

learning NN algorithm needs to specify both weight update rule and bias update rule because 

both of them determine propagation rule. Because weight update rule and bias update rule are 

based on weight deviation and bias deviation, these deviations Δwjk and Δθk can be used to 

represent these rules. 

The most popular learning NN algorithm is backpropagation algorithm, but we should skim 

some simpler learning algorithms first. Two common simpler learning algorithms are 

Perceptron and Adaline. Both of them are based on Hebbian rule and delta rule. Hebbian rule 

indicates that Δwjk (also wjk) is proportional to product of output of unit j and output of unit k 

as follows (Kröse & Smagt, 1996, p. 18): 

∆𝑤𝑗𝑘 = 𝛾𝑦𝑗𝑦𝑘 (1.8) 

Where the positive constant γ which is called learning rate (0 < γ ≤ 1) specifies power of the 

proportionality, which relates to speed of learning process. In simplest case, it is 1 as γ = 1. 

Both yj and yk are results of propagation rule. Let vk be desired output of unit k from 

environment or database, delta rule indicates that Δwjk (also wjk) is proportional to product of 

output value of unit j and output deviation of unit k as follows (Kröse & Smagt, 1996, p. 18): 

∆𝑤𝑗𝑘 = 𝛾𝑦𝑗(𝑣𝑘 − 𝑦𝑘) (1.9) 

Obviously, Hebbian rule and delta rule are weight update rules. After researching learning NN 

algorithm, we will recognize that delta rule is derived from stochastic gradient descent (SGD) 

method for minimizing squared error with least squares method. Moreover, it is possible to 

consider delta rule as an improved Hebbian rule and thus, Hebbian is the base for learning NN 

algorithms. 
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Recall that the most popular NN algorithm is backpropagation algorithm whereas two 

simpler learning algorithms are Perceptron and Adaline. Perceptron algorithm is used to train 

a simple single layer NN called Perceptron. For instance, Perceptron has some input units and 

one output unit. Without loss of generality, Perceptron has two input units whose (input) values 

are denoted x1 and x2 and one output unit whose (output) value is denoted y with note that y is 

binary {–1, 1} and bias of the output unit is θ, as seen in figure 1.3 (Kröse & Smagt, 1996, p. 

23). 

 
Figure 1.3. Perceptron topology 

As a convention, we can call input unit x1, input unit x2, output unit y, and bias θ although they 

are values. Propagation rule of Perceptron is (Kröse & Smagt, 1996, p. 23): 
𝑥 = 𝑤1𝑥1 + 𝑤1𝑥1 + 𝜃

𝑦 = 𝑓(𝑥) = {
1 if 𝑥 > 0

−1 otherwise
 (1.10) 

Which is, indeed, a binary classifier for supervised learning whose inputs are x1 and x2 and 

whose output is the binary class {–1, 1}. Classification equation from the Perceptron 

propagation rule is w1x1 + w2x2 + θ = 0. Weight update rule of Perceptron is: 

𝑤𝑖 = 𝑤𝑖 + ∆𝑤𝑖, ∀𝑖 = 1,2̅̅ ̅̅  

Let v ∈ {–1, 1} be desired value of unit y from environment or database, Perceptron learning 

algorithm calculates weight deviation Δwi as follows (Kröse & Smagt, 1996, pp. 24-25): 

∆𝑤𝑖 = {
𝑥𝑖𝑣 if 𝑦 ≠ 𝑣
0 if 𝑦 = 𝑣

, ∀𝑖 = 1,2̅̅ ̅̅  (1.11) 

Therefore, weight update rule of Perceptron is slightly similar to Hebbian rule. Bias update rule 

of Perceptron is: 

𝜃 = 𝜃 + ∆𝜃 

Perceptron learning algorithm calculates bias deviation Δθi as follows (Kröse & Smagt, 1996, 

p. 25): 

∆𝜃 = {
𝑣 if 𝑦 ≠ 𝑣
0 if 𝑦 = 𝑣

 (1.12) 

For example, with initialized values w1 = 1, w2 = 1, and θ = 0, given sample x1 = 1, x2 = 2, and 

v = 1, Perceptron weights and biases are updated as follows: 

𝑥 = 𝑤1𝑥1 + 𝑤1𝑥1 + 𝜃 = 3 

𝑦 = 1 due to 𝑥 > 0 

∆𝑤1 = 0 due to 𝑦 = 𝑣 = 1 

∆𝑤2 = 0 due to 𝑦 = 𝑣 = 1 

∆𝜃 = 0 due to 𝑦 = 𝑣 = 1 

𝑤1 = 𝑤1 + ∆𝑤1 = 1 

𝑤2 = 𝑤2 + ∆𝑤2 = 1 

𝜃 = 𝜃 + ∆𝜃 = 0 

Adaline developed by Widrow and Hoff (Kröse & Smagt, 1996, p. 27), which is abbreviation 

of adaptive linear element, is an extension of Perceptron, whose inputs and outputs are real 

numbers. Of course, Adaline is a single layer NN. Therefore, the output unit y is linear 

combination of the input units xi (s). Propagation rule of Adaline is (Kröse & Smagt, 1996, p. 

28): 

𝑦 =∑𝑤𝑖𝑥𝑖
𝑖

+ 𝜃 (1.13) 
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Obviously, activation function of Adaline is identical function. Suppose Adaline is learned 

from the sample {x(p), v(p)} where each v(p) is the pth desired output which is corresponding to 

the pth instance y(p) at pattern p. By default, all units are clamped and so, the clamped input sk 

is the same to the input xk as sk = xk by default such that {x(p), v(p)} = {s(p), v(p)}. The total error 

given this sample is the sum of squared deviations between desired outputs and outputs as 

follows (Kröse & Smagt, 1996, p. 28): 

𝜀(𝑤𝑖, 𝜃) =∑𝜀(𝑝)(𝑤𝑖, 𝜃)

𝑝

 (1.14) 

Where (Kröse & Smagt, 1996, p. 28), 

𝜀(𝑝)(𝑤𝑖, 𝜃) =
1

2
(𝑣(𝑝) − 𝑦(𝑝))

2
=
1

2
(𝑣(𝑝) − (∑𝑤𝑖𝑥𝑖

(𝑝)

𝑖

+ 𝜃))

2

 (1.15) 

Note, ε(p)(wi, θ), which is function of wi and θ, is the squared error at pattern p or the pth squared 

error in short. According to least squares method, the optimal (wi
**, θ**)T is minimizer of the 

total error. 
(𝑤𝑖

∗∗, 𝜃∗∗) = argmin
(𝑤𝑖,𝜃)

𝜀(𝑤𝑖, 𝜃) 

By feeding successively each {x(p), v(p)} or summing all squared errors ε(p)(wi, θ), it is possible 

to calculate a minimizer (wi
*, θ*) at each pattern p, which minimizes the pth squared error ε(p)(wi, 

θ). 

(𝑤𝑖
∗, 𝜃∗) = argmin

(𝑤𝑖,𝜃)
𝜀(𝑝)(𝑤𝑖, 𝜃) (1.16) 

After feeding all patterns one by one, the final minimizer (wi
*, θ*)T is expected to minimize the 

total squared error ε(wi, θ) like (wi
**, θi

**). Stochastic gradient descent (SGD) method is used 

to search for the maximizer (wi
*, θ*)T with the target function ε(p)(wi, θ). SGD pushes candidate 

solution along with a so-called descending direction multiplied with length γ of such 

descending direction where descending direction is the opposite of gradient of ε(p)(wi, θ). 

(𝑤𝑖, 𝜃)
(𝑝) = (𝑤𝑖, 𝜃)

(𝑝) − 𝛾∇𝜀(𝑝)(𝑤𝑖, 𝜃)

∇𝜀(𝑝)(𝑤𝑖, 𝜃) = (
𝜕𝜀(𝑝)(𝑤𝑖, 𝜃)

𝜕𝑤𝑖
,
𝜕𝜀(𝑝)(𝑤𝑖, 𝜃)

𝜕𝜃
)

 (1.17) 

Note, the gradient of ε(p)(wi, θ) denoted ∇ε(p)(wi, θ) is row vector of partial derivatives of ε(p)(wi, 

θ) (Kröse & Smagt, 1996, p. 28). Due to (Kröse & Smagt, 1996, pp. 28-29): 

𝜕𝜀(𝑝)(𝑤𝑖, 𝜃)

𝜕𝑤𝑖
= −𝑥𝑖

(𝑝)(𝑣(𝑝) − 𝑦(𝑝)) 

𝜕𝜀(𝑝)(𝑤𝑖, 𝜃)

𝜕𝜃
= −(𝑣(𝑝) − 𝑦(𝑝)) 

We have: 

∇𝜀(𝑝)(𝑤𝑖, 𝜃) = −(𝑥𝑖
(𝑝)(𝑣(𝑝) − 𝑦(𝑝)), 𝑣(𝑝) − 𝑦(𝑝)) 

As a result, weight deviation and bias deviation are determined based on γ and the gradient of 

ε(p)(wi, θ) as follows (Kröse & Smagt, 1996, p. 29): 

∆𝑤𝑖
(𝑝) = −𝛾

𝜕𝜀(𝑝)(𝑤𝑖, 𝜃)

𝜕𝑤𝑖
= 𝛾𝑥𝑖

(𝑝)(𝑣(𝑝) − 𝑦(𝑝)) 

∆𝜃(𝑝) = −𝛾
𝜕𝜀(𝑝)(𝑤𝑖, 𝜃)

𝜕𝜃
= 𝛾(𝑣(𝑝) − 𝑦(𝑝)) 

(1.18) 

In NN literature, γ is called learning rate which implies speed of the learning NN algorithm. 

Recall that the equation above for weigh deviation and bias deviation above is derived from 
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the squared error function ε(p)(wi, θ) at pattern p and so, it is easy to extend such equation for 

the total squared error function 𝜀(𝑤𝑖, 𝜃) = ∑ 𝜀(𝑝)(𝑤𝑖, 𝜃)𝑝  over all patterns: 

∆𝑤𝑖 =∑∆𝑤𝑖
(𝑝)

𝑝

=∑𝛾𝑥𝑖
(𝑝)(𝑣(𝑝) − 𝑦(𝑝))

𝑝

 

∆𝜃 =∑∆𝜃(𝑝)

𝑝

=∑𝛾(𝑣(𝑝) − 𝑦(𝑝))

𝑝

 

The extension is easy to be asserted because the squared error function ε(p)(wi, θ) and the total 

squared error function ε(wi, θ) are second-order functions so that SGD is applied easily to the 

two function without loss of generality. As a result, weight update rule and bias update rule of 

Adaline are: 

𝑤𝑖 = 𝑤𝑖 + ∆𝑤𝑖 
𝜃 = 𝜃 + ∆𝜃 

(1.19) 

Where, 

𝑦 =∑𝑤𝑖𝑥𝑖
𝑖

+ 𝜃 

Obviously, Adaline learning algorithm follows delta rule. 

By extending Adaline we obtain weight update rule and bias update rule for normal NN in 

general case. Recall that propagation rule for normal NN is: 

𝑥𝑘 =∑𝑤𝑗𝑘𝑦𝑗
𝑗

+ 𝜃𝑘

𝑦𝑘 = 𝑓(𝑥𝑘)

 

Without loss of generality, the pattern p is removed from the formulation, but it exists in 

training sample for learning algorithms. Because propagation rule is only applied to hidden 

units and output units and so only weights and biases of hidden units and output units are 

learned, of course. Because only output units have desired outputs, we estimate weights and 

bias of output units first and then, turn back to estimate weights and biases of hidden units 

according to backward direction. Given output unit o whose output and desired output are yo 

and vo, the squared error function of output unit o for normal NN is (Kröse & Smagt, 1996, p. 

34): 

𝜀(𝑦𝑜) = 𝜀(𝑤ℎ𝑜, 𝜃𝑜) =
1

2
(𝑣𝑜 − 𝑦𝑜)

2 (1.20) 

Where, 

𝑦𝑜 = 𝑓 (𝑥𝑜 =∑𝑤ℎ𝑜𝑦ℎ
ℎ

+ 𝜃𝑜) 

Note that all previous outputs yh were determined. Moreover, by default, all units are clamped 

and so, the clamped input so is the same to the input xo as so = xo by default. The squared error 

function is also called loss function. Recall that the total squared error is the sum of many 

squared errors over all patterns but here we focus on the squared error without loss of generality 

because these squared errors are Lipschitz continuous second-order functions which are fed to 

SGD, which will be explained in the next section mentioning convergence of SGD in detail. 

𝜀(𝑦𝑜) =∑𝜀(𝑝)(𝑦𝑜)

𝑝

=∑
1

2
(𝑣𝑜

(𝑝) − 𝑦𝑜
(𝑝))

2

𝑝

 

In other words, here we focus on one pattern such that: 

𝜀(𝑦𝑜) = 𝜀(𝑤ℎ𝑜, 𝜃𝑜) = 𝜀
(𝑝)(𝑦𝑜) =

1

2
(𝑣𝑜

(𝑝) − 𝑦𝑜
(𝑝))

2

=
1

2
(𝑣𝑜 − 𝑦𝑜)

2 
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Recall that weight deviation Δwho and bias deviation Δθo are determined based on the gradient 

of the squared error function ε(yo) according to stochastic gradient descent (SGD) method for 

minimizing the squared error function ε(yo). 
(𝑤ℎ𝑜, 𝜃𝑜) = (𝑤ℎ𝑜 , 𝜃𝑜) − 𝛾∇𝜀(𝑤ℎ𝑜, 𝜃𝑜) 

Note, the gradient of ε(yo) with regard to who and θo is row vector of partial derivatives of ε(yo) 

with regard to who and θo as follows: 

∇𝜀(𝑦0) = ∇𝜀(𝑤ℎ𝑜, 𝜃𝑜) = (
𝜕𝜀(𝑦0)

𝜕𝑤ℎ𝑜
,
𝜕𝜀(𝑦0)

𝜕𝜃𝑜
) 

By SGD, weight deviation Δwho and bias deviation Δθo are products of learning rate and 

descending direction of ε(yo) which is the opposite of the gradient ∇ε(who, θo). 

∆𝑤ℎ𝑜 = −𝛾
𝜕𝜀(𝑦𝑜)

𝜕𝑤ℎ𝑜
 

∆𝜃𝑜 = −𝛾
𝜕𝜀(𝑦𝑜)

𝜕𝜃𝑜
 

Due to chain rule in derivation: 
𝜕𝜀(𝑦0)

𝜕𝑤ℎ𝑜
=
𝜕𝜀(𝑦0)

𝜕𝑦𝑜

𝜕𝑦𝑜
𝜕𝑥𝑜

𝜕𝑥𝑜
𝜕𝑤ℎ𝑜

= −(𝑣𝑜 − 𝑦𝑜)𝑓
′(𝑥𝑜)𝑦ℎ 

𝜕𝜀(𝑦0)

𝜕𝜃𝑜
=
𝜕𝜀(𝑦0)

𝜕𝑦𝑜

𝜕𝑦𝑜
𝜕𝑥𝑜

𝜕𝑥𝑜
𝜕𝜃𝑜

= −(𝑣𝑜 − 𝑦𝑜)𝑓
′(𝑥𝑜) 

We obtain weight deviation Δwho and bias deviation Δθo of any output unit as follows: 

∆𝑤ℎ𝑜 = 𝛾𝑦ℎ(𝑣𝑜 − 𝑦𝑜)𝑓
′(𝑥𝑜) 

∆𝜃𝑜 = 𝛾(𝑣𝑜 − 𝑦𝑜)𝑓
′(𝑥𝑜) 

(1.21) 

Where f’(xo) is derivative of activation function f(.) at xo. Obviously, 
𝜕𝜀(𝑦0)

𝜕𝑦𝑜
= −(𝑣𝑜 − 𝑦𝑜),

𝜕𝑦𝑜
𝜕𝑥𝑜

= 𝑓′(𝑥𝑜),
𝜕𝑥𝑜
𝜕𝑤ℎ𝑜

= 𝑦ℎ,
𝜕𝑥𝑜
𝜕𝜃𝑜

= 1 

Let (Kröse & Smagt, 1996, p. 34), 

𝛿0 = −
𝜕𝜀(𝑦0)

𝜕𝑥𝑜
= −

𝜕𝜀(𝑦0)

𝜕𝑦𝑜

𝜕𝑦𝑜
𝜕𝑥𝑜

= (𝑣𝑜 − 𝑦𝑜)𝑓
′(𝑥𝑜) (1.22) 

The quantity δo is called error of output unit in literature. We have the succinct equation of 

weight deviation Δwho and bias deviation Δθo. 
∆𝑤ℎ𝑜 = 𝛾𝑦ℎ𝛿𝑜
∆𝜃𝑜 = 𝛾𝛿𝑜

 (1.23) 

Recall that the equation above for weigh deviation and bias deviation is derived from the 

squared error function ε(p)(yo) at pattern p and so, it is easy to extend such equation for the total 

squared error function 𝜀(𝑦𝑜) = ∑ 𝜀(𝑝)(𝑦𝑜)𝑝  over all patterns: 

∆𝑤ℎ𝑜 =∑∆𝑤ℎ𝑜
(𝑝)

𝑝

=∑𝛾𝑦ℎ
(𝑝)𝛿𝑜

(𝑝)

𝑝

∆𝜃𝑜 =∑∆𝜃𝑜
(𝑝)

𝑝

=∑𝛾𝛿𝑜
(𝑝)

𝑝

 

The extension is easy to be asserted because the squared error function ε(p)(yo) and the total 

squared error function ε(yo) are second-order functions so that SGD is applied easily to the two 

functions without loss of generality. 

Obviously, we determine weight update rule and bias update rule for output units as follows: 

𝑤ℎ𝑜 = 𝑤ℎ𝑜 + ∆𝑤ℎ𝑜 

𝜃𝑜 = 𝜃𝑜 + ∆𝜃𝑜 

Now we turn back to estimate weights and bias of a hidden unit h according to backward 

direction with suppose that hidden unit h is connected to a set of output units o. Therefore, the 
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squared error function ε(yh) of hidden unit h is the sum of output errors ε(yo) with regard to 

such set of output units, as follows: 

𝜀(𝑦ℎ) =∑𝜀(𝑦𝑜)

𝑜

 (1.24) 

Each output squared error ε(yo) were aforementioned: 

𝜀(𝑦𝑜) =
1

2
(𝑣𝑜 − 𝑦𝑜)

2 

Note, 

𝑦𝑜 = 𝑓 (𝑥𝑜 =∑𝑤ℎ𝑜𝑦ℎ
ℎ

+ 𝜃𝑜) 

𝑦ℎ = 𝑓 (𝑥ℎ =∑𝑤𝑗ℎ𝑦𝑗
𝑗

+ 𝜃ℎ) 

By default, all units are clamped and so, the clamped input sh is the same to the input xh as sh = 

xh by default. Recall that the total squared error is the sum of many squared errors over all 

patterns but here we focus on the squared error without loss of generality because these squared 

errors are Lipschitz continuous second-order functions which are fed to SGD. 

𝜀(𝑦ℎ) =∑𝜀(𝑝)(𝑦ℎ)

𝑝

=∑∑𝜀(𝑝)(𝑦𝑜)

𝑜𝑝

 

Where, 

𝜀(𝑝)(𝑦𝑜) =
1

2
(𝑣𝑜

(𝑝) − 𝑦𝑜
(𝑝))

2

 

In other words, we focus on one pattern such that: 

𝜀(𝑦ℎ) = 𝜀
(𝑝)(𝑦ℎ) =∑𝜀(𝑝)(𝑦𝑜)

𝑜

=∑𝜀(𝑦𝑜)

𝑜

=∑
1

2
(𝑣𝑜 − 𝑦𝑜)

2

𝑜

 

Recall that weight deviation Δwjh and bias deviation Δθh are determined based on the gradient 

of the squared error function ε(yh) according to stochastic gradient descent (SGD) method for 

minimizing the squared error function ε(yh). 

(𝑤𝑗ℎ, 𝜃ℎ) = (𝑤𝑗ℎ, 𝜃ℎ) − 𝛾∇𝜀(𝑤𝑗ℎ, 𝜃ℎ) 

Note, the gradient of ε(yh) with regard to wjh and θh is row vector of partial derivatives of ε(yh) 

with regard to wjh and θh as follows: 

∇𝜀(𝑦ℎ) = ∇𝜀(𝑤𝑗ℎ, 𝜃ℎ) = (
𝜕𝜀(𝑦ℎ)

𝜕𝑤𝑗ℎ
,
𝜕𝜀(𝑦ℎ)

𝜕𝜃ℎ
) 

It is necessary to calculate the gradient ∇ε(wjh, θh). Firstly, we have: 
𝜕𝜀(𝑦ℎ)

𝜕𝑥ℎ
=
𝜕𝜀(𝑦ℎ)

𝜕𝑦ℎ

𝜕𝑦ℎ
𝜕𝑥ℎ

=
𝜕𝜀(𝑦ℎ)

𝜕𝑦ℎ
𝑓′(𝑥ℎ) 

Recall that, according to propagation rule, xh is: 

𝑥ℎ =∑𝑤𝑗ℎ𝑦𝑗
𝑗

+ 𝜃ℎ 

𝑦ℎ = 𝑓(𝑥ℎ) 

It is necessary to calculate the derivative 
𝜕𝜀(𝑦ℎ)

𝜕𝑦ℎ
. Indeed, we have: 

𝜕𝜀(𝑦ℎ)

𝜕𝑦ℎ
=∑

𝜕𝜀(𝑦𝑜)

𝜕𝑥𝑜

𝜕𝑥𝑜
𝜕𝑦ℎ

𝑜

 

Due to: 
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𝜕𝜀(𝑦𝑜)

𝜕𝑥𝑜
= −𝛿𝑜 

𝜕𝑥𝑜
𝜕𝑦ℎ

=
𝜕

𝜕𝑦ℎ
(∑𝑤ℎ𝑜𝑦ℎ

ℎ

+ 𝜃𝑜) = 𝑤ℎ𝑜 

We obtain: 
𝜕𝜀(𝑦ℎ)

𝜕𝑦ℎ
= −∑𝑤ℎ𝑜𝛿𝑜

𝑜

 

This implies: 
𝜕𝜀(𝑦ℎ)

𝜕𝑥ℎ
= −𝑓′(𝑥ℎ)∑𝑤ℎ𝑜𝛿𝑜

𝑜

 

As a result, the gradient of the squared error function ε(yh) with regard to wjh and θh is: 

∇𝜀(𝑦ℎ) = ∇𝜀(𝑤𝑗ℎ, 𝜃ℎ) = (
𝜕𝜀(𝑦ℎ)

𝜕𝑤𝑗ℎ
,
𝜕𝜀(𝑦ℎ)

𝜕𝜃ℎ
) 

Where, 

𝜕𝜀(𝑦ℎ)

𝜕𝑤𝑗ℎ
=
𝜕𝜀(𝑦ℎ)

𝜕𝑥ℎ

𝜕𝑥ℎ
𝜕𝑤𝑗ℎ

= −𝑓′(𝑥ℎ) (∑𝑤ℎ𝑜𝛿𝑜
𝑜

)𝑦𝑗 

𝜕𝜀(𝑦ℎ)

𝜕𝜃ℎ
=
𝜕𝜀(𝑦ℎ)

𝜕𝑥ℎ

𝜕𝑥ℎ
𝜕𝜃ℎ

= −𝑓′(𝑥ℎ)∑𝑤ℎ𝑜𝛿𝑜
𝑜

 

Note, 

𝜕𝑥ℎ
𝜕𝑤𝑗ℎ

=
𝜕

𝜕𝑤𝑗ℎ
(∑𝑤𝑗ℎ𝑦𝑗

𝑗

+ 𝜃ℎ) = 𝑦𝑗 

𝜕𝑥ℎ
𝜕𝜃ℎ

=
𝜕

𝜕𝜃ℎ
(∑𝑤𝑗ℎ𝑦𝑗

𝑗

+ 𝜃ℎ) = 1 

Therefore, by SGD, weight deviation Δwjh and bias deviation Δθh are inversely proportional to 

the gradient of the squared error function ε(yh) multiplied with learning rate as follows: 

∆𝑤𝑗ℎ = −𝛾
𝜕𝜀(𝑦ℎ)

𝜕𝑤𝑗ℎ
= 𝛾𝑦𝑗𝑓

′(𝑥ℎ)∑𝑤ℎ𝑜𝛿𝑜
𝑜

 

∆𝜃ℎ = −𝛾
𝜕𝜀(𝑦ℎ)

𝜕𝜃ℎ
= 𝛾𝑓′(𝑥ℎ)∑𝑤ℎ𝑜𝛿𝑜

𝑜

 

(1.25) 

Obviously, we determine weight update rule and bias update rule for hidden units as follows: 

𝑤𝑗ℎ = 𝑤𝑗ℎ + ∆𝑤𝑗ℎ 

𝜃ℎ = 𝜃ℎ + ∆𝜃ℎ 

In general, given any output unit h and any hidden unit o, weight update rule and bias update 

rule in the most general case of learning NN are represented as follows: 
∆𝑤ℎ𝑜 = 𝛾𝑦ℎ𝛿𝑜
∆𝜃𝑜 = 𝛾𝛿𝑜
∆𝑤𝑗ℎ = 𝛾𝑦𝑗𝛿ℎ
∆𝜃ℎ = 𝛾𝛿ℎ

 (1.26) 

Where, 
𝛿𝑜 = (𝑣𝑜 − 𝑦𝑜)𝑓

′(𝑥𝑜)

𝛿ℎ = 𝑓′(𝑥ℎ)∑𝑤ℎ𝑜𝛿𝑜
𝑜

 (1.27) 
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Note, 

𝑦𝑜 = 𝑓 (𝑥𝑜 =∑𝑤ℎ𝑜𝑦ℎ
ℎ

+ 𝜃𝑜) 

𝑦ℎ = 𝑓 (𝑥ℎ =∑𝑤𝑗ℎ𝑦𝑗
𝑗

+ 𝜃ℎ) 

The quantity δh is called error of hidden unit in literature. The equation above is an extension 

of delta rule. 

Recall that the equation above for weigh deviation and bias deviation is derived from the 

squared error function ε(p)(yh) at pattern p and so, it is easy to extend such equation for the total 

squared error function 𝜀(𝑦ℎ) = ∑ 𝜀(𝑝)(𝑦ℎ)𝑝  over all patterns: 

∆𝑤ℎ𝑜 =∑∆𝑤ℎ𝑜
(𝑝)

𝑝

=∑𝛾𝑦ℎ
(𝑝)𝛿𝑜

(𝑝)

𝑝

 

∆𝜃𝑜 =∑∆𝜃𝑜
(𝑝)

𝑝

=∑𝛾𝛿𝑜
(𝑝)

𝑝

 

∆𝑤𝑗ℎ =∑∆𝑤𝑗ℎ
(𝑝)

𝑝

=∑𝛾𝑦𝑗
(𝑝)𝛿ℎ

(𝑝)

𝑝

 

∆𝜃ℎ =∑∆𝜃ℎ
(𝑝)

𝑝

=∑𝛾𝛿ℎ
(𝑝)

𝑝

 

Where, 

𝛿𝑜
(𝑝) = (𝑣𝑜

(𝑝) − 𝑦𝑜
(𝑝)) 𝑓′ (𝑥𝑜

(𝑝))

𝛿ℎ
(𝑝) = 𝑓′ (𝑥ℎ

(𝑝))∑𝑤ℎ𝑜
(𝑝)𝛿𝑜

(𝑝)

𝑜

 

The extension is easy to be asserted because the squared error function ε(p)(yh) and the total 

squared error function ε(yh) are second-order functions so that SGD is applied easily to the two 

functions without loss of generality. 

For learning any previous unit j connecting to unit k, the backward estimation is done 

similarly with note that unit k plays the role of output unit for unit j. The essence of a learning 

NN algorithm is back propagation process from the last layer (output layer) backwards the first 

layer (input layer). The final stage of this common learning NN algorithm is to specify the 

derivative f’(x) of activation function, which depends on concrete applications. A popular 

activation function is sigmoid function f(x) = 1 / (1 + exp(–x) whose derivative is: 

𝑓′(𝑥𝑘) =
𝑒−𝑥𝑘

(1 + 𝑒−𝑥𝑘)2
=

1

1 + 𝑒−𝑥𝑘
(1 −

1

1 + 𝑒−𝑥𝑘
) = 𝑓(𝑥𝑘)(1 − 𝑓(𝑥𝑘)) = 𝑦𝑘(1 − 𝑦𝑘) 

Therefore, weight update rule and bias update rule for sigmoid function are: 
∆𝑤ℎ𝑜 = 𝛾𝑦ℎ𝛿𝑜
∆𝜃𝑜 = 𝛾𝛿𝑜
∆𝑤𝑗ℎ = 𝛾𝑦𝑗𝛿ℎ
∆𝜃ℎ = 𝛾𝛿ℎ

 

Where, 

𝛿𝑜 = (𝑣𝑜 − 𝑦𝑜)𝑦𝑜(1 − 𝑦𝑜) 

𝛿ℎ = 𝑦ℎ(1 − 𝑦ℎ)∑𝑤ℎ𝑜𝛿𝑜
𝑜

 (1.28) 

Recall that δo and δh are also called errors of output unit and hidden unit, respectively. 

𝐸𝑟𝑟𝑜 = 𝛿𝑜 
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𝐸𝑟𝑟ℎ = 𝛿ℎ 

Now it is easy to implement an iteration algorithm for learning NN with sigmoid function 

(logistic function), which is called backpropagation algorithm. Moreover, such 

backpropagation algorithm is the representation of traditional learning NN algorithm and so 

please pay attention to it. Recall that a learning NN process is also called training NN process 

in NN literature. For easily understandable explanation, there are some new notations. Given 

current unit j and n previous units i connecting to unit j, let Oi, Ij and Oj be output of unit i, 

input of unit j, and output of unit j. Obviously, we have Oi = yi, Ij = xj = sj, and Oj = yj. These 

notations are necessary for describing pseudo code of backpropagation algorithm because 

output units and hidden units in some cases are treated similarly in the algorithm. Therefore, 

the convention of input indices i, hidden indices h, and output indices o may not be applied 

here. Propagation rule is written according to these notations (Han & Kamber, 2006, p. 331) 

for computing the output value of a unit as follows: 

𝐼𝑗 =∑𝑤𝑖𝑗𝑂𝑖

𝑛

𝑖=1

+ 𝜃𝑗  

𝑂𝑗 =
1

1 + 𝑒−𝐼𝑗
 

For backpropagation algorithm, weight update rule and bias update rule of any unit j are 

represented as follows: 

∆𝑤𝑖𝑗 = 𝛾𝑂𝑖𝐸𝑟𝑟𝑗 

∆𝜃𝑜 = 𝛾𝐸𝑟𝑟𝑗 

Given actual value (desired value) Vj of unit j and a set of units k to which unit j connects, we 

have: 

𝐸𝑟𝑟𝑗 = {

(𝑉𝑗 − 𝑂𝑗)𝑂𝑗(1 − 𝑂𝑗) for output unit 𝑗

𝑂𝑗(1 − 𝑂𝑗)∑𝑤𝑗𝑘𝐸𝑟𝑟𝑘
𝑘

 for hidden unit 𝑗  

Backpropagation algorithm (backward propagation algorithm) is described here along with an 

example of document classification (Nguyen, 2022), which is implementation of propagation 

rule, weight update rule, and bias update rule.  Suppose a sample consists of many data rows 

and each row has many attributes. There is a so-called class attribute which is used to group 

(classify) rows. All attributes except the class attribute are often represented as input units in 

NN and the class attribute is often represented as output unit in NN. When feedforward NN is 

used to classify document then, rows represent documents and non-class attributes are terms; 

in this case, the sample becomes a matrix nxp, which have n rows and p columns with respect 

to n document vectors and p terms. This sample for document classification is called corpus. 

Backpropagation algorithm (Han & Kamber, 2006, pp. 330-333) is also a famous supervised 

learning algorithm for classification, besides learning feedforward NN. Therefore, 

backpropagation algorithm here is applied to classify the corpus as an example of supervised 

learning by NN (Nguyen, 2022). It processes iteratively data rows in training corpus and 

compares network’s prediction for each row to actual class of the row. For each time it feeds a 

training row, weights are modified in order to minimize error between network’s prediction 

and actual class. The modifications are made in backward direction, from output layer through 

hidden layer down to input layer. Backpropagation algorithm includes four main steps such as 

initializing the weights, propagating input values forward, propagating errors backward, and 

updating weights and biases (Han & Kamber, 2006, pp. 330-333). The following table 

describes backpropagation algorithm for learning NN by pseudo-code like programming 

language. 
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1. Initializing the weights: Weights wij of all connections between units are initialized as 

random real numbers which should be in space [0, 1]. Each bias θi associated to each unit is 

also initialized, which is 0 as usual. 

 

While terminating condition is not satisfied 

For each data row in corpus 

2. Propagating input values forward: Training data row is fed to input layer. 

For each input unit i, its input value denoted Ii and its output value denoted Oi are 

the same. 

𝑂𝑖 = 𝐼𝑖 
End for each input unit i 

For each hidden unit j or output unit j, its input value Ij is the weighted sum of all 

output values of units from previous layer. The bias is also added to this weighted 

sum. 

𝐼𝑗 =∑𝑤𝑖𝑗𝑂𝑖
𝑖

+ 𝜃𝑗  

Where wij is the weight of connection from unit i in previous layer to unit j, Oi is 

output value of unit i from previous layer and θj is bias of unit j. The output value 

of hidden unit or output unit Oj is computed by applying activation function to its 

input value (weighted sum). Suppose activation function is sigmoid function. We 

have: 

𝑂𝑗 =
1

1 + 𝑒−𝐼𝑗
 

End for each hidden unit j or output unit j 

 

3. Propagating errors backward: The error is propagated backward by updating 

the weights and biases to reflect the error of network’s prediction.  

For each output unit j, its error Errj is computed as below: 

𝐸𝑟𝑟𝑗 = 𝑂𝑗(1 − 𝑂𝑗)(𝑉𝑗 − 𝑂𝑗) 

Where Vj is the real value of unit j in training corpus; in other words, Vj is the 

actual class. This error is the δo aforementioned. 

End for each output unit j 

For each hidden unit j from the last hidden layer to the first hidden layer, the 

weighted sum of the errors of other units connected to it in the next higher layer is 

considered when its error is computed. So the error of hidden unit j is computed as 

below: 

𝐸𝑟𝑟𝑗 = 𝑂𝑗(1 − 𝑂𝑗)∑𝐸𝑟𝑟𝑘𝑤𝑗𝑘
𝑘

 

Where wjk is the weight of the connection from hidden unit j to a unit k in next 

higher layer and Errk is the error of unit k. This error is the δh aforementioned. 

End for each hidden unit j 

 

4. Updating weights and biases is based on the errors. 

For each weight wij over the whole NN. The weights are updated so as to minimize 

the errors. Given Δwij is the change in weight wij, the weight wij is updated as below: 

∆𝑤𝑖𝑗 = 𝛾 ∗ 𝐸𝑟𝑟𝑗𝑂𝑖 

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + ∆𝑤𝑖𝑗 
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Where γ is learning rate ranging from 0 to 1. Learning rate helps to avoid getting 

stuck at a local minimum in decision space and helps to approach to a global 

minimum (Han & Kamber, 2006, pp. 332-333). 

End for each weight wij in the whole NN 

For each bias θj over the whole NN. The bias θj of hidden or output unit j is updated 

as below: 

∆𝜃𝑗 = 𝛾 ∗ 𝐸𝑟𝑟𝑗 

𝜃𝑗 = 𝜃𝑗 + ∆𝜃𝑗  

Where γ is learning rate ranging from 0 to 1 (0 < γ ≤ 1). 

End for each bias θj 

 

End for each data row in corpus 

End while terminating condition is not satisfied with note that there are two common 

terminating conditions: 

- All Δwij in some iteration are smaller than given threshold. 

- Or, the number of iterations is large enough. 

- Or, iterating through all possible training data rows. 

Table 1.1. Backpropagation algorithm for learning NN with sigmoid activation 

The trained (learned) NN derived from backpropagation algorithm is the classifier of NN. Now 

the application of NN into document classification is described right here. 

Given a corpus (sample), in which there are a set of classes C = {computer science, math}, 

and a set of terms T = {computer, programming language, algorithm, derivative}. Every 

document (vector) is represented as a set of input variables. Each term is mapped to an input 

variable whose value is term frequency (tf). So the input layer consists of four input units: 

“computer”, “programming language”, “algorithm” and “derivative”. 

The hidden layer is constituted of two hidden units: “computer science”, “math”. Values of 

these hidden units range in interval [0, 1]. The output layer has only one unit named “document 

class” whose value also ranges in interval [0, 1] where value 1 denotes that document belongs 

totally to “computer science” class and value 0 denotes that document belongs totally to “math” 

class. The evaluation function used in network is sigmoid function. Suppose our original 

topology is feedforward NN in which all weights are initialized arbitrarily and all biases are 

zero. Note that such feedforward NN shown in following figure is the one that has no cycle in 

its model. 

 
Figure 1.4. The NN for document classification 

Note that units C, P, A and D denote terms “computer”, “programming language”, “algorithm”, 

and “derivative”, respectively. Units S and M denote “computer science” class and “math” class, 

respectively. Unit L denotes “document class”. It is easy to infer that if output value of unit L 

is greater than 0.5 then, it is likely that document belongs to “computer science” class. 
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Suppose the given corpus 𝒟 = {doc1.txt, doc2.txt, doc3.txt, doc4.txt, doc5.txt, doc6.txt}. 

The training corpus (training data) is shown in following table in which cell (i, j) indicates the 

number of times that term j (column j) occurs in document i (row i); in other words, each cell 

represents a term frequency and each row represents a document vector.  

 computer 
programming 

language 
algorithm derivative class 

doc1.txt 5 3 1 1 1 

doc2.txt 5 5 40 50 0 

doc3.txt 20 5 20 55 0 

doc4.txt 20 55 5 20 1 

doc5.txt 15 15 40 30 0 

doc6.txt 35 10 45 10 1 

Table 1.2. Training corpus – Term frequencies of documents 

Note that the “class” column has binary values where value 1 expresses “computer science” 

class and value 0 expresses “math” class. 

It is required to normalize term frequencies. Let tf11=5, tf12=3, tf13=1, and tf14=1 be the 

frequencies of terms “computer”, “programming language”, “algorithm”, and “derivative”, 

respectively of document “doc1.txt”, for example, these terms are normalized as follows: 

𝑡𝑓11 =
𝑡𝑓11

𝑡𝑓11 + 𝑡𝑓12 + 𝑡𝑓13 + 𝑡𝑓14
=

5

5 + 3 + 1 + 1
= 0.5 

𝑡𝑓12 =
𝑡𝑓12

𝑡𝑓11 + 𝑡𝑓12 + 𝑡𝑓13 + 𝑡𝑓14
=

3

5 + 3 + 1 + 1
≈ 0.3 

𝑡𝑓13 =
𝑡𝑓13

𝑡𝑓11 + 𝑡𝑓12 + 𝑡𝑓13 + 𝑡𝑓14
=

1

5 + 3 + 1 + 1
= 0.1 

𝑡𝑓14 =
𝑡𝑓14

𝑡𝑓11 + 𝑡𝑓12 + 𝑡𝑓13 + 𝑡𝑓14
=

1

5 + 3 + 1 + 1
= 0.1 

Following table shows normalized term frequencies in corpus 𝒟. 

 computer programming 

language 

algorithm derivative 
class 

D1 0.5 0.3 0.1 0.1 1 

D2 0.05 0.05 0.4 0.5 0 

D3 0.2 0.05 0.2 0.55 0 

D4 0.2 0.55 0.05 0.2 1 

D5 0.15 0.15 0.4 0.3 0 

D6 0.35 0.1 0.45 0.1 1 

Table 1.3. Training corpus – Normalized term frequencies 

Data rows in the table above representing normalized document vectors are fed to our original 

NN in the aforementioned figure for supervised learning. Backpropagation algorithm is used 

to train network, as described in the aforementioned table. 

Let IC, IP, IA, ID, IS, IM, and IL be input values of units C, P, A, D, S, M, and L. Let OC, OP, 

OA, OD, OS, OM, and OL be output values of units C, P, A, D, S, M, and L. Let θS, θM, and θL be 

biases of units S, M, and L. Suppose all biases are initialized by zero, we have θS=θM=θL=0. Let 

wCS, wCM, wPS, wPM, wAS, wAM, wDS, wDM, wSL, and wML be weights of connections (arcs) from C 

to S, from C to M, from P to S, from P to M, from A to S, from A to M, from D to S, from D to 

M, from S to L, and from M to L. According to the origin neural network depicted in the figure 

above, we have wCS=0.7, wCM=0.3, wPS=0.6, wPM=0.4, wAS=0.4, wAM=0.6, wDS=0.3, wDM=0.7, 

wSL=0.8, and wML=0.2. 

From the corpus shown in table above, the first document D1=(0.5, 0.3, 0.1, 0.1) is fed into 

backpropagation algorithm. It is required to compute the output values OS, OM, OL and update 
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connection weights. For simplicity, activation function is sigmoid function 𝑓(𝑥) =
1

1+𝑒−𝑥
. 

According to propagation rule (Han & Kamber, 2006, p. 331) for computing output value of a 

unit, we have: 

OC=IC=0.5 

OP=IP=0.3 

OA=IA=0.1 

OD=ID=0.1 

𝐼𝑆 = 𝑤𝐶𝑆𝑂𝐶 + 𝑤𝑃𝑆𝑂𝑃 + 𝑤𝐴𝑆𝑂𝐴 + 𝑤𝐷𝑆𝑂𝐷 + 𝜃𝑠
= 0.7 ∗ 0.5 + 0.6 ∗ 0.3 + 0.4 ∗ 0.1 + 0.3 ∗ 0.1 + 0 = 0.6 

𝑂𝑆 = 𝜇(𝐼𝑆) =
1

1 + exp(−𝐼𝑠)
=

1

1 + exp(−0.6)
≈ 0.65 

𝐼𝑀 = 𝑤𝐶𝑀𝑂𝐶 + 𝑤𝑃𝑀𝑂𝑃 + 𝑤𝐴𝑀𝑂𝐴 +𝑤𝐷𝑀𝑂𝐷 + 𝜃𝑀
= 0.3 ∗ 0.5 + 0.4 ∗ 0.3 + 0.6 ∗ 0.1 + 0.7 ∗ 0.1 + 0 = 0.4 

𝑂𝑀 = 𝜇(𝐼𝑀) =
1

1 + exp(−𝐼𝑀)
=

1

1 + exp(−0.4)
≈ 0.6 

𝐼𝐿 = 𝑤𝑆𝐿𝑂𝑆 + 𝑤𝑀𝐿𝑂𝑀 + 𝜃𝐿 = 0.8 ∗ 0.65 + 0.2 ∗ 0.6 + 0 ≈ 0.64 

𝑂𝐿 =
1

1 + exp(−𝐼𝐿)
=

1

1 + exp(−0.64)
≈ 0.65 

Let VL be value of output unit L. Because D1 belongs to “computer science” class, we have: 

𝑉𝐿 = 1 

Let ErrL, ErrS, and ErrM be errors of units L, S, and M, respectively. According to the equation 

for updating error of output unit, we have: 

𝐸𝑟𝑟𝐿 = 𝑂𝐿(1 − 𝑂𝐿)(𝑉𝐿 − 𝑂𝐿) = 0.65 ∗ (1 − 0.65) ∗ (1 − 0.65) ≈ 0.08 

According to the equation for updating error of hidden units, we have: 

𝐸𝑟𝑟𝑆 = 𝑂𝑆(1 − 𝑂𝑆)𝐸𝑟𝑟𝐿𝑊𝑆𝐿 = 0.65 ∗ (1 − 0.65) ∗ 0.08 ∗ 0.8 ≈ 0.01 

𝐸𝑟𝑟𝑀 = 𝑂𝑀(1 − 𝑂𝑀)𝐸𝑟𝑟𝐿𝑊𝑀𝐿 = 0.6 ∗ (1 − 0.6) ∗ 0.08 ∗ 0.2 ≈ 0 

According to the equation for updating connection weights given learning rate γ=1, we have: 

𝑤𝐶𝑆 = 𝑤𝐶𝑆 + ∆𝑤𝐶𝑆 = 𝑤𝐶𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆𝑂𝐶 = 0.7 + 1 ∗ 0.01 ∗ 0.5 ≈ 0.71 

𝑤𝐶𝑀 = 𝑤𝐶𝑀 + ∆𝑤𝐶𝑀 = 𝑤𝐶𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀𝑂𝐶 = 0.3 + 1 ∗ 0 ∗ 0.5 ≈ 0.3 

𝑤𝑃𝑆 = 𝑤𝑃𝑆 + ∆𝑤𝑃𝑆 = 𝑤𝑃𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆𝑂𝑃 = 0.6 + 1 ∗ 0.01 ∗ 0.3 ≈ 0.6 

𝑤𝑃𝑀 = 𝑤𝑃𝑀 + ∆𝑤𝑃𝑀 = 𝑤𝑃𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀𝑂𝑃 = 0.4 + 1 ∗ 0 ∗ 0.3 ≈ 0.4 

𝑤𝐴𝑆 = 𝑤𝐴𝑆 + ∆𝑤𝐴𝑆 = 𝑤𝐴𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆𝑂𝐴 = 0.4 + 1 ∗ 0.01 ∗ 0.1 ≈ 0.4 

𝑤𝐴𝑀 = 𝑤𝐴𝑀 + ∆𝑤𝐴𝑀 = 𝑤𝐴𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀𝑂𝐴 = 0.6 + 1 ∗ 0 ∗ 0.1 ≈ 0.6 

𝑤𝐷𝑆 = 𝑤𝐷𝑆 + ∆𝑤𝐷𝑆 = 𝑤𝐷𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆𝑂𝐷 = 0.3 + 1 ∗ 0.01 ∗ 0.1 ≈ 0.3 

𝑤𝐷𝑀 = 𝑤𝐷𝑀 + ∆𝑤𝐷𝑀 = 𝑤𝐷𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀𝑂𝐷 = 0.7 + 1 ∗ 0 ∗ 0.1 ≈ 0.7 

𝑤𝑆𝐿 = 𝑤𝑆𝐿 + ∆𝑤𝑆𝐿 = 𝑤𝑆𝐿 + 1 ∗ 𝐸𝑟𝑟𝐿𝑂𝑆 = 0.8 + 1 ∗ 0.08 ∗ 0.65 ≈ 0.85 

𝑤𝑀𝐿 = 𝑤𝑀𝐿 + ∆𝑤𝑀𝐿 = 𝑤𝑀𝐿 + 1 ∗ 𝐸𝑟𝑟𝐿𝑂𝑀 = 0.2 + 1 ∗ 0.08 ∗ 0.6 ≈ 0.25 

According to the equation for updating biases θS, θM, and θL, we have: 

𝜃𝑆 = 𝜃𝑆 + ∆𝜃𝑆 = 𝜃𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆 = 0 + 1 ∗ 0.01 = 0.01 

𝜃𝑀 = 𝜃𝑀 + ∆𝜃𝑀 = 𝜃𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀 = 0 + 1 ∗ 0 = 0 

𝜃𝐿 = 𝜃𝐿 + ∆𝜃𝐿 = 𝜃𝐿 + 1 ∗ 𝐸𝑟𝑟𝐿 = 0 + 1 ∗ 0.08 = 0.08 

In similar way, remaining documents D2=(0.05, 0.05, 0.4, 0.5), D3=(0.05, 0.05, 0.4, 0.5) , 

D4=(0.2, 0.05, 0.2, 0.55), D5=(0.15, 0.15, 0.4, 0.3), and D6=(0.35, 0.1, 0.45, 0.1) are fed into 

backpropagation algorithm so as to calculate the final output values OS, OM, OL and update 

final connection weights. The following table shows results from this training process based 

on backpropagation algorithm. 

 Inputs Outputs Weights Biases 

D1 
IC=0.5 

IP=0.3 

OS=0.65 

OM=0.60 

wCS=0.70 

wCM=0.30 

θS=0.01 

θM=0.00 
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IA=0.1 

ID=0.1 

OL=0.65 wPS=0.60 

wPM=0.40 

wAS=0.40 

wAM=0.60 

wDS=0.30 

wDM=0.70 

wSL=0.85 

wML=0.25 

θL=0.08 

D2 

IC=0.05 

IP=0.05 

IA=0.40 

ID=0.50 

OS=0.60 

OM=0.65 

OL=0.71 

wCS=0.70 

wCM=0.30 

wPS=0.60 

wPM=0.40 

wAS=0.39 

wAM=0.59 

wDS=0.29 

wDM=0.69 

wSL=0.76 

wML=0.40 

θS=–0.02 

θM=–0.01 

θL=–0.07 

D3 

IC=0.05 

IP=0.05 

IA=0.40 

ID=0.50 

OS=0.60 

OM=0.64 

OL=0.67 

wCS=0.70 

wCM=0.30 

wPS=0.60 

wPM=0.40 

wAS=0.38 

wAM=0.59 

wDS=0.27 

wDM=0.68 

wSL=0.68 

wML=0.41 

θS=–0.04 

θM=–0.03 

θL=–0.22 

D4 

IC=0.20 

IP=0.05 

IA=0.20 

ID=0.55 

OS=0.62 

OM=0.60 

OL=0.62 

wCS=0.70 

wCM=0.30 

wPS=0.61 

wPM=0.41 

wAS=0.38 

wAM=0.59 

wDS=0.27 

wDM=0.68 

wSL=0.73 

wML=0.55 

θS=–0.03 

θM=–0.02 

θL=–0.13 

D5 

IC=0.15 

IP=0.15 

IA=0.40 

ID=0.30 

OS=0.60 

OM=0.63 

OL=0.65 

wCS=0.70 

wCM=0.30 

wPS=0.61 

wPM=0.40 

wAS=0.37 

wAM=0.58 

wDS=0.27 

wDM=0.68 

wSL=0.64 

wML=0.41 

θS=–0.05 

θM=–0.04 

θL=–0.28 

D6 
IC=0.35 

IP=0.10 

OS=0.61 

OM=0.61 

wCS=0.70 

wCM=0.30 

θS=–0.04 

θM=–0.03 
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IA=0.45 

ID=0.10 

OL=0.60 wPS=0.61 

wPM=0.40 

wAS=0.38 

wAM=0.59 

wDS=0.27 

wDM=0.68 

wSL=0.70 

wML=0.56 

θL=–0.18 

Table 1.4. Results from training process based on backpropagation algorithm 

According to the training results shown in the table above, the weights and biases of origin NN 

are changed. It means that NN is already trained. Thus, the following figure expresses the NN 

learned by backpropagation algorithm. 

 
Figure 1.5. Trained neural network 

The trained NN depicted in the figure above is the typical classifier of classification method 

based on neural work. 

Suppose the numbers of times that terms “computer”, “programming language”, 

“algorithm” and “derivative” occur in document D are 40, 30, 10, and 20, respectively. We 

need to determine which class document D is belongs to. D is normalized as term frequency 

vector. 

D = (0.4, 0.3, 0.1, 0.2) 

Recall that the trained neural network depicted in the figure above has connection weights 

wCS=0.7, wCM=0.3, wPS=0.61, wPM=0.4, wAS=0.38, wAM=0.59, wDS=0.27, wDM=0.68, wSL=0.7, 

wML=0.56 and biases θS=–0.04, θM=–0.03, θL=–0.18. It is required to compute the output values 

OS, OM, and OL. For simplicity, activation function is sigmoid function 𝜇(𝑥) =
1

1+𝑒−𝑥
. 

According to the equation (Han & Kamber, 2006, p. 331) for computing the output value of a 

unit, we have: 

𝐼𝑆 = 𝑤𝐶𝑆𝑂𝐶 + 𝑤𝑃𝑆𝑂𝑃 + 𝑤𝐴𝑆𝑂𝐴 + 𝑤𝐷𝑆𝑂𝐷 + 𝜃𝑠
= 0.7 ∗ 0.4 + 0.61 ∗ 0.3 + 0.38 ∗ 0.1 + 0.27 ∗ 0.2 − 0.04 ≈ 0.52 

𝑂𝑆 = 𝜇(𝐼𝑆) =
1

1 + exp(−𝐼𝑠)
=

1

1 + exp(−0.52)
≈ 0.63 

𝐼𝑀 = 𝑤𝐶𝑀𝑂𝐶 + 𝑤𝑃𝑀𝑂𝑃 + 𝑤𝐴𝑀𝑂𝐴 +𝑤𝐷𝑀𝑂𝐷 + 𝜃𝑀
= 0.3 ∗ 0.4 + 0.4 ∗ 0.3 + 0.59 ∗ 0.1 + 0.68 ∗ 0.2 − 0.03 ≈ 0.41 

𝑂𝑀 = 𝜇(𝐼𝑀) =
1

1 + exp(−𝐼𝑀)
=

1

1 + exp(−0.41)
≈ 0.6 

𝐼𝐿 = 𝑤𝑆𝐿𝑂𝑆 + 𝑤𝑆𝑀𝑂𝑀 + 𝜃𝐿 = 0.7 ∗ 0.63 + 0.56 ∗ 0.6 − 0.18 ≈ 0.6 

𝑂𝐿 =
1

1 + exp(−𝐼𝐿)
=

1

1 + exp(−0.6)
≈ 0.65 
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Because OL is greater than 0.5, it is more likely that document D = (0.4, 0.3, 0.1, 0.2) belongs 

to class “computer science”. 

 

2. Convergence of learning algorithm 
Recall that there are two rules for learning NN such as Hebbian rule and delta rule where 

Hebbian rule is inspired from Hebbian theory developed by Donald Hebb in his 1949 book 

“The Organization of Behavior” and delta rule is derived from stochastic gradient descent 

(SGD) method in solving optimization problem. Moreover, delta rule can be considered as an 

improved Hebbian rule. Backpropagation algorithm is based on SGD for updating weights and 

biases. In this section we research convergence of Hebbian rule and delta rule (also SGD). The 

NN convergence implies that a concrete learning algorithm like propagation algorithm will 

converge to optimal solutions that are optimal weights after a limit number of iterations. 

Therefore, the NN convergence is stability of learning NN algorithm. Essentially, Hebbian rule 

and delta rule explain the same meaningfulness. Although weights and biases are the main 

objects of learning algorithms, other parameters affecting the convergence such as learning rate 

are discussed too. These parameters are called augmented parameters. 

Hebbian theory (Wikipedia, Hebbian theory, 2003) is a neuropsychological theory in which 

Hebb stated that when two neurons (neural cells) communicate together via a synapsis, 

activities of the presynaptic cell stimulate the postsynaptic cell. In other words, the synapsis of 

two neurons will be consolidated if the two neurons are stimulated simultaneously and 

frequently. This phenomenon is called synaptic plasticity. Therefore, Hebbian rule in machine 

learning will increase connection weight of two units proportional to two values of the two 

units (Wikipedia, Hebbian theory, 2003). 

𝑤𝑗𝑘 = 𝑥𝑗𝑥𝑘 

The weight wjk represents the synaptic plasticity of the presynaptic unit j and the postsynaptic 

unit k. Hebbian rule for learning NN is specified exactly as follows: 

∆𝑤𝑗𝑘 = 𝛾𝑦𝑗𝑦𝑘 

Note, the positive constant γ which is called learning rate specifies the power of proportional 

whereas yj and yk are outputs of unit j and unit k. Of course, weight deviation Δwjk represents 

the synaptic plasticity too. The convergence of Hebbian rule implies that that a concrete 

learning algorithm that follows Hebbian rule will converge to optimal weights after a limit 

number of iterations. For easily understandable explanation and without loss of generality, 

given a single layer NN with output unit (output value) y and n input units (input values) xi like 

aforementioned Perceptron. Suppose bias is zero, propagation rule is: 

𝑦 =∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 

We will study the convergence of the following Hebbian rule for learning weight vector w = 

(w1, w2,…, wn)
T with x = (x1, x2,…, xn)

T. 

𝑤𝑖 = 𝑤𝑖 + ∆𝑤𝑖 = 𝑤𝑖 + 𝑥𝑖𝑦 

There is an theorem in (Kröse & Smagt, 1996) stated that if there exists a set of optimal weights 

{w*} so that propagation rule y = (w*)Tx is satisfied then any iterative learning algorithm that 

converges to an optimal weight (may be or may not be w*) has a limited number of iterations. 

Suppose wi is initialized 0 and so, after t time points over t iterations of the iterative learning 

algorithm, by recurring calculation wi at time point t as follows: 

𝑤𝑖(𝑡) = 𝑡𝑥𝑖𝑦 

Where, 

𝑦 = (𝒘∗)𝑇𝒙 =∑𝑤𝑖
∗𝑥𝑖

𝑛

𝑖=1
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So, we have: 

𝒘(𝑡) = 𝑡𝑦𝒙 

Suppose the optimal weight of the iterative learning algorithm is denoted as w*, cosine of w(t) 

and w* is: 

cos(𝒘(𝑡),𝒘∗) =
𝑡𝑦𝒙𝑇𝒘∗

√𝑡𝑦|𝒙||𝒘∗|
= √𝑡𝑦

𝒙𝑇𝒘∗

|𝒙||𝒘∗|
= √𝑡

(𝒙𝑇𝒘∗)
3
2

|𝒙||𝒘∗|
 

If t approaches +∞ then cosine of w(t) and w* approaches +∞, which raises a contradiction. 

lim
𝑡→∞

cos(𝒘(𝑡),𝒘∗) = +∞ > 1 

Therefore, the iterative learning algorithm must stop at some finite t iterations with the optimal 

weight w*. This proof which is also described in (Kröse & Smagt, 1996, pp. 25-26) only asserts 

the iterative limitation of any converged algorithm but it does not assert existence of the optimal 

solution w*. So, we need to research the delta rule which is an improved version of Hebbian 

rule. 

Recall that delta rule is derived from stochastic gradient descent (SGD) method which is 

known as a stochastic approximation of gradient descend method on which the traditional 

backpropagation algorithm is based. Here, the convergence of delta rule implies the 

convergence of SGD. Extended delta rule derived from SGD is: 

∆𝑤𝑗𝑘 = 𝛾𝑦𝑗𝛿𝑘 

∆𝜃𝑘 = 𝛾𝛿𝑘 

Where, 

𝛿𝑘 = {

(𝑣𝑘 − 𝑦𝑘)𝑓
′(𝑥𝑘) for ouput unit

𝑓′(𝑥𝑘)∑𝑤𝑘𝑙𝛿𝑙
𝑙

 for hidden unit 

Essentially, Hebbian rule and delta rule explain the same meaningfulness where the extended 

delta rule is more general and hence, please pay more attention to the convergence of extended 

delta rule. Now we skim through SGD which is stochastic approximation of gradient descent 

(GD) method. Given target function f(w), GD is an iterative algorithm that moves the parameter 

w along descending direction which is the opposite of gradient of f(w) at every time point (or 

iteration) t until reaching the optimizer w*. 

𝒘𝑡+1 = 𝒘𝑡 − 𝛾𝑡∇𝑓(𝒘𝑡) 
Note, γt is length of descending direction at time point t, which is also called learning rate. 

Moreover, f(w) receives some data x as input. 

𝑓(𝒘) = 𝑓(𝒘|𝒙) 
For learning NN with weight update rule and bias update rule, f(w) is the squared error function 

ε(.) whose parameters are weights. In general case w is vector. When f(w) is averaged sum of 

a large number of member target functions fi(wi) (De Sa, 2021, p. 1): 

𝑓(𝒘) =
1

𝑛
∑𝑓𝑖(𝒘𝑖)

𝑛

𝑖=1

 

Where w is composed of many parts as w = (w1, w2,…, wn)
T. However, without loss of 

generality, we can denote fi(w) by convention that fi(w) only acts on its part wi while considering 

other parts wj where j≠i as constants or ignoring them in its analytic formulation, as follows: 

𝑓(𝒘) =
1

𝑛
∑𝑓𝑖(𝒘)

𝑛

𝑖=1

 (2.1) 

Anyhow, an important aspect is that the gradient of f(w) is always averaged sum of gradients 

of all fi(w) as follows: 
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∇𝑓(𝒘) =
1

𝑛
∑∇𝑓𝑖(𝒘)

𝑛

𝑖=1

 (2.2) 

If n is too large for a very complicated gradient ∇f(w) to be calculated at one time then, SGD 

is a variant of GD by replacing the whole gradient ∇f(w) by every member gradient ∇fi(w). 

Suppose there is a sample {x1, x2,…, xN,…} where xi is corresponding to some fk(.), SGD will 

feed these xi (s) one by one or batch by batch (De Sa, 2021, p. 1) for each time point t to learn 

w. 

𝒘𝑡+1 = 𝒘𝑡 − 𝛾𝑡∇𝑓�̂�𝑡(𝒘𝑡) (2.3) 

Where 𝑓�̂�𝑡(.) is some fk(.) corresponding to the data xi in the sample. For instance, if 𝑖̂𝑡 = k given 

data point xi at time point t then, xi will be fed to the member function fk(wt) = fk(wt | xi) at time 

point t. Moreover, if xi is fed to a set of m member functions, for example {f1(), f2(.),…., fm(.)} 

at one time then, it is possible to consider that xi is fed m times, each time point for one member 

function, without loss of generality. Because 𝑖̂𝑡 is selected among n member functions fi(w), 

probability distribution of 𝑖̂𝑡 is even as follows (De Sa, 2021, p. 2): 

𝑃(𝑖̂𝑡) =
1

𝑛
, ∀𝑖̂𝑡 

This probability distribution is called selective distribution. It is more important that wt follows 

a so-called stochastic distribution below: 

𝒘𝑡 ∼ 𝑔(𝒘𝑡) 
The stochastic distribution g(wt) implies wt is moved randomly because data xi is provided 

randomly for SGD. Shortly, the stochastic process of SGD is represented by both stochastic 

distribution and selective distribution, but stochastic distribution is more important because 

data will be provided randomly by format of data stream in real time applications. The iterative 

feeding process is very important because it makes SGD adaptive to real time applications 

where large data is provided by series of small packets. Moreover, these packets do not cover 

all fi(w) at one providing time. Besides, the iterative feeding process makes SGD feasible to 

calculate a gradient ∇𝑓�̂�𝑡(𝒘𝑡) with some data xi (or package xi) at one time. 

In order to assure the convergence of SGD, we need to research Lipschitz continuity. Recall 

that if function fi(.) is Lipschitz continuous then, given any two vector w1 and w2 we have 

(Wikipedia, Lipschitz continuity, 2001): 
‖𝑓𝑖(𝒘1) − 𝑓𝑖(𝒘2)‖ ≤ 𝐿𝑖‖𝒘1 −𝒘2‖ 

Where Li is Lipschitz constant. In this research, notation |.| denotes absolute value of scalar, 

norm of vector (magnitude of vector, module of vector, length of vector), determinant of matrix, 

and cardinality of set where notation ||.|| denotes only norms. Norm in Euclidean space is 

denoted ||.||2, which is default norm and so we implies ||.|| = ||.||2 if there is no additional 

information. If w is zero vector, we have: 

‖𝑓𝑖(𝒘)‖ ≤ 𝐿𝑖‖𝒘‖ or ‖𝑓𝑖(𝒘)‖
2 ≤ 𝐿‖𝒘‖2 

The convergence condition for SGD is that gradient of every member function fi(w) must be 

Lipschitz continuous and bounded. This condition is called bounded Lipschitz continuous 

gradient condition, as follows: 

{
‖𝑓𝑖(𝒘1) − 𝑓𝑖(𝒘2)‖ ≤ 𝐿𝑖‖𝒘1 −𝒘2‖

‖∇𝑓𝑖(𝒘)‖ ≤ 𝐺𝑖
, ∀𝑖, 𝒘1, 𝒘2, 𝒘 (2.4) 

Where Li is a Lipschitz constant and Gi is constant. Let G be the maximum one among all Gi, 

we have: 

{
‖𝑓𝑖(𝒘1) − 𝑓𝑖(𝒘2)‖ ≤ 𝐿𝑖‖𝒘1 −𝒘2‖

‖∇𝑓𝑖(𝒘)‖ ≤ 𝐺
, ∀𝑖, 𝒘1, 𝒘2, 𝒘 

The bounded condition of gradient ||∇fi(w)|| ≤ G is not strict because we can restrict magnitude 

of this gradient when implementing SGD, for example, ∇fi(w) is normalized as follows: 
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∇𝑓𝑖(𝒘) =
∇𝑓𝑖(𝒘)

|∇𝑓𝑖(𝒘)|
 

There is an important property in the theory of Lipschitz continuity which stated that a function 

is Lipschitz continuous if and only if its derivative is bounded (Wikipedia, Lipschitz continuity, 

2001). Note that Lipschitz continuity is stronger than continuously differentiable aspect and so 

derivative of Lipschitz continuous function is always existent. Because every gradient ∇fi(w) 

is Lipschitz continuous, its derivative ∇2fi(w) which is Hessian matrix (second-order derivative) 

of fi(w) is bounded according to the important property, as follows: 

‖∇2𝑓𝑖(𝒘)‖ ≤ 𝐻𝑖 , ∀𝑖, 𝒘 (2.5) 

Where Hi is a constant. When ∇2fi(w) is matrix, please research documents (Wikipedia, Matrix 

norm, 2003) about norm of matrix which is not determinant of matrix. Besides, according to 

such important property, the bounded Lipschitz continuous gradient condition is equal to the 

condition that all fi(w) and their gradients ∇fi(w) are Lipschitz continuous. The bounding of 

∇2fi(w) as ||∇2fi(w)|| ≤ Hi derives (De Sa, 2021, p. 2): 

‖𝒘𝑇∇2𝑓𝑖(𝒘)𝒘‖ ≤ ‖𝒘𝑇‖‖∇2𝑓𝑖(𝒘)‖‖𝒘‖ ≤ 𝐻𝑖‖𝒘‖
2 

Suppose Hessian matrix ∇2fi(w) is a set of basic vectors of a vector space that is image of 

Euclidean space, hence, ∇2fi(w) represents a mapping with note that |wT∇2fi(w)w| is square of 

the norm of w in the vector space specified by ∇2fi(w) whereas |w|2 is square of the norm of w 

in Euclidean space. In other words, here ∇2fi(w) shrinks vector space. Obviously, we also have: 

‖𝒘𝑇∇2𝑓(𝒘)𝒘‖ ≤ 𝐻‖𝒘‖2 

Where H is a constant too, due to: 

‖𝒘𝑇∇2𝑓(𝒘)𝒘‖ = ‖𝒘𝑇
1

𝑛
∑∇2𝑓𝑖(𝒘)

𝑛

𝑖=1

𝒘‖ =
1

𝑛
‖∑𝒘𝑇∇2𝑓𝑖(𝒘)𝒘

𝑛

𝑖=1

‖ ≤
1

𝑛
∑‖𝒘𝑇∇2𝑓𝑖(𝒘)𝒘‖

𝑛

𝑖=1

≤ (
1

𝑛
∑𝐿𝑖

𝑛

𝑖=1

) ‖𝒘‖2 = 𝐻‖𝒘‖2 

Where let, 

𝐻 =
1

𝑛
∑𝐻𝑖

𝑛

𝑖=1

 

Recall that SGD is an iterative algorithm which feeds data xi (s) one by one or batch by batch 

(De Sa, 2021, p. 1) for each time point t to learn w. 

𝒘𝑡+1 = 𝒘𝑡 − 𝛾𝑡∇𝑓�̂�𝑡(𝒘𝑡) 

In order to prove the convergence of SGD, we need to prove that the expectation of norm of 

the stochastic gradient ∇f(wt) approaches 0 when t approaches positive infinity because a local 

optimizer such as minimizer or maximizer which is stable point is the point at which ∇f(wt) is 

zero with note that the expectation is associated with the stochastic distribution g(wt) and 

selective distribution P(𝑖̂𝑡). In general, we will prove the equation as follows: 

lim
𝑡→∞

𝐸(‖∇𝑓(𝒘𝑡)‖) = 0 (2.6) 

Or, 

lim
𝑡→∞

𝐸(‖∇𝑓(𝒘𝑡)‖
2) = 0 

This proof was made, available, and provided by Christopher De Sa (De Sa, 2021) in the course 

of Principles of Large-Scale Machine Learning Systems, College of Computing and 

Information Science, Cornell University. By expending f(wt+1) at wt according to Taylor’s 

theorem, there is a ξt between wt and wt+1 such that (De Sa, 2021, p. 2): 

𝑓(𝒘𝑡+1) = 𝑓 (𝒘𝑡 − 𝛾𝑡∇𝑓�̂�𝑡(𝒘𝑡)) 

= 𝑓(𝒘𝑡) − (𝛾𝑡∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡) +
1

2
(𝛾𝑡∇𝑓�̂�𝑡(𝒘𝑡))

𝑇

∇2𝑓(𝜉𝑡) (𝛾𝑡∇𝑓�̂�𝑡(𝒘𝑡)) 



25 

 

≤ 𝑓(𝒘𝑡) − 𝛾𝑡 (∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡) +
𝛾𝑡
2𝐻

2
‖∇𝑓�̂�𝑡(𝒘𝑡)‖

2
 

(Due to ‖𝒘𝑇∇2𝑓(𝒘)𝒘‖ ≤ 𝐻‖𝒘‖2) 

≤ 𝑓(𝒘𝑡) − 𝛾𝑡 (∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡) +
𝛾𝑡
2𝐺2𝐻

2
 

(Due to ‖∇𝑓𝑖(𝒘)‖ ≤ 𝐺) 
The inequation above was also proved by Wang (Wang, 2016) in another way. This implies: 

𝛾𝑡 (∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡) ≤ 𝑓(𝒘𝑡) − 𝑓(𝒘𝑡+1) +
𝛾𝑡
2𝐺2𝐻

2
 

Taking expectation on both sides of the inequation above by both stochastic distribution g(wt) 

and selective distribution P(𝑖̂𝑡), we have: 

𝛾𝑡𝐸 ((∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡)|𝑔(𝒘𝑡), 𝑃(𝑖̂𝑡)) ≤ 𝐸(𝑓(𝒘𝑡) − 𝑓(𝒘𝑡+1)|𝑔(𝒘𝑡), 𝑃(𝑖̂𝑡)) +
𝛾𝑡
2𝐺2𝐻

2
 

Please pay attention that γt is independent from both stochastic distribution g(wt) and selective 

distribution P(𝑖̂𝑡). Because f(wt) and f(wt+1) are independent from the selective distribution P(𝑖̂𝑡), 
we have: 

𝛾𝑡𝐸 ((∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡)|𝑔(𝒘𝑡), 𝑃(𝑖̂𝑡)) ≤ 𝐸(𝑓(𝒘𝑡) − 𝑓(𝒘𝑡+1)|𝑔(𝒘𝑡)) +
𝛾𝑡
2𝐺2𝐻

2
 

Due to (De Sa, 2021, p. 2): 

𝑃(𝑖̂𝑡) =
1

𝑛
, ∀𝑖̂𝑡 

We have: 

𝐸 ((∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡)|𝑔(𝒘𝑡), 𝑃(𝑖̂𝑡)) = ∫∑𝑃(𝑖̂𝑡 = 𝑖) ((∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡)𝑔(𝒘𝑡)𝑑𝒘𝑡)

𝑛

𝑖=1𝒙𝑡

 

= ∫(∑𝑃(𝑖̂𝑡 = 𝑖) (∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

𝑛

𝑖=1

)∇𝑓(𝒘𝑡)𝑔(𝒘𝑡)𝑑𝒘𝑡

𝒙𝑡

 

= ∫(
1

𝑛
∑(∇𝑓�̂�𝑡(𝒘𝑡))

𝑇
𝑛

𝑖=1

)∇𝑓(𝒘𝑡)𝑔(𝒘𝑡)𝑑𝒘𝑡

𝒙𝑡

= ∫(∇𝑓(𝒘𝑡))
𝑇
∇𝑓(𝒘𝑡)𝑔(𝒘𝑡)𝑑𝒘𝑡

𝒙𝑡

 

(Due to ∇𝑓(𝒘𝑡) =
1

𝑛
∑∇𝑓�̂�𝑡(𝒘𝑡)

𝑛

𝑖=1

) 

= ∫‖∇𝑓(𝒘𝑡)‖
2𝑔(𝒘𝑡)𝑑𝒘𝑡

𝒙𝑡

= 𝐸(‖∇𝑓(𝒘𝑡)‖
2|𝑔(𝒘𝑡)) 

This implies: 

𝛾𝑡𝐸(‖∇𝑓(𝒘𝑡)‖
2|𝑔(𝒘𝑡)) ≤ 𝐸(𝑓(𝒘𝑡) − 𝑓(𝒘𝑡+1)|𝑔(𝒘𝑡)) +

𝛾𝑡
2𝐺2𝐻

2
 

As a convention, g(wt) is the default distribution and so it is implied in the expectation and so 

we can denote: 

𝛾𝑡𝐸(‖∇𝑓(𝒘𝑡)‖
2) ≤ 𝐸(𝑓(𝒘𝑡) − 𝑓(𝒘𝑡+1)) +

𝛾𝑡
2𝐺2𝐻

2
 

Summing both sides of the equation above via T iterations of SGD, we have (De Sa, 2021, p. 

2): 
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∑𝛾𝑡𝐸(‖∇𝑓(𝒘𝑡)‖
2)

𝑇−1

𝑡=0

≤∑𝐸(𝑓(𝒘𝑡) − 𝑓(𝒘𝑡+1))

𝑇−1

𝑡=0

+
𝐺2𝐻

2
∑𝛾𝑡

2

𝑇−1

𝑡=0

= 𝑓(𝒘0) − 𝑓(𝒘𝑇) +
𝐺2𝐻

2
∑𝛾𝑡

2

𝑇−1

𝑡=0

 

Suppose the optimization problem is minimization problem, let f* is the expected optimal value 

such that f* ≤ f(wT) for all T, we have (De Sa, 2021, p. 2): 

∑𝛾𝑡𝐸(‖∇𝑓(𝒘𝑡)‖
2)

𝑇−1

𝑡=0

≤ 𝑓(𝒘0) − 𝑓
∗ +

𝐺2𝐻

2
∑𝛾𝑡

2

𝑇−1

𝑡=0

 

Suppose the probability that SGD runs the τ = t iteration is (De Sa, 2021, p. 3): 

𝑃(𝜏 = 𝑡) =
𝛾𝑡

∑ 𝛾𝑘
𝑇−1
𝑘=0

 

The expected gradient (averaged gradient) over T iteration represented at some time point τ is 

(De Sa, 2021, p. 3): 

𝐸(‖∇𝑓(𝒘𝜏)‖
2) = ∑𝐸(‖∇𝑓(𝒘𝑡)‖

2)𝑃(𝜏 = 𝑡)

𝑇−1

𝑡=0

=
1

∑ 𝛾𝑘
𝑇−1
𝑘=0

∑𝛾𝑡𝐸(‖∇𝑓(𝒘𝑡)‖
2)

𝑇−1

𝑡=0

 

This implies (De Sa, 2021, p. 3): 

𝐸(‖∇𝑓(𝒘𝜏)‖
2) ≤

1

∑ 𝛾𝑡
𝑇−1
𝑡=0

(𝑓(𝒘0) − 𝑓
∗ +

𝐺2𝐻

2
∑𝛾𝑡

2

𝑇−1

𝑡=0

) (2.7) 

If fixing learning rate such that γt = γ, we have (De Sa, 2021, p. 3): 

𝐸(‖∇𝑓(𝒘𝜏)‖
2) ≤

𝑓(𝒘0) − 𝑓
∗

𝑇𝛾
+
𝛾𝐺2𝐻

2
 

Due to: 

lim
𝜏→∞

(
𝑓(𝒘0) − 𝑓

∗

𝑇𝛾
+
𝛾𝐺2𝐻

2
) = lim

𝑇→∞
(
𝑓(𝒘0) − 𝑓

∗

𝑇𝛾
+
𝛾𝐺2𝐻

2
) =

𝛾𝐺2𝐻

2
≠ 0 

The convergence of SGD is not proved yet because the problem here is that γt (0 < γ ≤ 1) is 

larger than γt
2 and γt is dependent on time points. Therefore, suppose let γt is inversely 

proportional to time point t as follows (De Sa, 2021, p. 3): 

𝛾𝑡 =
1

√𝑡 + 1
 (2.8) 

We have (De Sa, 2021, p. 3): 

∑𝛾𝑡

𝑇−1

𝑡=0

=∑
1

√𝑡 + 1

𝑇−1

𝑡=0

≅ ∫
1

√𝑥
𝑑𝑥

𝑇

0

= 2√𝑇 

∑𝛾𝑡
2

𝑇−1

𝑡=0

=∑
1

𝑡 + 1

𝑇−1

𝑡=0

≅ ∫
1

𝑥
𝑑𝑥

𝑇

0

= log(𝑇 + 1) 

We have: 

0 ≤ 𝐸(‖∇𝑓(𝒘𝜏)‖
2) ≤

2(𝑓(𝒘0) − 𝑓
∗) + 𝐺2𝐻 log(𝑇 + 1)

4√𝑇
= 𝒪 (

1

√𝑇
) (2.9) 

Due to: 

lim
𝜏→∞

(
2(𝑓(𝒘0) − 𝑓

∗) + 𝐺2𝐻 log(𝑇 + 1)

4√𝑇
) = lim

𝑇→∞
𝒪 (

1

√𝑇
) =0 

We obtain: 
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lim
𝜏→∞

𝐸(‖∇𝑓(𝒘𝜏)‖
2) = 0 

As a result, we assert that SGD will converge if all member functions fi(w) and their gradients 

∇2fi(w) are Lipschitz continuous with note that the learning rate which is an augmented 

important parameter of NN must be inversely proportional to time points (iterations). 

Obviously, these conditions are satisfied with squared error function with decreased learning 

rate because squared error function and its gradient are Lipschitz continuous. The condition of 

decreased learning rate is not hazard by setting it to be inversely proportional to time point. In 

other words, the convergence of delta rule is asserted with Lipschitz continuity. 

 

3. Recurrent network 
Default NN is feedforward NN in which there is no circle in the network, which means that 

there is no feedback connection from next layers back to previous layers. Conversely, recurrent 

neural network (RNN) (Kröse & Smagt, 1996, p. 47) allows such feedback connection, which 

means that an output unit or hidden unit can connect to a previous hidden unit directly or 

indirectly. Because input layer is fixed or not counted in the network, feedback connections 

exist among only hidden units and output units. In general, there are two types of feedback 

connections: 

- An output unit or a hidden unit is connected directly to a previous hidden unit in 

previous layer. 

- An output unit or a hidden unit is connected directly to an immediate unit which in turn 

connects to a previous hidden unit in previous layer. 

Most of traditional RNNs follows the second type of feedback connection. Moreover, as usual 

immediate units connect to hidden units of the first hidden layer. In other words, such 

immediate units play the role of input units and so, they are called extra input units which 

compose an extra input layer. Some RNNs can call extra input unit by other names, for example, 

state unit or context unit.  Some RNNs may modify backpropagation algorithm for learning 

NN via modifying weight update rule and bias update rule but some others may not change the 

learning NN algorithm. However, propagation rule is not changed. Now we should skim some 

traditional RNNs along with their learning algorithms. 

Jordan network developed by Jordan 1986 (Kröse & Smagt, 1996, p. 48) establishes that 

outputs (activation values) of output units are fed backwards the so-called state units playing 

the role of input units where state units in turn connect directly to the first hidden units. In other 

words, Jordan network follows the second type of feedback connection and the extra input units 

are called state units, as follows (Kröse & Smagt, 1996, p. 48): 
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Figure 3.1. Jordan network 

In Jordan network, the layer of state units is called state layer. The connection weights between 

output units and state units are fixed by +1 (Kröse & Smagt, 1996, p. 48) and so 

backpropagation algorithm does not modify these weights. 

Elman network developed by Elman 1990 (Kröse & Smagt, 1996, pp. 48-49) establishes 

that outputs (activation values) of hidden units are fed backwards the so-called context units 

playing the role of input units where context units in turn connect directly to the first hidden 

units. In other words, Elman network follows the second type of feedback connection and the 

extra input units are called context units, as follows (Kröse & Smagt, 1996, p. 49): 

 
Figure 3.2. Elman network 

In Elman network, the layer of context units is called context layer. The main difference 

between Elman network and Jordan network is that Elman network makes feedback 

connections between hidden units and extra input units whereas Jordan network makes 

feedback connections between output units and extra input units. However, like Jordan network, 

the connection weights from hidden units to context units in Elman network are fixed by +1 

(Kröse & Smagt, 1996, pp. 48-49). In general, both Jordan network and Elman network can be 

trained by backpropagation algorithm. 
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Hopfield network developed by Hopfield 1982 (Kröse & Smagt, 1996, pp. 50-53), which 

is very different from Jordan network and Elman network, establishes connections between all 

units. In other words, all units in Hopfield network play the role of both input units and output 

units and so it is a kind to auto-associator network (Kröse & Smagt, 1996, p. 51), which can be 

considered following the first type of feedback connections where each feedback connection 

occurs directly between two units. 

 
Figure 3.3. Hopfield network 

It is possible to say that auto-associator network is a special NN in which hidden units vanish. 

Therefore, backpropagation algorithm cannot be applied into learning Hopfield network, which 

requires another learning algorithm that will be mentioned later. Because Hopfield network 

leans forward learning processes in time series, its propagation rule should be written in time 

point t as follows (Kröse & Smagt, 1996, p. 51): 

𝑥𝑘(𝑡 + 1) =∑𝑤𝑗𝑘𝑦𝑗(𝑡)

𝑗≠𝑘

+ 𝜃𝑘 

𝑦𝑘(𝑡 + 1) = 𝑓(𝑥𝑘(𝑡 + 1)) = {

+1 if 𝑥𝑘(𝑡 + 1) > 𝑈𝑘
−1 if 𝑥𝑘(𝑡 + 1) < 𝑈𝑘
𝑦𝑘(𝑡) otherwise

 

(3.1) 

Where Uk is a threshold. It is easy to recognize that units in Hopfield network are binary {1, –

1}. If time point is not concerned, Hopfield propagation rule is written as follows: 

𝑥𝑘 =∑𝑤𝑗𝑘𝑦𝑗
𝑗≠𝑘

+ 𝜃𝑘 

𝑦𝑘 = 𝑓(𝑥𝑘) = {

+1 if 𝑥𝑘 > 𝑈𝑘
−1 if 𝑥𝑘 < 𝑈𝑘
𝑦𝑘(not changed) otherwise

 

Suppose there are n units, weights in Hopfield network form a square nxn weight matrix W = 

(wij)nxn with convention that wii = 0 which implies that a unit does not connect with itself. 

𝑊 = (

𝑤11 𝑤12 ⋯ 𝑤1𝑛
𝑤21 𝑤22 ⋯ 𝑤2𝑛
⋮ ⋮ ⋱ ⋮
𝑤𝑛1 𝑤𝑛2 ⋯ 𝑤𝑛𝑛

) 
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Bias vector of Hopfield is n-elements vectors of n bias θk as follows: 

Θ = (𝜃1, 𝜃2, … , 𝜃𝑛)
𝑇 

A unit k is called stable at time point t if its output is not changed at time point t as follows: 

𝑦𝑘(𝑡) = 𝑦𝑘(𝑡 − 1) (3.2) 

If time point is not concerned, a unit k is stable if its yk is not changed from the previous value. 

At the time Hopfield network was invented, it was used to model associative memory, 

which means that after its weights are trained from sample, units can become stable as 

persistent memory. Therefore, given a input vector x = (x1, x2,…, xn)
T, after applying Hebbian 

rule many times, the associative memory can be reached at which all units are stable, which 

can be considered as training process of Hopfield network. 

Input: input vector x = (x1, x2,…, xn)
T of n units, weight matrix W is initialized arbitrarily 

with suppose W is symmetric, and bias vector Θ is initialized as zero vector Θ = 0T.  

Output: weight matrix W and biases vector Θ are trained at which all units are stable. 

 

All outputs are initialized by inputs such that yk = xk for all k. 

Repeat 

Calculate biases θk and outputs yk of all units according to Bruce algorithm (Kröse & 

Smagt, 1996, p. 52) and propagation rule as follows: 

𝜃𝑘 = {
0 if 𝑦𝑘 is stable
1 otherwise

 

𝑠𝑘 =∑𝑤𝑗𝑘𝑦𝑗
𝑗≠𝑘

+ 𝜃𝑘 

𝑦𝑘 = {

+1 if 𝑠𝑘 > 𝑈𝑘
−1 if 𝑠𝑘 < 𝑈𝑘
𝑦𝑘(not changed) otherwise

 

For every pair of two units j and k where j ≠ k, their weight wjk are updated according to 

Hebbian rule as follows: 

𝑤𝑗𝑘 = 𝑤𝑗𝑘 + Δ𝑤𝑗𝑘 = 𝑤𝑗𝑘 + 𝑦𝑗𝑦𝑘 

Until all units are stable 

Table 3.1. Learning Hopfield network 

Jordan network, Elman network, and Hopfield network are traditional and typical RNN. In this 

research, I also propose another RNN called fishbone neural network (FBNN) in which there 

are feedback connections from output units to extra input units called memory units like Jordan 

network. Besides, each hidden unit can have an outside connection to an outside unit. Such 

outside connection is called rib connection because it attaches from a main unit such as hidden 

unit and output unit. Such outside unit to which the rib connection attaches is called rib unit. 

Connections from input layer to hidden layers to output layer structure the backbone of FBNN, 

which are called backbone connections. Recall that rib connections cannot attach to input units 

but they can attach to both hidden units and output units. Following is figure of FBNN. 
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Figure 3.4. Fishbone neural network (FBNN) 

An important aspect is that a rib connection is forward connection from a main unit (hidden 

unit or output unit) to a rib unit so that propagation rule can move right direction. Rib 

connections are associated with rib weights and backbone connections are associated with 

backbone weights. Backpropagation algorithm is applied into learning FBNN as usual with 

note that the algorithm does not go beyond rib units even though rib units connect with other 

FBNNs. The purpose of rib connection is that, for solving some problems, a set of many 

FBNNs are created and communicated together via rib connections. In other words, a FBNN 

connects with another FBNN via rib unit and rib connection. The set of many FBNNs is 

considered as a fish school and each FBNN is considered as a fish. The following figure depicts 

the connection between two FBNNs via rib unit and rib connection. 
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Figure 3.5. Two FBNNs connect together 

Note, by rib connection mechanism, a FBNN can connect with many FBNNs. In other words, 

a fish can communicate with many ones. Recall that, for solving a concrete problem, a set of 

many FBNNs are created and communicated together via rib connections. Every FBNN solves 

the problem by itself and then shares results or information with other FBNNs by propagation 

rule so that the other FBNNs can improve solutions of the concrete problem. The mechanism 

of social intelligence can improve the capacity of NN in solving complex problems where 

solutions of many FBNN can converge to an optimal solution. 

 

4. Self-organizing network 
Standard feedforward neural network (feedforward NN) as well as recurrent neural network 

(RNN) need both inputs and desired outputs in sample for matching in training. In other words, 

feedforward NN and RNN focus on supervised learning where outputs like attributes, classes, 

etc. play the role of supervisors who direct the training process. Backpropagation algorithm is 

a well-known supervised learning algorithm, especially for learning feedforward NN. Given 

an input x, supervised learning algorithms improve weights and biases in order to make an 

approximation to the desired output function v(x) = v. However, in case that there is no desired 

outputs v as supervisors, learning algorithms must process only inputs x, which raises a domain 

of unsupervised learning. There are many applications as well as algorithms for unsupervised 

learning like clustering, vector quantization, dimensionality reduction, and feature extraction 

where clustering and feature extraction are very popular in computer science. Especially, 

feature extraction is crucial to any recognition applications. Self-organizing network (SON) is 

designed to solve the problem of unsupervised learning without desired outputs. This section 

focuses on SON along with unsupervised learning algorithms. The term “self-organizing” in 

SON implies that SON controls its topology as well as weights and biases by itself without 

desired outputs. 
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The most popular SON is competitive SON with competitive learning which is similar to 

clustering in which competitive learning will select output unit (s) appropriate to inputs of input 

units. In other words, competitive learning aims to divide inputs into clusters and each cluster 

is represented by a selected output unit. All inputs in the same cluster share the same output 

unit. A simple competitive SON is a feedforward NN having two layers in which all input units 

i connect to all output unit o where given input vector x = (xi) there is only one output unit o is 

valid, which is called activated output unit or winner (Kröse & Smagt, 1996, pp. 57-58). 

 
Figure 4.1. Simple network of competitive learning 

The winner can be considered as cluster if competitive SON aims to clustering data. There are 

two methods for winner selection such as dot product method and Euclidean distance method. 

According to dot product method, because the bias is assumed to be 0, propagation rule 

becomes dot product as follows (Kröse & Smagt, 1996, p. 58): 

𝑦𝑜 = 𝑥𝑜 =∑𝑤𝑖𝑜𝑥𝑖
𝑖

= 𝒘𝑜
𝑇𝒙 (4.1) 

Where x = (xi) = (x1, x2,…, xn,…)T is input vector and wo = (w1o, w2o,…, wno,…)T whereas yo is 

output of output unit o. Note, activation function f(.) is not applied to this competitive learning. 

The winner o is the output unit o whose output is maximum (Kröse & Smagt, 1996, p. 58). 

∀𝑜′ ≠ 𝑜, 𝑦𝑜′ ≤ 𝑦𝑜 (4.2) 

After the winner was selected, its output is activated to be zero as yo = 1 and other outputs of 

output units are deactivated to be zero as 𝑦𝑜′ = 0 (Kröse & Smagt, 1996, p. 58). 
𝑦𝑜 = 1

∀𝑜′ ≠ 𝑜, 𝑦𝑜′ = 0
 (4.3) 

Within dot product method, only weight vector wo = (w1o, w2o,…, wno,…)T of the winner o is 

updated to be moved forward the input vector x and then normalized, as follows (Kröse & 

Smagt, 1996, p. 58): 

𝒘𝑜 =
𝒘𝑜 + 𝛾(𝒙 − 𝒘𝑜)

‖𝒘𝑜 + 𝛾(𝒙 − 𝒘𝑜)‖
 (4.4) 

The denominator of equation above is used to normalize the winner weight vector wo where 

notation ||.|| denotes Euclidean norm. Note, γ (0 < γ ≤ 1) is learning rate as usual. 

Similarly, Euclidean distance method selects the winner based on Euclidean distance 

between output weight vector and input vector. Therefore, the winner o is the output unit o that 

Euclidean distance between the output weight vector wo and the input vector x is minimum, 

which means that the winner o is the nearest to the input vector x. 

∀𝑜′ ≠ 𝑜, ‖𝒘𝑜′ − 𝒙‖ ≥ ‖𝒘𝑜 − 𝒙‖ (4.5) 

After the winner was selected, its output is activated to be zero as yo = 1 and other outputs of 

output units are deactivated to be zero as 𝑦𝑜′ = 0. 
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𝑦𝑜 = 1

∀𝑜′ ≠ 𝑜, 𝑦𝑜′ = 0
 

Like dot product method, only weight vector wo = (w1o, w2o,…, wno,…)T of the winner o is 

updated to be moved forward the input vector x but such winner weight vector is often not 

normalized. 

𝒘𝑜 = 𝒘𝑜 + 𝛾(𝒙 − 𝒘𝑜) (4.6) 

Note, γ (0 < γ < 1) is learning rate as usual. Indeed, the winner weight vector updating conforms 

to delta rule. Indeed, the squared error of output unit o is: 

𝜺(𝑦𝑜) = 𝜺(𝒘𝑜) =

(

 
 
 
 
 

1

2
(𝑤1𝑜 − 𝑥1)

2

1

2
(𝑤2𝑜 − 𝑥2)

2

⋮
1

2
(𝑤𝑛𝑜 − 𝑥𝑛)

2

⋮ )

 
 
 
 
 

 (4.7) 

Gradient of the squared error of output unit o with regard to wio, known as tangent vector of 

ε(wo), is: 

∇𝜺(𝒘𝑜) =
𝑑𝜺(𝒘𝑜)

𝑑𝑤𝑖𝑜
=

(

 
 

𝑥1 − 𝑤1𝑜
𝑥2 − 𝑤2𝑜

⋮
𝑥𝑛 − 𝑤𝑛𝑜

⋮ )

 
 
= 𝒙 −𝒘𝑜 (4.8) 

Note, 
𝑑𝜺(𝒘𝑜)

𝑑𝒘𝑜
 is Jacobian matrix but the equation above expresses tangent vector for easily 

understandable explanation. 

𝑑𝜺(𝒘𝑜)

𝑑𝒘𝑜
= (

𝑥1 −𝑤1𝑜 0 ⋯ 0
𝑥2 −𝑤2𝑜 0 ⋯ 0

⋮ ⋮ ⋱ ⋮
𝑥𝑛 − 𝑤𝑛𝑜 0 ⋯ 0

) 

Obviously, the rule of updating winner weight vector wo = wo + γ(x – wo) is result of stochastic 

gradient descent (SGD) method and so, its convergence is asserted as same as the theorem is 

stated in (Kröse & Smagt, 1996, p. 60). However, there is a question that how the error between 

output unit o and input unit i is defined as ½(wio - xi)
2 rather than ½(wioxo – xi)

2. Exactly, the 

error is ½(wioxo – xi)
2 but xo is assumed to be 1 as xo = yo = 1 because the output unit o is 

assumed to be the winner and hence, we have ½(wioxo – xi)
2 = ½(wio*1 – xi)

2 = ½(wio - xi)
2. 

Competitive SON can be extended with many layers, which is learned by backpropagation 

algorithm based on SGD without modification. 

Kohonen network is an extension of competitive SON, in which outputs of output units are 

ordered. For instance if input vector x = (x1, x2,…, xi,…, xm) is a vector in real vector space ℝm 

and output vector y = (y1, y2,…, yo,…, yn) is a vector in real vector space ℝn, there are some 

orderings which are defined in ℝm and ℝn. Based on such orderings, the concept of 

neighborhood is defined. Given two output units o and o’, a so-called neighborhood function 

g(o, o’) is defined so that it should be inversely proportional to distance between o and o’. For 

example, g(o, o’) is defined based on exponential function as follows: 

𝑔(𝑜, 𝑜′) = exp(−‖𝑦𝑜 − 𝑦𝑜′‖
2) (4.9) 

Note, g(o, o) or g(o’, o’) is always 1 regardless of how to define g(o, o’). Two output units o 

and o’ are neighbors together if their neighborhood function g(o, o’) is large enough (larger 

than a threshold) or their distance is small enough (smaller than a threshold). Winner selection 

methods such as dot product method and Euclidean distance method are still applied into 
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Kohonen network but the rule of updating winner weight vector is extended to neighbors of 

the winner unit o. Concretely, for the winner o, we still have: 

𝒘𝑜 = 𝒘𝑜 + 𝛾(𝒙 − 𝒘𝑜) 
For any other output units o’ which are neighbors of the winner o, their weight vector is updated 

as follows: 

𝒘𝑜′ = 𝒘𝑜′ + 𝛾𝑔(𝑜, 𝑜
′)(𝒙 − 𝒘𝑜′), ∀𝑜

′ ∈ 𝑛𝑏(𝑜) (4.10) 

Note, nb(o) is a set of units which are neighbors of the winner o where the neighborhood is 

determined based on neighborhood function g(o, o’) or Euclidean distance. Kohonen network 

can be extended with many layers, which is learned by backpropagation algorithm based on 

SGD without modification except that putting neighborhood function g(o, o’) into the updating 

rule of output units as the equation above. 

 

5. Reinforcement learning 
Recall that there are three main types of machine learning where machine learning is a branch 

of artificial intelligence (AI): 

- Supervised learning matches inputs and outputs to find out rules and knowledge where 

the outputs direct such knowledge searching. Classification is a popular supervised 

learning algorithm. 

- Unsupervised learning analyzes inputs so as to discover patterns under the inputs. Such 

patterns do not obey any output because simply there is no output in unsupervised 

learning. Clustering is a popular unsupervised learning algorithm. 

- Reinforcement learning (RL) draws and finetunes adaptively and progressively rules 

and knowledges from environment. Control theory, game theory, robotics applications 

are typical examples of RL. 

Neural network (NN) supports all three main types of machine learning where feedforward NN 

supports supervised learning and self-organizing network supports unsupervised learning, 

which is mentioned in previous sections. Fortunately, NN also supports RL where concepts 

and algorithms of RL are implemented in NN. Therefore, we should skim what RL is. In 

general, RL has two main objects such as an agent and an environment. When the environment 

issues a state, the agent will make an action that responds to such state and then, the 

environment gives feedback to the agent by a reward as benefit or penalty for the agent’s action 

(Chandrakant, 2023). The purpose of RL is to maximize the reward such that the agent’s action 

is most appropriate to the environment’s state; in other words, RL maximizes the benefit of 

action given state. The mapping between state and action is called policy and so, essentially, 

RL finds out optimal policy. This interaction of agent and environment repeats progressively 

until the optimal policy is reached. The following figures (Chandrakant, 2023) sketches RL. 

 
Figure 5.1. Overview of reinforcement learning 

There are two types of RL such as model-based RL and model-free RL (Chandrakant, 2023). 

As the hint of these names, model-based RL (Chandrakant, 2023) uses explicitly some 

mathematical model to interpret and explain RL shown by the overview figure above whereas 

model-free RL (Chandrakant, 2023) takes advantages of experiences to simulate the interaction 

between agent and environment when mathematical model is unknown or not supported. We 

research model-based RL first and model-free RL later. Therefore, Markov decision process 
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(MDP) is a popular mathematical model which is applied into explaining and implementing 

model-based RL. MDP uses some results from dynamic programming (Wikipedia, Dynamic 

programming, 2002) for maximizing value function which is cumulative reward in essentially 

besides taking advantages of Markov property that the probability of future state depends only 

on current state. So, the environment in MDP follows Markov property. The following figures 

sketches RL and MDP. 

 
Figure 5.2. Roadmap of RL methodologies 

From the figure above, this section mentions MDP because MDP is the most popular 

mathematical model for RL. An MDP (Wikipedia, Markov decision process, 2004) consists of 

4 main components as follows (Wikipedia, Reinforcement learning, 2002): 

- Let S be a set of states of environment and let s be any state belonging to S. Let st be 

the state at time point t. 

- Let A be a set of actions of agent and let a be any action belonging to A. Let at be the 

action at time point t. 

- Let Pa(s, s’) = P(st+1 = s’ | st = s, at = a) be the transition probability at time point t from 

the current state st = s to the next state st+1 = s’ given action at = a. This transition 

probability is conditional probability. A set of all transition probabilities for all states 

given an action compose a transition probability matrix Pa. The transition probability 

implies that Markov property where the probability of next state s’ depends only on 

current state s. 

- Let Ra(s, s’) be the immediate reward that the environment issues immediately when 

the agent does the current action at = a such that the current state st = s is changed 

immediately to the next state st+1 = s’. Reward function is the heart of model-based RL. 

From the MDP model, the mapping from state to action is called policy which is modeled by a 

so-called policy function a = π(s). The essence of MDP is to train policy function a = π(s) to 

be optimal, which in turn maximizes a so-called value function based on the immediate reward 

function Ra(s, s’) which is a component of MDP. Note, maximization of value function is 

derived from dynamic programming. For any state s, value function V(s) is expectation of 

reward function Ra(s, s’) multiplied with discount factor αt under the transition distribution Pa(s, 

s’). Therefore, V(s) is also called discounted reward expectation, which is determined from s 

= 𝑠𝑡𝑘  at some tk
th time point to infinity. 

𝑉(𝑠 = 𝑠𝑡𝑘) = 𝐸 (∑ 𝛾𝑡𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)

+∞

𝑡=𝑡𝑘

) = ∑ 𝛾𝑡𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)𝑃𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)

+∞

𝑡=𝑡𝑘

 (5.1) 

Where, 

𝑎𝑡 = 𝜋(𝑠𝑡) 
Proof, 

𝑉(𝑠 = 𝑠𝑡𝑘) = 𝐸 (∑ 𝛾𝑡𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)

+∞

𝑡=𝑡𝑘

) = ∑ 𝛾𝑡𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)𝑃(𝑠𝑡+1|𝑠𝑡, 𝑠𝑡−1, … , 𝑠𝑡𝑘 , 𝑎𝑡)

+∞

𝑡=𝑡𝑘
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= ∑ 𝛾𝑡𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

+∞

𝑡=𝑡𝑘

 

(Due to Markov property) 

= ∑ 𝛾𝑡𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)𝑃𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)

+∞

𝑡=𝑡𝑘

∎ 

The discount factor αt (0 < αt ≤ 1) indicates that a reward 𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1) can be delayed at time 

point t. The longer the delay is, the smaller discount factor is and so, only the first reward 

𝑅𝑎𝑡𝑘
(𝑠𝑡, 𝑠𝑡+1) gains highest discount factor 𝛾𝑡𝑘. If 𝛾𝑡𝑘 = 1 then, the first reward 𝑅𝑎𝑡𝑘

(𝑠𝑡, 𝑠𝑡+1) 

is immediate reward such that 𝑅𝑎𝑡𝑘
(𝑠𝑡, 𝑠𝑡+1) which is reserved. Discount factor should be 

inversely proportional to time point, for example αt = 1 / (t+1). The equation above is the 

general case of value function with infinite expectation. Dynamic programming solves problem 

of MDP for finding optimal policy by firstly, redefining value function V(s) recursively as 

follows (Wikipedia, Markov decision process, 2004): 

𝑉(𝑠) =∑𝑃𝜋(𝑠)(𝑠, 𝑠
′) (𝑅𝜋(𝑠)(𝑠, 𝑠

′) + 𝛼𝑉(𝑠′))

𝑠′

 (5.2) 

Now value function is determined by a finite sum and so, it is called discounted reward sum in 

which s ∈ S, a ∈ A, and both S and A are finite sets. In first view, discount factor α is fixed but, 

actually, it is decreased in time because of the recursion inside the formulation of finite V(s) 

and hence, only the immediate rewards Rπ(s)(s, s’) are reserved. Consequently, policy function 

π(s) is updated as maximizer regarding value function as follows (Wikipedia, Markov decision 

process, 2004): 

𝜋(𝑠) = argmax
𝑎

{∑𝑃𝑎(𝑠, 𝑠
′)(𝑅𝑎(𝑠, 𝑠

′) + 𝛼𝑉(𝑠′))

𝑠′

} (5.3) 

An implementation of MDP learning is an iterative algorithm so that whenever the environment 

feeds back a next state st+1 and gives back a reward 𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1) for the agent’s action at at the 

current state st (time point t), the iterative algorithm will update value and policy as follows: 

Value update rule: 

𝑉(𝑠𝑡) =∑𝑃𝑎𝑡(𝑠𝑡, 𝑠
′) (𝑅𝑎𝑡(𝑠𝑡, 𝑠

′) + 𝛼𝑉(𝑠′))

𝑠′

 

Policy update rule: 

𝜋(𝑠𝑡) = argmax
𝑎

{∑𝑃𝑎(𝑠𝑡, 𝑠
′)(𝑅𝑎(𝑠𝑡, 𝑠

′) + 𝛼𝑉(𝑠′))

𝑠′

} 

Table 5.1. Markov decision process learning for model-based reinforcement learning 

A possible terminated condition for the iterative algorithm is that all states are stable, which 

means that there is no change in policy function π(s). However, RL does not require 

mandatorily terminated conditions because it aims to adapt to the environment. Note that all 

values V(s) and Ra(s, s’) for all s, s’, and a are initialized by 0. Of course, the agent’s action at 

at the current state st is based on the policy function at = π(st) where st is raised by the 

environment. 

There is no problem for model-based RL with MDP but it is hazard for model-free RL 

where none of transition distribution and reward function is specified explicitly. Fortunately, 

Q-learning (Wikipedia, Q-learning, 2004) is applied into solving the lack of mathematical 

model in model-free RL in which there is no transition probability Pa(s, s’) and reward function 

Ra(s, s’). With Q-learning, model-free RL broadens its applications, especially neural network 

learning. At time point t, the environment still gives back a reward Rt in model-free RL but 
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such Rt is only a value which is not the function Ra(s, s’) in model-based RL. Given time point 

t, value function V(s) in model-based RL is replaced by Q-value Q(st, at) for model-free RL 

and such Q-value is learned as follows (Wikipedia, Q-learning, 2004): 

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛾 (𝑅𝑡 + 𝛼max
𝑎
𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)) (5.4) 

Where γ (0 < γ ≤ 1) is learning rate. The equation above is called Bellman equation. Therefore, 

whenever the environment feeds back a next state st+1 and gives back a reward Rt for the agent’s 

action at at the current state st (time point t). the iterative algorithm of Q-learning for model-

free RL is described as follows: 

Q-value update rule: 

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛾 (𝑅𝑡 + 𝛼max
𝑎
𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)) 

Policy update rule: 

𝜋(𝑠𝑡) = argmax
𝑎

𝑄(𝑠𝑡, 𝑎) 

Table 5.1. Q-learning for model-free reinforcement learning 

Note that all Q-values Q(s, a) for all s and a are initialized by 0. A possible terminated condition 

for the iterative algorithm is that all states are stable, which means that there is no change in 

policy function π(s). Of course, the agent’s action at at the current state st is selected based on 

the policy function at = π(st) where st is raised by the environment. 

According to (Chandrakant, 2023), when neural network (NN) is used to implement MDP, 

it is a feedforward NN whose input units represent environment’s states and whose output units 

represent agent’s actions. The number of hidden layers indicates complexity of RL with note 

that deep learning, which is a modern machine learning, is implemented by a NN having as 

many as possible hidden layers. Because a NN for RL often needs more than one hidden layer 

for improving accuracy of learning method with high complexity, the combination of NN and 

RL is often called deep reinforcement learning (DRL). There is a question why the high 

complexity with many hidden layers will improve the learning accuracy. The reason is that the 

essence of any learning NN algorithm is to make an approximation of the desire function v(x) 

where x is inputs, and the approximation can be represented by an estimation function u(x). 

Essentially, the estimation function u(x) is a nonlinear regression function because propagation 

rule goes through layered weights with multiplications and summing. Because the number of 

hidden layers is proportional to the order of the regression function u(x), increasing such order 

is obviously to increase the accuracy of u(x) in estimation. Therefore, deep learning and deep 

reinforcement learning (DRL) attracts attention of many recent researches about artificial 

intelligence. 

It is easier to combine NN with RL by Q-learning where inputs represent environment’s 

states and outputs represent agent’s actions. 

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑥𝑘(𝑡), 𝑦𝑘(𝑡)) 

Where xk(t) = st and yk(t) = at are input and output of unit k at time point t. Regarding NN, Q-

value is Q-function of xk(t) and yk(t). There are two ways for coding NN for RL: 

- Each input unit represents a state and each output unit represents an action. This coding 

is appropriate to multi-state and multi-action RL. 

- Each input unit represents a possible value of state and each output unit represents a 

possible value of action. In this coding, inputs and outputs are binary. 

Backpropagation algorithm is still valid for learning feedforward NN with Q-function. 

Whenever the environment feeds back a next state st+1 and gives back a reward Rk(t) for the 

agent’s action at = yk(t) at the current state xk(t) = st, the Q-function is updated as follows: 

𝑄(𝑥𝑘(𝑡), 𝑦𝑘(𝑡)) = 𝑅𝑘(𝑡) + 𝛼max
𝑘
𝑄0(𝑥𝑘(𝑡), 𝑦𝑘(𝑡)) 
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Where α is discount factor and vk is desired output. Note that index k in the maximization 

expression max
𝑘
𝑄0(𝑥𝑘(𝑡), 𝑦𝑘(𝑡)) indicates browsing units in the same layer of current unit. 

There is a question what Q0(xk(t), yk(t)) is. Indeed, according to an invention of OpenAI 

(Choudhary, 2019), Q0(xk(t), yk(t)) is the function Q(xk(t), yk(t)) of a so-called target network 

which is the duplicate of current NN but parameters of target network such as weights and 

biases are kept intact for a period T of time points. After every period T, parameters of target 

networks are updated by copying from parameters of current NN. Therefore, the target network 

represents next states st+1 in Q-learning. The following figure depicts the target network for Q-

learning (Choudhary, 2019). 

 
Figure 5.3. Target network for Q-learning 

Because yk is function of xk due to activation function yk = f(xk), Q-function in NN is considered 

as function of yk as follows: 

𝑄(𝑦𝑘(𝑡)) = 𝑅𝑘(𝑡) + 𝛼max
𝑘
𝑄0(𝑦𝑘(𝑡)) 

The deviation of Q-function for unit k at time point t is: 

∆𝑄(𝑦𝑘(𝑡)) = 𝑅𝑘(𝑡) + 𝛼max
𝑘
𝑄0(𝑦𝑘(𝑡)) − 𝑄(𝑦𝑘(𝑡)) 

If the time point t is implicit by default for backpropagation algorithm feeding sample time 

point by time point, the deviation is rewritten as follows: 

∆𝑄(𝑦𝑘) = 𝑅𝑘 + 𝛼max
𝑘
𝑄0(𝑦𝑘) − 𝑄(𝑦𝑘) (5.5) 

Note that the expression max
𝑘
𝑄0(𝑦𝑘) is constant with regard to yk. Recall that index k in the 

maximization expression max
𝑘
𝑄0(𝑦𝑘) indicates browsing units in the same layer of current unit 

inside the target network. If there is only one unit in such layer by some specific NN coding 

for RL, it is possible to browse possible outputs of unit k inside the target network. In the 

equation of ΔQ(yk) above, only Q(yk) is function of yk. The simplest way is to set Q-function 

as identity function Q(yk) = yk. Derivative of ΔQ(yk) with regard to xk is: 
𝑑∆𝑄(𝑦𝑘)

𝑑𝑥𝑘
=
𝑑∆𝑄(𝑦𝑘)

𝑑𝑦𝑘

𝑑𝑦𝑘
𝑑𝑥𝑘

= −𝑄′(𝑦𝑘)𝑓
′(𝑥𝑘) (5.6) 

The squared error function is square of deviation ΔQ(.). For instance, the squared error function 

of output unit o is: 

𝜀(𝑦𝑜) =
1

2
(∆𝑄(𝑦𝑜))

2
=
1

2
(𝑅𝑜 + 𝛼max

𝑜
𝑄0(𝑦𝑜) − 𝑄(𝑦𝑜))

2

 (5.7) 

The squared error function ε(yh) of hidden unit h is the sum of output errors ε(yo) with regard 

to such set of output units, as follows: 

𝜀(𝑦ℎ) =∑𝜀(𝑦𝑜)

𝑜

 

By applying stochastic gradient descend (SGD) as usual, we obtain weight update rule and bias 

update rule according to backpropagation algorithm, as follows: 

∆𝑤𝑗𝑘 = 𝛾𝑦𝑗𝛿𝑘 

∆𝜃𝑘 = 𝛾𝛿𝑘 

Where, 



40 

 

𝛿𝑘 =

{
 
 
 
 

 
 
 
 (𝑅𝑘 + 𝛼max

𝑘
𝑄0(𝑦𝑘) − 𝑄(𝑦𝑘))𝑄

′(𝑦𝑘)𝑓
′(𝑥𝑘)

for ouput unit
 
 

𝑄′(𝑦𝑘)𝑓
′(𝑥𝑘)∑𝑤𝑘𝑙𝛿𝑙

𝑙

for hidden unit

 (5.8) 

Recall that: 
𝑑∆𝑄(𝑦𝑘)

𝑑𝑥𝑘
= −𝑄′(𝑦𝑘)𝑓

′(𝑥𝑘) 

Moreover, Q-functions for output units are updated by Q-learning as usual: 

𝑄(𝑦𝑜) = 𝑄(𝑦𝑜) + 𝛾 (𝑅𝑜 + 𝛼max
𝑜
𝑄0(𝑦𝑜) − 𝑄(𝑦𝑜)) (5.9) 

Indeed, Q-learning is also derived from SGD too. In NN literature, Q-function is also called 

the critic (Kröse & Smagt, 1996, p. 76). The sample for deep reinforcement learning with NN 

is {x(p), R(p)} where input vector x(p) is a set of states and R(p) is a set of rewards of output units 

at p pattern. Agent’s actions are outputs yk from computations inside NN and next states st+1 

are represented by the target network. 

 

6. Conclusions 
The philosophical essence of neural network (NN) is synaptic plasticity of human neuron 

system and the technical essence of NN is nonlinear regression mechanism by multiplicative 

overlap of summing weights through many layers. The perfect nonlinear regression function, 

which is target of NN learning, is approximated by the multiplicative overlap of applying 

propagation rule (being linear function if ignoring activation function) many times, which can 

be considered as an interpolation of the nonlinear function by many linear functions via a 

complex topology. The approximation will be unfeasible or ineffective unless there is support 

of stochastic descent gradient method. Moreover, the approximation is made smoother by 

activation function. This is the reason that deep learning with multiple layers will increase 

effectiveness and accuracy of NN because deep learning increases order of such nonlinear 

regression model. Moreover, the partition of NN into layers where there is an output layer 

implicitly reflects analytic and synthetic mechanism which is appropriate to high processing 

applications like image processing. The evolution of NN via Hebbian rule and delta rule 

learning which simulates human neuron system is appropriate to intelligent applications like 

control applications and game applications. In general, the ability of NN extensions is fully 

promising, especially NN is combined with evolutionary programming field such as genetic 

algorithm and social intelligence. When NN focuses on individual intelligence via human brain, 

there is a so-called social intelligence which is a subdomain of evolutionary programming field 

where social intelligence focuses on the intelligence inside a group of individuals via 

interactions. The combination of individual intelligence and social intelligence issues a multi-

faceted overview of biological world as aforementioned in the abstract that machine learning 

(ML), which is a branch of artificial intelligence (AI), sets first bricks to build up an infinitely 

long bridge from computer to human intelligence. This great construction may be more feasible 

a little bit by concerning such multi-faceted biological problem when AI also computer science 

does not reach the limitation of approaching miracle biological phenomenon yet. Fishbone NN 

mentioned in this research is a theoretical trial of the combination of individual intelligence 

and social intelligence. 
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