
1

Tutorial on artificial neural network

Loc Nguyen

Loc Nguyen’s Academic Network, Vietnam

Email: ng_phloc@yahoo.com

Homepage: www.locnguyen.net

Abstract
It is undoubtful that artificial intelligence (AI) is being the trend of computer science and this

trend is still ongoing in the far future even though technologies are being developed suddenly

fast because computer science does not reach the limitation of approaching biological world

yet. Machine learning (ML), which is a branch of AI, is a spearhead but not a key of AI because

it sets first bricks to build up an infinitely long bridge from computer to human intelligence,

but it is also vulnerable to environmental changes or input errors. There are three typical types

of ML such as supervised learning, unsupervised learning, and reinforcement learning (RL)

where RL, which is adapt progressively to environmental changes, can alleviate vulnerability

of machine learning but only RL is not enough because the resilience of RL is based on iterative

adjustment technique, not based on naturally inherent aspects like data mining approaches and

moreover, mathematical fundamentals of RL lean forwards swing of stochastic process.

Fortunately, artificial neural network, or neural network (NN) in short, can support all three

types of ML including supervised learning, unsupervised learning, and RL where the implicitly

regressive mechanism with high order through many layers under NN can improve the

resilience of ML. Moreover, applications of NN are plentiful and multiform because three ML

types are supported by NN; besides, NN training by backpropagation algorithm is simple and

effective, especially for sample of data stream. Therefore, this study research is an introduction

to NN with easily understandable explanations about mathematical aspects under NN as a

beginning of stepping into deep learning which is based on multilayer NN. Deep learning,

which is producing amazing results in the world of AI, is undoubtfully being both spearhead

and key of ML with expectation that ML improved itself by deep learning will become both

spearhead and key of AI, but this expectation is only for ML researchers because there are

many AI subdomains are being invented and developed in such a way that we cannot

understand exhaustedly. It is more important to recall that NN, which essentially simulates

human neuron system, is appropriate to the philosophy of ML that constructs an infinitely long

bridge from computer to human intelligence.

Keywords: artificial neural network (ANN), neural network (NN), machine learning (ML),

artificial intelligence (AI).

1. Introduction
Artificial neural network (ANN) is the mathematical model based on biological neural network

but neural network (NN) in this research always indicates artificial neural network. NN consists

of a set of processing units which communicate together by sending signals to each other over

a number of weighted connections (Kröse & Smagt, 1996, p. 15). Each unit is also called

neuron, cell, node, or variable which is quantified by a real variable. Each weighted connection,

which is considered a neural cord, is often quantified by a real parameter called weight or

connection weight. According to Kröse & Smagt, each unit is responsible for receiving input

from neighbors or external sources and using this input to compute an output signal which is

propagated to other units (Kröse & Smagt, 1996, p. 15). The most important thing here is that

the signal propagation is done by the means of weighed connections which are imitated as

2

biological neurotransmission with neurons and neural cords. According to Kröse & Smagt

(Kröse & Smagt, 1996, pp. 15-16), there are three types of units:

- Input units receive data from outside the network. These units structure input layer. As

a convention, there is one input layer. In literature, input layer is not counted, which

will be explained later.

- Hidden units own input and output signals that remain within NN. These units structure

hidden layer. There can be one or more hidden layers.

- Output units send data out of the network. These units structure output layer. As a

convention, there is one output layer.

Please distinguish input unit from input and distinguish output unit from output because input

is the input value of any unit and output is the output value of any unit. These are conventions

in this research. Units in NN are also considered variables. The figure (Wikipedia, Artificial

neural network, 2009) below shows a simple structure of an NN with three layers such as input

layer, hidden layer, and output layer. The structure of NN is often called topology.

Figure 1.1. Simpler topology of NN with three layers such as input layer, hidden layer, and

output layer

However, the simplest topology has two layers such as input layer and output layer where

output layer is also hidden layer. Later on, the NN having such simplest layer is called single

layer NN which will be explained later. Note that the main reference of this report research is

the book “An Introduction to Neural Networks” by Ben Kröse and Patrick van der Smagt

(Kröse & Smagt, 1996).

According to Daniel Rios (Rios), there are two main topologies (structures) of NN:

- Feedforward NN is directed acyclic graphic in which flow of signal from input units to

output units is one-way flow and so, there is no feedback connection. The NN in this

section is feedforward NN. As a convention, the ordering of layers is counted from left

to right, in which the leftmost one is input layer, the middle ones are hidden layers, and

the rightmost one is output layer.

- Recurrent NN is the one whose graph (topology) contains cycles and so, there are

feedback connections.

It is necessary to evolve NN by modifying the weights of connections so that they become

more accurate. In other words, such weights should not be fixed by experts. NN should be

trained by feeding it teaching patterns and letting it change its weights. This is learning process

or training process. According to Daniel Rios (Rios), there are three types of learning methods:

- Supervised learning: According to Daniel Rios (Rios), the network is trained by

matching its input and its output patterns. These patterns are often known as classes

which can be represented by binary values, integers for nominal indices, or real

numbers.

3

- Unsupervised learning: The network is trained in response to clusters of patterns behind

the input. According to Daniel Rios (Rios), there is no a priori set of categories into

which the patterns are to be classified.

- Reinforcement learning: The learning algorithms receive partially information along

with input from environments and then, adjust partially and progressively the weighted

connections by adaptive way to such input. Reinforcement learning is the intermediate

form between supervised learning and unsupervised learning.

This introduction section focuses on supervised learning in which input and output are realistic

quantities (real numbers). For NN, the essence of supervised learning is to improve weighted

connections by matching input and output. Learning NN process is also called training NN

process as usual. Given unit i, let xi and yi denote input and output of unit i, which are real

numbers. In NN literature, a unit will be activated if its output is determined and so the output

yi is also called activation of unit i. If a unit is input unit (in input layer) then its input contributes

to input of NN. If a unit is output unit (in output layer) then its output contributes to output of

NN. Each connection between two successive units such as unit i and unit j is defined by the

weight wij determining effect of unit i on unit j. In the normal topology, an output unit is

composition of other hidden units which in turn are compositions of others input units. The

composition (aggregation) of a unit is represented as a weighted sum which will be evaluated

to determine the output of this unit. The process of computing the output of a unit includes two

following steps (Han & Kamber, 2006, p. 331):

- An adder called summing function sums up all the inputs multiplied by their respective

weights. It is essential to compute the weighted sum. This activity is referred to as linear

combination.

- An activation function controls amplitude of output of a unit. This activity aims to

determine and assert output of a unit. Note that outputs of previous units are inputs of

current unit.

Figure 1.2 (Han & Kamber, 2006, p. 331) describes the process of computing output of a unit.

Figure 1.2. Process of computing output of a unit

For example, as seen in figure 1.2, given a concerned unit k, suppose there are previous units

whose outputs yj (s) are considered as inputs of unit k. According to the process of computing

output of a unit, we have following equation (Han & Kamber, 2006, p. 331), (Kröse & Smagt,

1996, pp. 16-17) for computing output value of a unit.

𝑥𝑘 =∑𝑤𝑗𝑘𝑦𝑗
𝑗

+ 𝜃𝑘

𝑦𝑘 = 𝑓𝑘(𝑥𝑘)

 (1.1)

Or shortly:

𝑦𝑘 = 𝑓𝑘 (∑𝑤𝑗𝑘𝑦𝑗
𝑖

+ 𝜃𝑘)

4

The equation above for output processing is called propagation rule. Note, wjk is weight of the

connection from unit j to unit k and θj is bias of unit j while fj(.) is activation function acting on

unit j. If all units use the same form of activation function, we can denote f(.) = fj(.).

𝑥𝑘 =∑𝑤𝑗𝑘𝑦𝑗
𝑗

+ 𝜃𝑘

𝑦𝑘 = 𝑓(𝑥𝑘)

As a convention, propagation rule can be denoted by succinct way as follows:

𝑦𝑘 = 𝑓 (𝑥𝑘 =∑𝑤𝑗𝑘𝑦𝑗
𝑗

+ 𝜃𝑘) (1.2)

The parameters of propagation rule are weights wjk and biases θk in which weights are most

important. Conversely, it is possible to consider propagation rule as function of variables wjk

and θk. In a distributed environment, NN can be evolved asynchronously when the computing

processes on different units can be computed by distributed way. Given time point t,

propagation rule at time point t + 1 is rewritten as follows:

𝑦𝑘(𝑡 + 1) = 𝑓 (𝑥𝑘(𝑡 + 1) =∑𝑤𝑗𝑘𝑦𝑗(𝑡)

𝑗

+ 𝜃𝑘) (1.3)

The formulation of propagation rule with time points emphasizes the process of changing NN

in time series but its meaningfulness is not changed.

As a convention, input units in input layer are indexed by i (for instance, xi and yi), hidden

units in hidden layer are indexed by h (for instance, xh and yh), and output units in output layer

are indexed by o (for instance, xo and yo). Therefore, indices j, k, l, etc. indicate normal units

having both input and output. However, in some cases, the convention of input indices i, hidden

indices h, and output indices o may not be applied, for example, when writing pseudo code for

learning NN algorithm. For input units, we assume that xi = yi and θi = 0. A NN is valid if it

has two or more layers and so there is a convention that a n-layer NN has n+1 actual layers,

which means that input layer is not counted for this convention. This convention is reasonable

because propagation rule is not applied to input units. The simplest NN is single layer NN

owning one input layer and one output layer where the output layer can be considered as hidden

layer.

Output values of units are arbitrary, but they should range from 0 to 1 (sometimes –1 to 1

range). In general, every unit k has following aspects:

- Each unit k has input xk and output yk. Moreover, let vk be the actual value of unit k

taken from experts, environment, database, states, etc. The actual value vk can be equal

to or different from the output vk with note that vk is derived from propagation rule. The

actual value vk is called desired output of unit k. When a unit k is put in NN, which

means that it connects to other units via weighted connections, then unit k is called

clamped in NN. Besides, clamped units also are ones that are concerned in training

process or some special tasks. Input of a clamped unit k is denoted sk. By default, all

units are clamped and so, the clamped input sk is the same to the input xk as sk = xk by

default.

- A set of units j connects to it. Each connection is quantified by a weight wjk.

- A bias value θk will be added to the weighted sum.

- The weighted sum is computed by summing up all inputs modified by their respective

weights. Summing function or adder is responsible for this summing task.

- Its output yk is outcome of activation function f(.) on weighted sum. Activation function

is crucial factor in NN. The combination of summing function and activation function

5

constitutes propagation rule, but propagation rule can be more complicated with some

enhancements.

Given unit k, there are many desired outputs of unit k, for example, vk
(1), vk

(2),…, and hence,

given a pattern p (Kröse & Smagt, 1996, p. 19) there is a desired output vk
(p) corresponding to

pattern p. For easily understandable explanation, if vk
(p) is taken from a database table, p

indicates the pth row in the table. As a convention, let xk
(p), yk

(p), vk
(p), and sk

(p) be input, output,

desired output, clamped input of unit k within the p pattern, respectively or they can be called

the pth input, output, desired output, and clamped input of unit k, respectively. With pattern p,

propagation rule is rewritten exactly as follows:

𝑠𝑘
(𝑝) = ∑ 𝑤𝑗𝑘𝑦𝑗

(𝑝)

𝑗∈𝑁(𝑘)

+ 𝜃𝑘

𝑦𝑘
(𝑝) = 𝑓 (𝑠𝑘

(𝑝))

 (1.4)

Where N(k) denotes a set of previous (clamped) units to which the current clamped unit k

connects. Given time point t, propagation rule is rewritten fully as follows:

𝑠𝑘
(𝑝)(𝑡 + 1) = ∑ 𝑤𝑗𝑘𝑦𝑗

(𝑝)(𝑡)

𝑗∈𝑁(𝑘)

+ 𝜃𝑘

𝑦𝑘
(𝑝)(𝑡 + 1) = 𝑓 (𝑠𝑘

(𝑝)(𝑡 + 1))

Propagation rule essentially transforms inputs to outputs but an output yk may not totally equal

to desired output vk when it is often approximated to vk. Propagation rule with optimal weights

and optimal bias is a good enough presentation of NN when NN tries its best to approach the

desired function v(.) that produces desired outputs vk = v(sk) (= v(xk)). Therefore, in NN

literature, representation power (Kröse & Smagt, 1996, p. 20) implies the approximation of

NN and the desired function v(.) and so, the ideology under any learning NN algorithms is to

make such approximation.

There are some other conventions for learning NN from sample or training dataset. The set

of inputs x1, x2,…, xk,… is denoted as x = (x1, x2,…, xk,…)T which is called input vector where

the superscript “T” denotes transposition operator of vector and matrix. The set of outputs y1,

y2,…, yk,… is denoted as y = (y1, y2,…, yk,…)T which is called output vector. The set of desired

outputs v1, v2,…, vk,… is denoted as v = (v1, v2,…, vk,…)T which is called desired output vector.

The set of clamped inputs s1, s,…, sk,… is denoted as s = (s1, s2,…, sk,…)T which is called

clamped input vector. Input vector, output vector, desired vector, and clamped input vector

with p pattern are denoted x(p), y(p), v(p), and s(p), respectively. The set of input vector over entire

input layer and desired output vector over entire output layer composes a sample or training

dataset D = {x(p), v(p)} for learning NN where p = 1, 2, 3, etc. By default, all units are clamped

in NN and so we have D = {x(p), v(p)} = {s(p), v(p)} by default.

Activation function f(.), which is an important factor of NN, is squashing function which

“squashes” a large weighted sum into possible smaller values ranging from 0 to 1 (sometimes

–1 to 1 range). According to Daniel Rios (Rios), there are some typical activation functions:

- Threshold function takes on value 0 if weighted sum is less than 0 and otherwise. The

formula of threshold function is:

𝑓(𝑥) = {
1 if 𝑥 ≥ 0
0 if 𝑥 < 0

- Piecewise-linear function takes on values according to amplification factor in a certain

region of linear operation. The formula of piecewise-linear function is:

6

𝑓(𝑥) =

{

 0 if 𝑥 ≤ −

1

2

𝑥 if −
1

2
≤ 𝑥 ≤

1

2

1 if
1

2
≤ 𝑥

- Sigmoid function or logistic function takes on values in range [0, 1] or [–1, 1]. A popular

formula of sigmoid function is:

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (1.5)

Where e(.) or exp(.) denotes exponent function. Exponential logistic function is the most

popular activation function.

Recall that the essence of learning NN (training NN) is to improve weighted connections by

matching input and output. Given a weight wjk from unit j to unit k, a new version of wjk after

learning process at time point t is updated by weight deviation Δwjk as follows:

𝑤𝑗𝑘(𝑡 + 1) = 𝑤𝑗𝑘(𝑡) + ∆𝑤𝑗𝑘

Or shortly:

𝑤𝑗𝑘 = 𝑤𝑗𝑘 + ∆𝑤𝑗𝑘 (1.6)

The equation above is called weight update rule and hence, weight update rule focuses on how

to calculate weight deviation Δwjk which is also called the change in weight. Learning NN

algorithms also improve biases beside improving weights. Given bias θk of unit k, a new version

of θk after learning process at time point t is updated by bias deviation Δθk as follows:

𝜃𝑘(𝑡 + 1) = 𝜃𝑘(𝑡) + ∆𝜃𝑘

Or shortly:

𝜃𝑘 = 𝜃𝑘 + ∆𝜃𝑘 (1.7)

The equation above is called bias update rule and hence, bias update rule focuses on how to

calculate bias deviation Δθk which is also called the change in bias. In general, a normal

learning NN algorithm needs to specify both weight update rule and bias update rule because

both of them determine propagation rule. Because weight update rule and bias update rule are

based on weight deviation and bias deviation, these deviations Δwjk and Δθk can be used to

represent these rules.

The most popular learning NN algorithm is backpropagation algorithm, but we should skim

some simpler learning algorithms first. Two common simpler learning algorithms are

Perceptron and Adaline. Both of them are based on Hebbian rule and delta rule. Hebbian rule

indicates that Δwjk (also wjk) is proportional to product of output of unit j and output of unit k

as follows (Kröse & Smagt, 1996, p. 18):

∆𝑤𝑗𝑘 = 𝛾𝑦𝑗𝑦𝑘 (1.8)

Where the positive constant γ which is called learning rate (0 < γ ≤ 1) specifies power of the

proportionality, which relates to speed of learning process. In simplest case, it is 1 as γ = 1.

Both yj and yk are results of propagation rule. Let vk be desired output of unit k from

environment or database, delta rule indicates that Δwjk (also wjk) is proportional to product of

output value of unit j and output deviation of unit k as follows (Kröse & Smagt, 1996, p. 18):

∆𝑤𝑗𝑘 = 𝛾𝑦𝑗(𝑣𝑘 − 𝑦𝑘) (1.9)

Obviously, Hebbian rule and delta rule are weight update rules. After researching learning NN

algorithm, we will recognize that delta rule is derived from stochastic gradient descent (SGD)

method for minimizing squared error with least squares method. Moreover, it is possible to

consider delta rule as an improved Hebbian rule and thus, Hebbian is the base for learning NN

algorithms.

7

Recall that the most popular NN algorithm is backpropagation algorithm whereas two

simpler learning algorithms are Perceptron and Adaline. Perceptron algorithm is used to train

a simple single layer NN called Perceptron. For instance, Perceptron has some input units and

one output unit. Without loss of generality, Perceptron has two input units whose (input) values

are denoted x1 and x2 and one output unit whose (output) value is denoted y with note that y is

binary {–1, 1} and bias of the output unit is θ, as seen in figure 1.3 (Kröse & Smagt, 1996, p.

23).

Figure 1.3. Perceptron topology

As a convention, we can call input unit x1, input unit x2, output unit y, and bias θ although they

are values. Propagation rule of Perceptron is (Kröse & Smagt, 1996, p. 23):
𝑥 = 𝑤1𝑥1 + 𝑤1𝑥1 + 𝜃

𝑦 = 𝑓(𝑥) = {
1 if 𝑥 > 0

−1 otherwise
 (1.10)

Which is, indeed, a binary classifier for supervised learning whose inputs are x1 and x2 and

whose output is the binary class {–1, 1}. Classification equation from the Perceptron

propagation rule is w1x1 + w2x2 + θ = 0. Weight update rule of Perceptron is:

𝑤𝑖 = 𝑤𝑖 + ∆𝑤𝑖, ∀𝑖 = 1,2̅̅ ̅̅

Let v ∈ {–1, 1} be desired value of unit y from environment or database, Perceptron learning

algorithm calculates weight deviation Δwi as follows (Kröse & Smagt, 1996, pp. 24-25):

∆𝑤𝑖 = {
𝑥𝑖𝑣 if 𝑦 ≠ 𝑣
0 if 𝑦 = 𝑣

, ∀𝑖 = 1,2̅̅ ̅̅ (1.11)

Therefore, weight update rule of Perceptron is slightly similar to Hebbian rule. Bias update rule

of Perceptron is:

𝜃 = 𝜃 + ∆𝜃

Perceptron learning algorithm calculates bias deviation Δθi as follows (Kröse & Smagt, 1996,

p. 25):

∆𝜃 = {
𝑣 if 𝑦 ≠ 𝑣
0 if 𝑦 = 𝑣

 (1.12)

For example, with initialized values w1 = 1, w2 = 1, and θ = 0, given sample x1 = 1, x2 = 2, and

v = 1, Perceptron weights and biases are updated as follows:

𝑥 = 𝑤1𝑥1 + 𝑤1𝑥1 + 𝜃 = 3

𝑦 = 1 due to 𝑥 > 0

∆𝑤1 = 0 due to 𝑦 = 𝑣 = 1

∆𝑤2 = 0 due to 𝑦 = 𝑣 = 1

∆𝜃 = 0 due to 𝑦 = 𝑣 = 1

𝑤1 = 𝑤1 + ∆𝑤1 = 1

𝑤2 = 𝑤2 + ∆𝑤2 = 1

𝜃 = 𝜃 + ∆𝜃 = 0

Adaline developed by Widrow and Hoff (Kröse & Smagt, 1996, p. 27), which is abbreviation

of adaptive linear element, is an extension of Perceptron, whose inputs and outputs are real

numbers. Of course, Adaline is a single layer NN. Therefore, the output unit y is linear

combination of the input units xi (s). Propagation rule of Adaline is (Kröse & Smagt, 1996, p.

28):

𝑦 =∑𝑤𝑖𝑥𝑖
𝑖

+ 𝜃 (1.13)

8

Obviously, activation function of Adaline is identical function. Suppose Adaline is learned

from the sample {x(p), v(p)} where each v(p) is the pth desired output which is corresponding to

the pth instance y(p) at pattern p. By default, all units are clamped and so, the clamped input sk

is the same to the input xk as sk = xk by default such that {x(p), v(p)} = {s(p), v(p)}. The total error

given this sample is the sum of squared deviations between desired outputs and outputs as

follows (Kröse & Smagt, 1996, p. 28):

𝜀(𝑤𝑖, 𝜃) =∑𝜀(𝑝)(𝑤𝑖, 𝜃)

𝑝

 (1.14)

Where (Kröse & Smagt, 1996, p. 28),

𝜀(𝑝)(𝑤𝑖, 𝜃) =
1

2
(𝑣(𝑝) − 𝑦(𝑝))

2
=
1

2
(𝑣(𝑝) − (∑𝑤𝑖𝑥𝑖

(𝑝)

𝑖

+ 𝜃))

2

 (1.15)

Note, ε(p)(wi, θ), which is function of wi and θ, is the squared error at pattern p or the pth squared

error in short. According to least squares method, the optimal (wi
, θ)T is minimizer of the

total error.
(𝑤𝑖

∗∗, 𝜃∗∗) = argmin
(𝑤𝑖,𝜃)

𝜀(𝑤𝑖, 𝜃)

By feeding successively each {x(p), v(p)} or summing all squared errors ε(p)(wi, θ), it is possible

to calculate a minimizer (wi
, θ) at each pattern p, which minimizes the pth squared error ε(p)(wi,

θ).

(𝑤𝑖
∗, 𝜃∗) = argmin

(𝑤𝑖,𝜃)
𝜀(𝑝)(𝑤𝑖, 𝜃) (1.16)

After feeding all patterns one by one, the final minimizer (wi
, θ)T is expected to minimize the

total squared error ε(wi, θ) like (wi
**, θi

**). Stochastic gradient descent (SGD) method is used

to search for the maximizer (wi
, θ)T with the target function ε(p)(wi, θ). SGD pushes candidate

solution along with a so-called descending direction multiplied with length γ of such

descending direction where descending direction is the opposite of gradient of ε(p)(wi, θ).

(𝑤𝑖, 𝜃)
(𝑝) = (𝑤𝑖, 𝜃)

(𝑝) − 𝛾∇𝜀(𝑝)(𝑤𝑖, 𝜃)

∇𝜀(𝑝)(𝑤𝑖, 𝜃) = (
𝜕𝜀(𝑝)(𝑤𝑖, 𝜃)

𝜕𝑤𝑖
,
𝜕𝜀(𝑝)(𝑤𝑖, 𝜃)

𝜕𝜃
)

 (1.17)

Note, the gradient of ε(p)(wi, θ) denoted ∇ε(p)(wi, θ) is row vector of partial derivatives of ε(p)(wi,

θ) (Kröse & Smagt, 1996, p. 28). Due to (Kröse & Smagt, 1996, pp. 28-29):

𝜕𝜀(𝑝)(𝑤𝑖, 𝜃)

𝜕𝑤𝑖
= −𝑥𝑖

(𝑝)(𝑣(𝑝) − 𝑦(𝑝))

𝜕𝜀(𝑝)(𝑤𝑖, 𝜃)

𝜕𝜃
= −(𝑣(𝑝) − 𝑦(𝑝))

We have:

∇𝜀(𝑝)(𝑤𝑖, 𝜃) = −(𝑥𝑖
(𝑝)(𝑣(𝑝) − 𝑦(𝑝)), 𝑣(𝑝) − 𝑦(𝑝))

As a result, weight deviation and bias deviation are determined based on γ and the gradient of

ε(p)(wi, θ) as follows (Kröse & Smagt, 1996, p. 29):

∆𝑤𝑖
(𝑝) = −𝛾

𝜕𝜀(𝑝)(𝑤𝑖, 𝜃)

𝜕𝑤𝑖
= 𝛾𝑥𝑖

(𝑝)(𝑣(𝑝) − 𝑦(𝑝))

∆𝜃(𝑝) = −𝛾
𝜕𝜀(𝑝)(𝑤𝑖, 𝜃)

𝜕𝜃
= 𝛾(𝑣(𝑝) − 𝑦(𝑝))

(1.18)

In NN literature, γ is called learning rate which implies speed of the learning NN algorithm.

Recall that the equation above for weigh deviation and bias deviation above is derived from

9

the squared error function ε(p)(wi, θ) at pattern p and so, it is easy to extend such equation for

the total squared error function 𝜀(𝑤𝑖, 𝜃) = ∑ 𝜀(𝑝)(𝑤𝑖, 𝜃)𝑝 over all patterns:

∆𝑤𝑖 =∑∆𝑤𝑖
(𝑝)

𝑝

=∑𝛾𝑥𝑖
(𝑝)(𝑣(𝑝) − 𝑦(𝑝))

𝑝

∆𝜃 =∑∆𝜃(𝑝)

𝑝

=∑𝛾(𝑣(𝑝) − 𝑦(𝑝))

𝑝

The extension is easy to be asserted because the squared error function ε(p)(wi, θ) and the total

squared error function ε(wi, θ) are second-order functions so that SGD is applied easily to the

two function without loss of generality. As a result, weight update rule and bias update rule of

Adaline are:

𝑤𝑖 = 𝑤𝑖 + ∆𝑤𝑖
𝜃 = 𝜃 + ∆𝜃

(1.19)

Where,

𝑦 =∑𝑤𝑖𝑥𝑖
𝑖

+ 𝜃

Obviously, Adaline learning algorithm follows delta rule.

By extending Adaline we obtain weight update rule and bias update rule for normal NN in

general case. Recall that propagation rule for normal NN is:

𝑥𝑘 =∑𝑤𝑗𝑘𝑦𝑗
𝑗

+ 𝜃𝑘

𝑦𝑘 = 𝑓(𝑥𝑘)

Without loss of generality, the pattern p is removed from the formulation, but it exists in

training sample for learning algorithms. Because propagation rule is only applied to hidden

units and output units and so only weights and biases of hidden units and output units are

learned, of course. Because only output units have desired outputs, we estimate weights and

bias of output units first and then, turn back to estimate weights and biases of hidden units

according to backward direction. Given output unit o whose output and desired output are yo

and vo, the squared error function of output unit o for normal NN is (Kröse & Smagt, 1996, p.

34):

𝜀(𝑦𝑜) = 𝜀(𝑤ℎ𝑜, 𝜃𝑜) =
1

2
(𝑣𝑜 − 𝑦𝑜)

2 (1.20)

Where,

𝑦𝑜 = 𝑓 (𝑥𝑜 =∑𝑤ℎ𝑜𝑦ℎ
ℎ

+ 𝜃𝑜)

Note that all previous outputs yh were determined. Moreover, by default, all units are clamped

and so, the clamped input so is the same to the input xo as so = xo by default. The squared error

function is also called loss function. Recall that the total squared error is the sum of many

squared errors over all patterns but here we focus on the squared error without loss of generality

because these squared errors are Lipschitz continuous second-order functions which are fed to

SGD, which will be explained in the next section mentioning convergence of SGD in detail.

𝜀(𝑦𝑜) =∑𝜀(𝑝)(𝑦𝑜)

𝑝

=∑
1

2
(𝑣𝑜

(𝑝) − 𝑦𝑜
(𝑝))

2

𝑝

In other words, here we focus on one pattern such that:

𝜀(𝑦𝑜) = 𝜀(𝑤ℎ𝑜, 𝜃𝑜) = 𝜀
(𝑝)(𝑦𝑜) =

1

2
(𝑣𝑜

(𝑝) − 𝑦𝑜
(𝑝))

2

=
1

2
(𝑣𝑜 − 𝑦𝑜)

2

10

Recall that weight deviation Δwho and bias deviation Δθo are determined based on the gradient

of the squared error function ε(yo) according to stochastic gradient descent (SGD) method for

minimizing the squared error function ε(yo).
(𝑤ℎ𝑜, 𝜃𝑜) = (𝑤ℎ𝑜 , 𝜃𝑜) − 𝛾∇𝜀(𝑤ℎ𝑜, 𝜃𝑜)

Note, the gradient of ε(yo) with regard to who and θo is row vector of partial derivatives of ε(yo)

with regard to who and θo as follows:

∇𝜀(𝑦0) = ∇𝜀(𝑤ℎ𝑜, 𝜃𝑜) = (
𝜕𝜀(𝑦0)

𝜕𝑤ℎ𝑜
,
𝜕𝜀(𝑦0)

𝜕𝜃𝑜
)

By SGD, weight deviation Δwho and bias deviation Δθo are products of learning rate and

descending direction of ε(yo) which is the opposite of the gradient ∇ε(who, θo).

∆𝑤ℎ𝑜 = −𝛾
𝜕𝜀(𝑦𝑜)

𝜕𝑤ℎ𝑜

∆𝜃𝑜 = −𝛾
𝜕𝜀(𝑦𝑜)

𝜕𝜃𝑜

Due to chain rule in derivation:
𝜕𝜀(𝑦0)

𝜕𝑤ℎ𝑜
=
𝜕𝜀(𝑦0)

𝜕𝑦𝑜

𝜕𝑦𝑜
𝜕𝑥𝑜

𝜕𝑥𝑜
𝜕𝑤ℎ𝑜

= −(𝑣𝑜 − 𝑦𝑜)𝑓
′(𝑥𝑜)𝑦ℎ

𝜕𝜀(𝑦0)

𝜕𝜃𝑜
=
𝜕𝜀(𝑦0)

𝜕𝑦𝑜

𝜕𝑦𝑜
𝜕𝑥𝑜

𝜕𝑥𝑜
𝜕𝜃𝑜

= −(𝑣𝑜 − 𝑦𝑜)𝑓
′(𝑥𝑜)

We obtain weight deviation Δwho and bias deviation Δθo of any output unit as follows:

∆𝑤ℎ𝑜 = 𝛾𝑦ℎ(𝑣𝑜 − 𝑦𝑜)𝑓
′(𝑥𝑜)

∆𝜃𝑜 = 𝛾(𝑣𝑜 − 𝑦𝑜)𝑓
′(𝑥𝑜)

(1.21)

Where f’(xo) is derivative of activation function f(.) at xo. Obviously,
𝜕𝜀(𝑦0)

𝜕𝑦𝑜
= −(𝑣𝑜 − 𝑦𝑜),

𝜕𝑦𝑜
𝜕𝑥𝑜

= 𝑓′(𝑥𝑜),
𝜕𝑥𝑜
𝜕𝑤ℎ𝑜

= 𝑦ℎ,
𝜕𝑥𝑜
𝜕𝜃𝑜

= 1

Let (Kröse & Smagt, 1996, p. 34),

𝛿0 = −
𝜕𝜀(𝑦0)

𝜕𝑥𝑜
= −

𝜕𝜀(𝑦0)

𝜕𝑦𝑜

𝜕𝑦𝑜
𝜕𝑥𝑜

= (𝑣𝑜 − 𝑦𝑜)𝑓
′(𝑥𝑜) (1.22)

The quantity δo is called error of output unit in literature. We have the succinct equation of

weight deviation Δwho and bias deviation Δθo.
∆𝑤ℎ𝑜 = 𝛾𝑦ℎ𝛿𝑜
∆𝜃𝑜 = 𝛾𝛿𝑜

 (1.23)

Recall that the equation above for weigh deviation and bias deviation is derived from the

squared error function ε(p)(yo) at pattern p and so, it is easy to extend such equation for the total

squared error function 𝜀(𝑦𝑜) = ∑ 𝜀(𝑝)(𝑦𝑜)𝑝 over all patterns:

∆𝑤ℎ𝑜 =∑∆𝑤ℎ𝑜
(𝑝)

𝑝

=∑𝛾𝑦ℎ
(𝑝)𝛿𝑜

(𝑝)

𝑝

∆𝜃𝑜 =∑∆𝜃𝑜
(𝑝)

𝑝

=∑𝛾𝛿𝑜
(𝑝)

𝑝

The extension is easy to be asserted because the squared error function ε(p)(yo) and the total

squared error function ε(yo) are second-order functions so that SGD is applied easily to the two

functions without loss of generality.

Obviously, we determine weight update rule and bias update rule for output units as follows:

𝑤ℎ𝑜 = 𝑤ℎ𝑜 + ∆𝑤ℎ𝑜

𝜃𝑜 = 𝜃𝑜 + ∆𝜃𝑜

Now we turn back to estimate weights and bias of a hidden unit h according to backward

direction with suppose that hidden unit h is connected to a set of output units o. Therefore, the

11

squared error function ε(yh) of hidden unit h is the sum of output errors ε(yo) with regard to

such set of output units, as follows:

𝜀(𝑦ℎ) =∑𝜀(𝑦𝑜)

𝑜

 (1.24)

Each output squared error ε(yo) were aforementioned:

𝜀(𝑦𝑜) =
1

2
(𝑣𝑜 − 𝑦𝑜)

2

Note,

𝑦𝑜 = 𝑓 (𝑥𝑜 =∑𝑤ℎ𝑜𝑦ℎ
ℎ

+ 𝜃𝑜)

𝑦ℎ = 𝑓 (𝑥ℎ =∑𝑤𝑗ℎ𝑦𝑗
𝑗

+ 𝜃ℎ)

By default, all units are clamped and so, the clamped input sh is the same to the input xh as sh =

xh by default. Recall that the total squared error is the sum of many squared errors over all

patterns but here we focus on the squared error without loss of generality because these squared

errors are Lipschitz continuous second-order functions which are fed to SGD.

𝜀(𝑦ℎ) =∑𝜀(𝑝)(𝑦ℎ)

𝑝

=∑∑𝜀(𝑝)(𝑦𝑜)

𝑜𝑝

Where,

𝜀(𝑝)(𝑦𝑜) =
1

2
(𝑣𝑜

(𝑝) − 𝑦𝑜
(𝑝))

2

In other words, we focus on one pattern such that:

𝜀(𝑦ℎ) = 𝜀
(𝑝)(𝑦ℎ) =∑𝜀(𝑝)(𝑦𝑜)

𝑜

=∑𝜀(𝑦𝑜)

𝑜

=∑
1

2
(𝑣𝑜 − 𝑦𝑜)

2

𝑜

Recall that weight deviation Δwjh and bias deviation Δθh are determined based on the gradient

of the squared error function ε(yh) according to stochastic gradient descent (SGD) method for

minimizing the squared error function ε(yh).

(𝑤𝑗ℎ, 𝜃ℎ) = (𝑤𝑗ℎ, 𝜃ℎ) − 𝛾∇𝜀(𝑤𝑗ℎ, 𝜃ℎ)

Note, the gradient of ε(yh) with regard to wjh and θh is row vector of partial derivatives of ε(yh)

with regard to wjh and θh as follows:

∇𝜀(𝑦ℎ) = ∇𝜀(𝑤𝑗ℎ, 𝜃ℎ) = (
𝜕𝜀(𝑦ℎ)

𝜕𝑤𝑗ℎ
,
𝜕𝜀(𝑦ℎ)

𝜕𝜃ℎ
)

It is necessary to calculate the gradient ∇ε(wjh, θh). Firstly, we have:
𝜕𝜀(𝑦ℎ)

𝜕𝑥ℎ
=
𝜕𝜀(𝑦ℎ)

𝜕𝑦ℎ

𝜕𝑦ℎ
𝜕𝑥ℎ

=
𝜕𝜀(𝑦ℎ)

𝜕𝑦ℎ
𝑓′(𝑥ℎ)

Recall that, according to propagation rule, xh is:

𝑥ℎ =∑𝑤𝑗ℎ𝑦𝑗
𝑗

+ 𝜃ℎ

𝑦ℎ = 𝑓(𝑥ℎ)

It is necessary to calculate the derivative
𝜕𝜀(𝑦ℎ)

𝜕𝑦ℎ
. Indeed, we have:

𝜕𝜀(𝑦ℎ)

𝜕𝑦ℎ
=∑

𝜕𝜀(𝑦𝑜)

𝜕𝑥𝑜

𝜕𝑥𝑜
𝜕𝑦ℎ

𝑜

Due to:

12

𝜕𝜀(𝑦𝑜)

𝜕𝑥𝑜
= −𝛿𝑜

𝜕𝑥𝑜
𝜕𝑦ℎ

=
𝜕

𝜕𝑦ℎ
(∑𝑤ℎ𝑜𝑦ℎ

ℎ

+ 𝜃𝑜) = 𝑤ℎ𝑜

We obtain:
𝜕𝜀(𝑦ℎ)

𝜕𝑦ℎ
= −∑𝑤ℎ𝑜𝛿𝑜

𝑜

This implies:
𝜕𝜀(𝑦ℎ)

𝜕𝑥ℎ
= −𝑓′(𝑥ℎ)∑𝑤ℎ𝑜𝛿𝑜

𝑜

As a result, the gradient of the squared error function ε(yh) with regard to wjh and θh is:

∇𝜀(𝑦ℎ) = ∇𝜀(𝑤𝑗ℎ, 𝜃ℎ) = (
𝜕𝜀(𝑦ℎ)

𝜕𝑤𝑗ℎ
,
𝜕𝜀(𝑦ℎ)

𝜕𝜃ℎ
)

Where,

𝜕𝜀(𝑦ℎ)

𝜕𝑤𝑗ℎ
=
𝜕𝜀(𝑦ℎ)

𝜕𝑥ℎ

𝜕𝑥ℎ
𝜕𝑤𝑗ℎ

= −𝑓′(𝑥ℎ) (∑𝑤ℎ𝑜𝛿𝑜
𝑜

)𝑦𝑗

𝜕𝜀(𝑦ℎ)

𝜕𝜃ℎ
=
𝜕𝜀(𝑦ℎ)

𝜕𝑥ℎ

𝜕𝑥ℎ
𝜕𝜃ℎ

= −𝑓′(𝑥ℎ)∑𝑤ℎ𝑜𝛿𝑜
𝑜

Note,

𝜕𝑥ℎ
𝜕𝑤𝑗ℎ

=
𝜕

𝜕𝑤𝑗ℎ
(∑𝑤𝑗ℎ𝑦𝑗

𝑗

+ 𝜃ℎ) = 𝑦𝑗

𝜕𝑥ℎ
𝜕𝜃ℎ

=
𝜕

𝜕𝜃ℎ
(∑𝑤𝑗ℎ𝑦𝑗

𝑗

+ 𝜃ℎ) = 1

Therefore, by SGD, weight deviation Δwjh and bias deviation Δθh are inversely proportional to

the gradient of the squared error function ε(yh) multiplied with learning rate as follows:

∆𝑤𝑗ℎ = −𝛾
𝜕𝜀(𝑦ℎ)

𝜕𝑤𝑗ℎ
= 𝛾𝑦𝑗𝑓

′(𝑥ℎ)∑𝑤ℎ𝑜𝛿𝑜
𝑜

∆𝜃ℎ = −𝛾
𝜕𝜀(𝑦ℎ)

𝜕𝜃ℎ
= 𝛾𝑓′(𝑥ℎ)∑𝑤ℎ𝑜𝛿𝑜

𝑜

(1.25)

Obviously, we determine weight update rule and bias update rule for hidden units as follows:

𝑤𝑗ℎ = 𝑤𝑗ℎ + ∆𝑤𝑗ℎ

𝜃ℎ = 𝜃ℎ + ∆𝜃ℎ

In general, given any output unit h and any hidden unit o, weight update rule and bias update

rule in the most general case of learning NN are represented as follows:
∆𝑤ℎ𝑜 = 𝛾𝑦ℎ𝛿𝑜
∆𝜃𝑜 = 𝛾𝛿𝑜
∆𝑤𝑗ℎ = 𝛾𝑦𝑗𝛿ℎ
∆𝜃ℎ = 𝛾𝛿ℎ

 (1.26)

Where,
𝛿𝑜 = (𝑣𝑜 − 𝑦𝑜)𝑓

′(𝑥𝑜)

𝛿ℎ = 𝑓′(𝑥ℎ)∑𝑤ℎ𝑜𝛿𝑜
𝑜

 (1.27)

13

Note,

𝑦𝑜 = 𝑓 (𝑥𝑜 =∑𝑤ℎ𝑜𝑦ℎ
ℎ

+ 𝜃𝑜)

𝑦ℎ = 𝑓 (𝑥ℎ =∑𝑤𝑗ℎ𝑦𝑗
𝑗

+ 𝜃ℎ)

The quantity δh is called error of hidden unit in literature. The equation above is an extension

of delta rule.

Recall that the equation above for weigh deviation and bias deviation is derived from the

squared error function ε(p)(yh) at pattern p and so, it is easy to extend such equation for the total

squared error function 𝜀(𝑦ℎ) = ∑ 𝜀(𝑝)(𝑦ℎ)𝑝 over all patterns:

∆𝑤ℎ𝑜 =∑∆𝑤ℎ𝑜
(𝑝)

𝑝

=∑𝛾𝑦ℎ
(𝑝)𝛿𝑜

(𝑝)

𝑝

∆𝜃𝑜 =∑∆𝜃𝑜
(𝑝)

𝑝

=∑𝛾𝛿𝑜
(𝑝)

𝑝

∆𝑤𝑗ℎ =∑∆𝑤𝑗ℎ
(𝑝)

𝑝

=∑𝛾𝑦𝑗
(𝑝)𝛿ℎ

(𝑝)

𝑝

∆𝜃ℎ =∑∆𝜃ℎ
(𝑝)

𝑝

=∑𝛾𝛿ℎ
(𝑝)

𝑝

Where,

𝛿𝑜
(𝑝) = (𝑣𝑜

(𝑝) − 𝑦𝑜
(𝑝)) 𝑓′ (𝑥𝑜

(𝑝))

𝛿ℎ
(𝑝) = 𝑓′ (𝑥ℎ

(𝑝))∑𝑤ℎ𝑜
(𝑝)𝛿𝑜

(𝑝)

𝑜

The extension is easy to be asserted because the squared error function ε(p)(yh) and the total

squared error function ε(yh) are second-order functions so that SGD is applied easily to the two

functions without loss of generality.

For learning any previous unit j connecting to unit k, the backward estimation is done

similarly with note that unit k plays the role of output unit for unit j. The essence of a learning

NN algorithm is back propagation process from the last layer (output layer) backwards the first

layer (input layer). The final stage of this common learning NN algorithm is to specify the

derivative f’(x) of activation function, which depends on concrete applications. A popular

activation function is sigmoid function f(x) = 1 / (1 + exp(–x) whose derivative is:

𝑓′(𝑥𝑘) =
𝑒−𝑥𝑘

(1 + 𝑒−𝑥𝑘)2
=

1

1 + 𝑒−𝑥𝑘
(1 −

1

1 + 𝑒−𝑥𝑘
) = 𝑓(𝑥𝑘)(1 − 𝑓(𝑥𝑘)) = 𝑦𝑘(1 − 𝑦𝑘)

Therefore, weight update rule and bias update rule for sigmoid function are:
∆𝑤ℎ𝑜 = 𝛾𝑦ℎ𝛿𝑜
∆𝜃𝑜 = 𝛾𝛿𝑜
∆𝑤𝑗ℎ = 𝛾𝑦𝑗𝛿ℎ
∆𝜃ℎ = 𝛾𝛿ℎ

Where,

𝛿𝑜 = (𝑣𝑜 − 𝑦𝑜)𝑦𝑜(1 − 𝑦𝑜)

𝛿ℎ = 𝑦ℎ(1 − 𝑦ℎ)∑𝑤ℎ𝑜𝛿𝑜
𝑜

 (1.28)

Recall that δo and δh are also called errors of output unit and hidden unit, respectively.

𝐸𝑟𝑟𝑜 = 𝛿𝑜

14

𝐸𝑟𝑟ℎ = 𝛿ℎ

Now it is easy to implement an iteration algorithm for learning NN with sigmoid function

(logistic function), which is called backpropagation algorithm. Moreover, such

backpropagation algorithm is the representation of traditional learning NN algorithm and so

please pay attention to it. Recall that a learning NN process is also called training NN process

in NN literature. For easily understandable explanation, there are some new notations. Given

current unit j and n previous units i connecting to unit j, let Oi, Ij and Oj be output of unit i,

input of unit j, and output of unit j. Obviously, we have Oi = yi, Ij = xj = sj, and Oj = yj. These

notations are necessary for describing pseudo code of backpropagation algorithm because

output units and hidden units in some cases are treated similarly in the algorithm. Therefore,

the convention of input indices i, hidden indices h, and output indices o may not be applied

here. Propagation rule is written according to these notations (Han & Kamber, 2006, p. 331)

for computing the output value of a unit as follows:

𝐼𝑗 =∑𝑤𝑖𝑗𝑂𝑖

𝑛

𝑖=1

+ 𝜃𝑗

𝑂𝑗 =
1

1 + 𝑒−𝐼𝑗

For backpropagation algorithm, weight update rule and bias update rule of any unit j are

represented as follows:

∆𝑤𝑖𝑗 = 𝛾𝑂𝑖𝐸𝑟𝑟𝑗

∆𝜃𝑜 = 𝛾𝐸𝑟𝑟𝑗

Given actual value (desired value) Vj of unit j and a set of units k to which unit j connects, we

have:

𝐸𝑟𝑟𝑗 = {

(𝑉𝑗 − 𝑂𝑗)𝑂𝑗(1 − 𝑂𝑗) for output unit 𝑗

𝑂𝑗(1 − 𝑂𝑗)∑𝑤𝑗𝑘𝐸𝑟𝑟𝑘
𝑘

 for hidden unit 𝑗

Backpropagation algorithm (backward propagation algorithm) is described here along with an

example of document classification (Nguyen, 2022), which is implementation of propagation

rule, weight update rule, and bias update rule. Suppose a sample consists of many data rows

and each row has many attributes. There is a so-called class attribute which is used to group

(classify) rows. All attributes except the class attribute are often represented as input units in

NN and the class attribute is often represented as output unit in NN. When feedforward NN is

used to classify document then, rows represent documents and non-class attributes are terms;

in this case, the sample becomes a matrix nxp, which have n rows and p columns with respect

to n document vectors and p terms. This sample for document classification is called corpus.

Backpropagation algorithm (Han & Kamber, 2006, pp. 330-333) is also a famous supervised

learning algorithm for classification, besides learning feedforward NN. Therefore,

backpropagation algorithm here is applied to classify the corpus as an example of supervised

learning by NN (Nguyen, 2022). It processes iteratively data rows in training corpus and

compares network’s prediction for each row to actual class of the row. For each time it feeds a

training row, weights are modified in order to minimize error between network’s prediction

and actual class. The modifications are made in backward direction, from output layer through

hidden layer down to input layer. Backpropagation algorithm includes four main steps such as

initializing the weights, propagating input values forward, propagating errors backward, and

updating weights and biases (Han & Kamber, 2006, pp. 330-333). The following table

describes backpropagation algorithm for learning NN by pseudo-code like programming

language.

15

1. Initializing the weights: Weights wij of all connections between units are initialized as

random real numbers which should be in space [0, 1]. Each bias θi associated to each unit is

also initialized, which is 0 as usual.

While terminating condition is not satisfied

For each data row in corpus

2. Propagating input values forward: Training data row is fed to input layer.

For each input unit i, its input value denoted Ii and its output value denoted Oi are

the same.

𝑂𝑖 = 𝐼𝑖
End for each input unit i

For each hidden unit j or output unit j, its input value Ij is the weighted sum of all

output values of units from previous layer. The bias is also added to this weighted

sum.

𝐼𝑗 =∑𝑤𝑖𝑗𝑂𝑖
𝑖

+ 𝜃𝑗

Where wij is the weight of connection from unit i in previous layer to unit j, Oi is

output value of unit i from previous layer and θj is bias of unit j. The output value

of hidden unit or output unit Oj is computed by applying activation function to its

input value (weighted sum). Suppose activation function is sigmoid function. We

have:

𝑂𝑗 =
1

1 + 𝑒−𝐼𝑗

End for each hidden unit j or output unit j

3. Propagating errors backward: The error is propagated backward by updating

the weights and biases to reflect the error of network’s prediction.

For each output unit j, its error Errj is computed as below:

𝐸𝑟𝑟𝑗 = 𝑂𝑗(1 − 𝑂𝑗)(𝑉𝑗 − 𝑂𝑗)

Where Vj is the real value of unit j in training corpus; in other words, Vj is the

actual class. This error is the δo aforementioned.

End for each output unit j

For each hidden unit j from the last hidden layer to the first hidden layer, the

weighted sum of the errors of other units connected to it in the next higher layer is

considered when its error is computed. So the error of hidden unit j is computed as

below:

𝐸𝑟𝑟𝑗 = 𝑂𝑗(1 − 𝑂𝑗)∑𝐸𝑟𝑟𝑘𝑤𝑗𝑘
𝑘

Where wjk is the weight of the connection from hidden unit j to a unit k in next

higher layer and Errk is the error of unit k. This error is the δh aforementioned.

End for each hidden unit j

4. Updating weights and biases is based on the errors.

For each weight wij over the whole NN. The weights are updated so as to minimize

the errors. Given Δwij is the change in weight wij, the weight wij is updated as below:

∆𝑤𝑖𝑗 = 𝛾 ∗ 𝐸𝑟𝑟𝑗𝑂𝑖

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + ∆𝑤𝑖𝑗

16

Where γ is learning rate ranging from 0 to 1. Learning rate helps to avoid getting

stuck at a local minimum in decision space and helps to approach to a global

minimum (Han & Kamber, 2006, pp. 332-333).

End for each weight wij in the whole NN

For each bias θj over the whole NN. The bias θj of hidden or output unit j is updated

as below:

∆𝜃𝑗 = 𝛾 ∗ 𝐸𝑟𝑟𝑗

𝜃𝑗 = 𝜃𝑗 + ∆𝜃𝑗

Where γ is learning rate ranging from 0 to 1 (0 < γ ≤ 1).

End for each bias θj

End for each data row in corpus

End while terminating condition is not satisfied with note that there are two common

terminating conditions:

- All Δwij in some iteration are smaller than given threshold.

- Or, the number of iterations is large enough.

- Or, iterating through all possible training data rows.

Table 1.1. Backpropagation algorithm for learning NN with sigmoid activation

The trained (learned) NN derived from backpropagation algorithm is the classifier of NN. Now

the application of NN into document classification is described right here.

Given a corpus (sample), in which there are a set of classes C = {computer science, math},

and a set of terms T = {computer, programming language, algorithm, derivative}. Every

document (vector) is represented as a set of input variables. Each term is mapped to an input

variable whose value is term frequency (tf). So the input layer consists of four input units:

“computer”, “programming language”, “algorithm” and “derivative”.

The hidden layer is constituted of two hidden units: “computer science”, “math”. Values of

these hidden units range in interval [0, 1]. The output layer has only one unit named “document

class” whose value also ranges in interval [0, 1] where value 1 denotes that document belongs

totally to “computer science” class and value 0 denotes that document belongs totally to “math”

class. The evaluation function used in network is sigmoid function. Suppose our original

topology is feedforward NN in which all weights are initialized arbitrarily and all biases are

zero. Note that such feedforward NN shown in following figure is the one that has no cycle in

its model.

Figure 1.4. The NN for document classification

Note that units C, P, A and D denote terms “computer”, “programming language”, “algorithm”,

and “derivative”, respectively. Units S and M denote “computer science” class and “math” class,

respectively. Unit L denotes “document class”. It is easy to infer that if output value of unit L

is greater than 0.5 then, it is likely that document belongs to “computer science” class.

17

Suppose the given corpus 𝒟 = {doc1.txt, doc2.txt, doc3.txt, doc4.txt, doc5.txt, doc6.txt}.

The training corpus (training data) is shown in following table in which cell (i, j) indicates the

number of times that term j (column j) occurs in document i (row i); in other words, each cell

represents a term frequency and each row represents a document vector.

 computer
programming

language
algorithm derivative class

doc1.txt 5 3 1 1 1

doc2.txt 5 5 40 50 0

doc3.txt 20 5 20 55 0

doc4.txt 20 55 5 20 1

doc5.txt 15 15 40 30 0

doc6.txt 35 10 45 10 1

Table 1.2. Training corpus – Term frequencies of documents

Note that the “class” column has binary values where value 1 expresses “computer science”

class and value 0 expresses “math” class.

It is required to normalize term frequencies. Let tf11=5, tf12=3, tf13=1, and tf14=1 be the

frequencies of terms “computer”, “programming language”, “algorithm”, and “derivative”,

respectively of document “doc1.txt”, for example, these terms are normalized as follows:

𝑡𝑓11 =
𝑡𝑓11

𝑡𝑓11 + 𝑡𝑓12 + 𝑡𝑓13 + 𝑡𝑓14
=

5

5 + 3 + 1 + 1
= 0.5

𝑡𝑓12 =
𝑡𝑓12

𝑡𝑓11 + 𝑡𝑓12 + 𝑡𝑓13 + 𝑡𝑓14
=

3

5 + 3 + 1 + 1
≈ 0.3

𝑡𝑓13 =
𝑡𝑓13

𝑡𝑓11 + 𝑡𝑓12 + 𝑡𝑓13 + 𝑡𝑓14
=

1

5 + 3 + 1 + 1
= 0.1

𝑡𝑓14 =
𝑡𝑓14

𝑡𝑓11 + 𝑡𝑓12 + 𝑡𝑓13 + 𝑡𝑓14
=

1

5 + 3 + 1 + 1
= 0.1

Following table shows normalized term frequencies in corpus 𝒟.

 computer programming

language

algorithm derivative
class

D1 0.5 0.3 0.1 0.1 1

D2 0.05 0.05 0.4 0.5 0

D3 0.2 0.05 0.2 0.55 0

D4 0.2 0.55 0.05 0.2 1

D5 0.15 0.15 0.4 0.3 0

D6 0.35 0.1 0.45 0.1 1

Table 1.3. Training corpus – Normalized term frequencies

Data rows in the table above representing normalized document vectors are fed to our original

NN in the aforementioned figure for supervised learning. Backpropagation algorithm is used

to train network, as described in the aforementioned table.

Let IC, IP, IA, ID, IS, IM, and IL be input values of units C, P, A, D, S, M, and L. Let OC, OP,

OA, OD, OS, OM, and OL be output values of units C, P, A, D, S, M, and L. Let θS, θM, and θL be

biases of units S, M, and L. Suppose all biases are initialized by zero, we have θS=θM=θL=0. Let

wCS, wCM, wPS, wPM, wAS, wAM, wDS, wDM, wSL, and wML be weights of connections (arcs) from C

to S, from C to M, from P to S, from P to M, from A to S, from A to M, from D to S, from D to

M, from S to L, and from M to L. According to the origin neural network depicted in the figure

above, we have wCS=0.7, wCM=0.3, wPS=0.6, wPM=0.4, wAS=0.4, wAM=0.6, wDS=0.3, wDM=0.7,

wSL=0.8, and wML=0.2.

From the corpus shown in table above, the first document D1=(0.5, 0.3, 0.1, 0.1) is fed into

backpropagation algorithm. It is required to compute the output values OS, OM, OL and update

18

connection weights. For simplicity, activation function is sigmoid function 𝑓(𝑥) =
1

1+𝑒−𝑥
.

According to propagation rule (Han & Kamber, 2006, p. 331) for computing output value of a

unit, we have:

OC=IC=0.5

OP=IP=0.3

OA=IA=0.1

OD=ID=0.1

𝐼𝑆 = 𝑤𝐶𝑆𝑂𝐶 + 𝑤𝑃𝑆𝑂𝑃 + 𝑤𝐴𝑆𝑂𝐴 + 𝑤𝐷𝑆𝑂𝐷 + 𝜃𝑠
= 0.7 ∗ 0.5 + 0.6 ∗ 0.3 + 0.4 ∗ 0.1 + 0.3 ∗ 0.1 + 0 = 0.6

𝑂𝑆 = 𝜇(𝐼𝑆) =
1

1 + exp(−𝐼𝑠)
=

1

1 + exp(−0.6)
≈ 0.65

𝐼𝑀 = 𝑤𝐶𝑀𝑂𝐶 + 𝑤𝑃𝑀𝑂𝑃 + 𝑤𝐴𝑀𝑂𝐴 +𝑤𝐷𝑀𝑂𝐷 + 𝜃𝑀
= 0.3 ∗ 0.5 + 0.4 ∗ 0.3 + 0.6 ∗ 0.1 + 0.7 ∗ 0.1 + 0 = 0.4

𝑂𝑀 = 𝜇(𝐼𝑀) =
1

1 + exp(−𝐼𝑀)
=

1

1 + exp(−0.4)
≈ 0.6

𝐼𝐿 = 𝑤𝑆𝐿𝑂𝑆 + 𝑤𝑀𝐿𝑂𝑀 + 𝜃𝐿 = 0.8 ∗ 0.65 + 0.2 ∗ 0.6 + 0 ≈ 0.64

𝑂𝐿 =
1

1 + exp(−𝐼𝐿)
=

1

1 + exp(−0.64)
≈ 0.65

Let VL be value of output unit L. Because D1 belongs to “computer science” class, we have:

𝑉𝐿 = 1

Let ErrL, ErrS, and ErrM be errors of units L, S, and M, respectively. According to the equation

for updating error of output unit, we have:

𝐸𝑟𝑟𝐿 = 𝑂𝐿(1 − 𝑂𝐿)(𝑉𝐿 − 𝑂𝐿) = 0.65 ∗ (1 − 0.65) ∗ (1 − 0.65) ≈ 0.08

According to the equation for updating error of hidden units, we have:

𝐸𝑟𝑟𝑆 = 𝑂𝑆(1 − 𝑂𝑆)𝐸𝑟𝑟𝐿𝑊𝑆𝐿 = 0.65 ∗ (1 − 0.65) ∗ 0.08 ∗ 0.8 ≈ 0.01

𝐸𝑟𝑟𝑀 = 𝑂𝑀(1 − 𝑂𝑀)𝐸𝑟𝑟𝐿𝑊𝑀𝐿 = 0.6 ∗ (1 − 0.6) ∗ 0.08 ∗ 0.2 ≈ 0

According to the equation for updating connection weights given learning rate γ=1, we have:

𝑤𝐶𝑆 = 𝑤𝐶𝑆 + ∆𝑤𝐶𝑆 = 𝑤𝐶𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆𝑂𝐶 = 0.7 + 1 ∗ 0.01 ∗ 0.5 ≈ 0.71

𝑤𝐶𝑀 = 𝑤𝐶𝑀 + ∆𝑤𝐶𝑀 = 𝑤𝐶𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀𝑂𝐶 = 0.3 + 1 ∗ 0 ∗ 0.5 ≈ 0.3

𝑤𝑃𝑆 = 𝑤𝑃𝑆 + ∆𝑤𝑃𝑆 = 𝑤𝑃𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆𝑂𝑃 = 0.6 + 1 ∗ 0.01 ∗ 0.3 ≈ 0.6

𝑤𝑃𝑀 = 𝑤𝑃𝑀 + ∆𝑤𝑃𝑀 = 𝑤𝑃𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀𝑂𝑃 = 0.4 + 1 ∗ 0 ∗ 0.3 ≈ 0.4

𝑤𝐴𝑆 = 𝑤𝐴𝑆 + ∆𝑤𝐴𝑆 = 𝑤𝐴𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆𝑂𝐴 = 0.4 + 1 ∗ 0.01 ∗ 0.1 ≈ 0.4

𝑤𝐴𝑀 = 𝑤𝐴𝑀 + ∆𝑤𝐴𝑀 = 𝑤𝐴𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀𝑂𝐴 = 0.6 + 1 ∗ 0 ∗ 0.1 ≈ 0.6

𝑤𝐷𝑆 = 𝑤𝐷𝑆 + ∆𝑤𝐷𝑆 = 𝑤𝐷𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆𝑂𝐷 = 0.3 + 1 ∗ 0.01 ∗ 0.1 ≈ 0.3

𝑤𝐷𝑀 = 𝑤𝐷𝑀 + ∆𝑤𝐷𝑀 = 𝑤𝐷𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀𝑂𝐷 = 0.7 + 1 ∗ 0 ∗ 0.1 ≈ 0.7

𝑤𝑆𝐿 = 𝑤𝑆𝐿 + ∆𝑤𝑆𝐿 = 𝑤𝑆𝐿 + 1 ∗ 𝐸𝑟𝑟𝐿𝑂𝑆 = 0.8 + 1 ∗ 0.08 ∗ 0.65 ≈ 0.85

𝑤𝑀𝐿 = 𝑤𝑀𝐿 + ∆𝑤𝑀𝐿 = 𝑤𝑀𝐿 + 1 ∗ 𝐸𝑟𝑟𝐿𝑂𝑀 = 0.2 + 1 ∗ 0.08 ∗ 0.6 ≈ 0.25

According to the equation for updating biases θS, θM, and θL, we have:

𝜃𝑆 = 𝜃𝑆 + ∆𝜃𝑆 = 𝜃𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆 = 0 + 1 ∗ 0.01 = 0.01

𝜃𝑀 = 𝜃𝑀 + ∆𝜃𝑀 = 𝜃𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀 = 0 + 1 ∗ 0 = 0

𝜃𝐿 = 𝜃𝐿 + ∆𝜃𝐿 = 𝜃𝐿 + 1 ∗ 𝐸𝑟𝑟𝐿 = 0 + 1 ∗ 0.08 = 0.08

In similar way, remaining documents D2=(0.05, 0.05, 0.4, 0.5), D3=(0.05, 0.05, 0.4, 0.5) ,

D4=(0.2, 0.05, 0.2, 0.55), D5=(0.15, 0.15, 0.4, 0.3), and D6=(0.35, 0.1, 0.45, 0.1) are fed into

backpropagation algorithm so as to calculate the final output values OS, OM, OL and update

final connection weights. The following table shows results from this training process based

on backpropagation algorithm.

 Inputs Outputs Weights Biases

D1
IC=0.5

IP=0.3

OS=0.65

OM=0.60

wCS=0.70

wCM=0.30

θS=0.01

θM=0.00

19

IA=0.1

ID=0.1

OL=0.65 wPS=0.60

wPM=0.40

wAS=0.40

wAM=0.60

wDS=0.30

wDM=0.70

wSL=0.85

wML=0.25

θL=0.08

D2

IC=0.05

IP=0.05

IA=0.40

ID=0.50

OS=0.60

OM=0.65

OL=0.71

wCS=0.70

wCM=0.30

wPS=0.60

wPM=0.40

wAS=0.39

wAM=0.59

wDS=0.29

wDM=0.69

wSL=0.76

wML=0.40

θS=–0.02

θM=–0.01

θL=–0.07

D3

IC=0.05

IP=0.05

IA=0.40

ID=0.50

OS=0.60

OM=0.64

OL=0.67

wCS=0.70

wCM=0.30

wPS=0.60

wPM=0.40

wAS=0.38

wAM=0.59

wDS=0.27

wDM=0.68

wSL=0.68

wML=0.41

θS=–0.04

θM=–0.03

θL=–0.22

D4

IC=0.20

IP=0.05

IA=0.20

ID=0.55

OS=0.62

OM=0.60

OL=0.62

wCS=0.70

wCM=0.30

wPS=0.61

wPM=0.41

wAS=0.38

wAM=0.59

wDS=0.27

wDM=0.68

wSL=0.73

wML=0.55

θS=–0.03

θM=–0.02

θL=–0.13

D5

IC=0.15

IP=0.15

IA=0.40

ID=0.30

OS=0.60

OM=0.63

OL=0.65

wCS=0.70

wCM=0.30

wPS=0.61

wPM=0.40

wAS=0.37

wAM=0.58

wDS=0.27

wDM=0.68

wSL=0.64

wML=0.41

θS=–0.05

θM=–0.04

θL=–0.28

D6
IC=0.35

IP=0.10

OS=0.61

OM=0.61

wCS=0.70

wCM=0.30

θS=–0.04

θM=–0.03

20

IA=0.45

ID=0.10

OL=0.60 wPS=0.61

wPM=0.40

wAS=0.38

wAM=0.59

wDS=0.27

wDM=0.68

wSL=0.70

wML=0.56

θL=–0.18

Table 1.4. Results from training process based on backpropagation algorithm

According to the training results shown in the table above, the weights and biases of origin NN

are changed. It means that NN is already trained. Thus, the following figure expresses the NN

learned by backpropagation algorithm.

Figure 1.5. Trained neural network

The trained NN depicted in the figure above is the typical classifier of classification method

based on neural work.

Suppose the numbers of times that terms “computer”, “programming language”,

“algorithm” and “derivative” occur in document D are 40, 30, 10, and 20, respectively. We

need to determine which class document D is belongs to. D is normalized as term frequency

vector.

D = (0.4, 0.3, 0.1, 0.2)

Recall that the trained neural network depicted in the figure above has connection weights

wCS=0.7, wCM=0.3, wPS=0.61, wPM=0.4, wAS=0.38, wAM=0.59, wDS=0.27, wDM=0.68, wSL=0.7,

wML=0.56 and biases θS=–0.04, θM=–0.03, θL=–0.18. It is required to compute the output values

OS, OM, and OL. For simplicity, activation function is sigmoid function 𝜇(𝑥) =
1

1+𝑒−𝑥
.

According to the equation (Han & Kamber, 2006, p. 331) for computing the output value of a

unit, we have:

𝐼𝑆 = 𝑤𝐶𝑆𝑂𝐶 + 𝑤𝑃𝑆𝑂𝑃 + 𝑤𝐴𝑆𝑂𝐴 + 𝑤𝐷𝑆𝑂𝐷 + 𝜃𝑠
= 0.7 ∗ 0.4 + 0.61 ∗ 0.3 + 0.38 ∗ 0.1 + 0.27 ∗ 0.2 − 0.04 ≈ 0.52

𝑂𝑆 = 𝜇(𝐼𝑆) =
1

1 + exp(−𝐼𝑠)
=

1

1 + exp(−0.52)
≈ 0.63

𝐼𝑀 = 𝑤𝐶𝑀𝑂𝐶 + 𝑤𝑃𝑀𝑂𝑃 + 𝑤𝐴𝑀𝑂𝐴 +𝑤𝐷𝑀𝑂𝐷 + 𝜃𝑀
= 0.3 ∗ 0.4 + 0.4 ∗ 0.3 + 0.59 ∗ 0.1 + 0.68 ∗ 0.2 − 0.03 ≈ 0.41

𝑂𝑀 = 𝜇(𝐼𝑀) =
1

1 + exp(−𝐼𝑀)
=

1

1 + exp(−0.41)
≈ 0.6

𝐼𝐿 = 𝑤𝑆𝐿𝑂𝑆 + 𝑤𝑆𝑀𝑂𝑀 + 𝜃𝐿 = 0.7 ∗ 0.63 + 0.56 ∗ 0.6 − 0.18 ≈ 0.6

𝑂𝐿 =
1

1 + exp(−𝐼𝐿)
=

1

1 + exp(−0.6)
≈ 0.65

21

Because OL is greater than 0.5, it is more likely that document D = (0.4, 0.3, 0.1, 0.2) belongs

to class “computer science”.

2. Convergence of learning algorithm
Recall that there are two rules for learning NN such as Hebbian rule and delta rule where

Hebbian rule is inspired from Hebbian theory developed by Donald Hebb in his 1949 book

“The Organization of Behavior” and delta rule is derived from stochastic gradient descent

(SGD) method in solving optimization problem. Moreover, delta rule can be considered as an

improved Hebbian rule. Backpropagation algorithm is based on SGD for updating weights and

biases. In this section we research convergence of Hebbian rule and delta rule (also SGD). The

NN convergence implies that a concrete learning algorithm like propagation algorithm will

converge to optimal solutions that are optimal weights after a limit number of iterations.

Therefore, the NN convergence is stability of learning NN algorithm. Essentially, Hebbian rule

and delta rule explain the same meaningfulness. Although weights and biases are the main

objects of learning algorithms, other parameters affecting the convergence such as learning rate

are discussed too. These parameters are called augmented parameters.

Hebbian theory (Wikipedia, Hebbian theory, 2003) is a neuropsychological theory in which

Hebb stated that when two neurons (neural cells) communicate together via a synapsis,

activities of the presynaptic cell stimulate the postsynaptic cell. In other words, the synapsis of

two neurons will be consolidated if the two neurons are stimulated simultaneously and

frequently. This phenomenon is called synaptic plasticity. Therefore, Hebbian rule in machine

learning will increase connection weight of two units proportional to two values of the two

units (Wikipedia, Hebbian theory, 2003).

𝑤𝑗𝑘 = 𝑥𝑗𝑥𝑘

The weight wjk represents the synaptic plasticity of the presynaptic unit j and the postsynaptic

unit k. Hebbian rule for learning NN is specified exactly as follows:

∆𝑤𝑗𝑘 = 𝛾𝑦𝑗𝑦𝑘

Note, the positive constant γ which is called learning rate specifies the power of proportional

whereas yj and yk are outputs of unit j and unit k. Of course, weight deviation Δwjk represents

the synaptic plasticity too. The convergence of Hebbian rule implies that that a concrete

learning algorithm that follows Hebbian rule will converge to optimal weights after a limit

number of iterations. For easily understandable explanation and without loss of generality,

given a single layer NN with output unit (output value) y and n input units (input values) xi like

aforementioned Perceptron. Suppose bias is zero, propagation rule is:

𝑦 =∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

We will study the convergence of the following Hebbian rule for learning weight vector w =

(w1, w2,…, wn)
T with x = (x1, x2,…, xn)

T.

𝑤𝑖 = 𝑤𝑖 + ∆𝑤𝑖 = 𝑤𝑖 + 𝑥𝑖𝑦

There is an theorem in (Kröse & Smagt, 1996) stated that if there exists a set of optimal weights

{w*} so that propagation rule y = (w*)Tx is satisfied then any iterative learning algorithm that

converges to an optimal weight (may be or may not be w*) has a limited number of iterations.

Suppose wi is initialized 0 and so, after t time points over t iterations of the iterative learning

algorithm, by recurring calculation wi at time point t as follows:

𝑤𝑖(𝑡) = 𝑡𝑥𝑖𝑦

Where,

𝑦 = (𝒘∗)𝑇𝒙 =∑𝑤𝑖
∗𝑥𝑖

𝑛

𝑖=1

22

So, we have:

𝒘(𝑡) = 𝑡𝑦𝒙

Suppose the optimal weight of the iterative learning algorithm is denoted as w*, cosine of w(t)

and w* is:

cos(𝒘(𝑡),𝒘∗) =
𝑡𝑦𝒙𝑇𝒘∗

√𝑡𝑦|𝒙||𝒘∗|
= √𝑡𝑦

𝒙𝑇𝒘∗

|𝒙||𝒘∗|
= √𝑡

(𝒙𝑇𝒘∗)
3
2

|𝒙||𝒘∗|

If t approaches +∞ then cosine of w(t) and w* approaches +∞, which raises a contradiction.

lim
𝑡→∞

cos(𝒘(𝑡),𝒘∗) = +∞ > 1

Therefore, the iterative learning algorithm must stop at some finite t iterations with the optimal

weight w*. This proof which is also described in (Kröse & Smagt, 1996, pp. 25-26) only asserts

the iterative limitation of any converged algorithm but it does not assert existence of the optimal

solution w*. So, we need to research the delta rule which is an improved version of Hebbian

rule.

Recall that delta rule is derived from stochastic gradient descent (SGD) method which is

known as a stochastic approximation of gradient descend method on which the traditional

backpropagation algorithm is based. Here, the convergence of delta rule implies the

convergence of SGD. Extended delta rule derived from SGD is:

∆𝑤𝑗𝑘 = 𝛾𝑦𝑗𝛿𝑘

∆𝜃𝑘 = 𝛾𝛿𝑘

Where,

𝛿𝑘 = {

(𝑣𝑘 − 𝑦𝑘)𝑓
′(𝑥𝑘) for ouput unit

𝑓′(𝑥𝑘)∑𝑤𝑘𝑙𝛿𝑙
𝑙

 for hidden unit

Essentially, Hebbian rule and delta rule explain the same meaningfulness where the extended

delta rule is more general and hence, please pay more attention to the convergence of extended

delta rule. Now we skim through SGD which is stochastic approximation of gradient descent

(GD) method. Given target function f(w), GD is an iterative algorithm that moves the parameter

w along descending direction which is the opposite of gradient of f(w) at every time point (or

iteration) t until reaching the optimizer w*.

𝒘𝑡+1 = 𝒘𝑡 − 𝛾𝑡∇𝑓(𝒘𝑡)
Note, γt is length of descending direction at time point t, which is also called learning rate.

Moreover, f(w) receives some data x as input.

𝑓(𝒘) = 𝑓(𝒘|𝒙)
For learning NN with weight update rule and bias update rule, f(w) is the squared error function

ε(.) whose parameters are weights. In general case w is vector. When f(w) is averaged sum of

a large number of member target functions fi(wi) (De Sa, 2021, p. 1):

𝑓(𝒘) =
1

𝑛
∑𝑓𝑖(𝒘𝑖)

𝑛

𝑖=1

Where w is composed of many parts as w = (w1, w2,…, wn)
T. However, without loss of

generality, we can denote fi(w) by convention that fi(w) only acts on its part wi while considering

other parts wj where j≠i as constants or ignoring them in its analytic formulation, as follows:

𝑓(𝒘) =
1

𝑛
∑𝑓𝑖(𝒘)

𝑛

𝑖=1

 (2.1)

Anyhow, an important aspect is that the gradient of f(w) is always averaged sum of gradients

of all fi(w) as follows:

23

∇𝑓(𝒘) =
1

𝑛
∑∇𝑓𝑖(𝒘)

𝑛

𝑖=1

 (2.2)

If n is too large for a very complicated gradient ∇f(w) to be calculated at one time then, SGD

is a variant of GD by replacing the whole gradient ∇f(w) by every member gradient ∇fi(w).

Suppose there is a sample {x1, x2,…, xN,…} where xi is corresponding to some fk(.), SGD will

feed these xi (s) one by one or batch by batch (De Sa, 2021, p. 1) for each time point t to learn

w.

𝒘𝑡+1 = 𝒘𝑡 − 𝛾𝑡∇𝑓�̂�𝑡(𝒘𝑡) (2.3)

Where 𝑓�̂�𝑡(.) is some fk(.) corresponding to the data xi in the sample. For instance, if 𝑖̂𝑡 = k given

data point xi at time point t then, xi will be fed to the member function fk(wt) = fk(wt | xi) at time

point t. Moreover, if xi is fed to a set of m member functions, for example {f1(), f2(.),…., fm(.)}

at one time then, it is possible to consider that xi is fed m times, each time point for one member

function, without loss of generality. Because 𝑖̂𝑡 is selected among n member functions fi(w),

probability distribution of 𝑖̂𝑡 is even as follows (De Sa, 2021, p. 2):

𝑃(𝑖̂𝑡) =
1

𝑛
, ∀𝑖̂𝑡

This probability distribution is called selective distribution. It is more important that wt follows

a so-called stochastic distribution below:

𝒘𝑡 ∼ 𝑔(𝒘𝑡)
The stochastic distribution g(wt) implies wt is moved randomly because data xi is provided

randomly for SGD. Shortly, the stochastic process of SGD is represented by both stochastic

distribution and selective distribution, but stochastic distribution is more important because

data will be provided randomly by format of data stream in real time applications. The iterative

feeding process is very important because it makes SGD adaptive to real time applications

where large data is provided by series of small packets. Moreover, these packets do not cover

all fi(w) at one providing time. Besides, the iterative feeding process makes SGD feasible to

calculate a gradient ∇𝑓�̂�𝑡(𝒘𝑡) with some data xi (or package xi) at one time.

In order to assure the convergence of SGD, we need to research Lipschitz continuity. Recall

that if function fi(.) is Lipschitz continuous then, given any two vector w1 and w2 we have

(Wikipedia, Lipschitz continuity, 2001):
‖𝑓𝑖(𝒘1) − 𝑓𝑖(𝒘2)‖ ≤ 𝐿𝑖‖𝒘1 −𝒘2‖

Where Li is Lipschitz constant. In this research, notation |.| denotes absolute value of scalar,

norm of vector (magnitude of vector, module of vector, length of vector), determinant of matrix,

and cardinality of set where notation ||.|| denotes only norms. Norm in Euclidean space is

denoted ||.||2, which is default norm and so we implies ||.|| = ||.||2 if there is no additional

information. If w is zero vector, we have:

‖𝑓𝑖(𝒘)‖ ≤ 𝐿𝑖‖𝒘‖ or ‖𝑓𝑖(𝒘)‖
2 ≤ 𝐿‖𝒘‖2

The convergence condition for SGD is that gradient of every member function fi(w) must be

Lipschitz continuous and bounded. This condition is called bounded Lipschitz continuous

gradient condition, as follows:

{
‖𝑓𝑖(𝒘1) − 𝑓𝑖(𝒘2)‖ ≤ 𝐿𝑖‖𝒘1 −𝒘2‖

‖∇𝑓𝑖(𝒘)‖ ≤ 𝐺𝑖
, ∀𝑖, 𝒘1, 𝒘2, 𝒘 (2.4)

Where Li is a Lipschitz constant and Gi is constant. Let G be the maximum one among all Gi,

we have:

{
‖𝑓𝑖(𝒘1) − 𝑓𝑖(𝒘2)‖ ≤ 𝐿𝑖‖𝒘1 −𝒘2‖

‖∇𝑓𝑖(𝒘)‖ ≤ 𝐺
, ∀𝑖, 𝒘1, 𝒘2, 𝒘

The bounded condition of gradient ||∇fi(w)|| ≤ G is not strict because we can restrict magnitude

of this gradient when implementing SGD, for example, ∇fi(w) is normalized as follows:

24

∇𝑓𝑖(𝒘) =
∇𝑓𝑖(𝒘)

|∇𝑓𝑖(𝒘)|

There is an important property in the theory of Lipschitz continuity which stated that a function

is Lipschitz continuous if and only if its derivative is bounded (Wikipedia, Lipschitz continuity,

2001). Note that Lipschitz continuity is stronger than continuously differentiable aspect and so

derivative of Lipschitz continuous function is always existent. Because every gradient ∇fi(w)

is Lipschitz continuous, its derivative ∇2fi(w) which is Hessian matrix (second-order derivative)

of fi(w) is bounded according to the important property, as follows:

‖∇2𝑓𝑖(𝒘)‖ ≤ 𝐻𝑖 , ∀𝑖, 𝒘 (2.5)

Where Hi is a constant. When ∇2fi(w) is matrix, please research documents (Wikipedia, Matrix

norm, 2003) about norm of matrix which is not determinant of matrix. Besides, according to

such important property, the bounded Lipschitz continuous gradient condition is equal to the

condition that all fi(w) and their gradients ∇fi(w) are Lipschitz continuous. The bounding of

∇2fi(w) as ||∇2fi(w)|| ≤ Hi derives (De Sa, 2021, p. 2):

‖𝒘𝑇∇2𝑓𝑖(𝒘)𝒘‖ ≤ ‖𝒘𝑇‖‖∇2𝑓𝑖(𝒘)‖‖𝒘‖ ≤ 𝐻𝑖‖𝒘‖
2

Suppose Hessian matrix ∇2fi(w) is a set of basic vectors of a vector space that is image of

Euclidean space, hence, ∇2fi(w) represents a mapping with note that |wT∇2fi(w)w| is square of

the norm of w in the vector space specified by ∇2fi(w) whereas |w|2 is square of the norm of w

in Euclidean space. In other words, here ∇2fi(w) shrinks vector space. Obviously, we also have:

‖𝒘𝑇∇2𝑓(𝒘)𝒘‖ ≤ 𝐻‖𝒘‖2

Where H is a constant too, due to:

‖𝒘𝑇∇2𝑓(𝒘)𝒘‖ = ‖𝒘𝑇
1

𝑛
∑∇2𝑓𝑖(𝒘)

𝑛

𝑖=1

𝒘‖ =
1

𝑛
‖∑𝒘𝑇∇2𝑓𝑖(𝒘)𝒘

𝑛

𝑖=1

‖ ≤
1

𝑛
∑‖𝒘𝑇∇2𝑓𝑖(𝒘)𝒘‖

𝑛

𝑖=1

≤ (
1

𝑛
∑𝐿𝑖

𝑛

𝑖=1

) ‖𝒘‖2 = 𝐻‖𝒘‖2

Where let,

𝐻 =
1

𝑛
∑𝐻𝑖

𝑛

𝑖=1

Recall that SGD is an iterative algorithm which feeds data xi (s) one by one or batch by batch

(De Sa, 2021, p. 1) for each time point t to learn w.

𝒘𝑡+1 = 𝒘𝑡 − 𝛾𝑡∇𝑓�̂�𝑡(𝒘𝑡)

In order to prove the convergence of SGD, we need to prove that the expectation of norm of

the stochastic gradient ∇f(wt) approaches 0 when t approaches positive infinity because a local

optimizer such as minimizer or maximizer which is stable point is the point at which ∇f(wt) is

zero with note that the expectation is associated with the stochastic distribution g(wt) and

selective distribution P(𝑖̂𝑡). In general, we will prove the equation as follows:

lim
𝑡→∞

𝐸(‖∇𝑓(𝒘𝑡)‖) = 0 (2.6)

Or,

lim
𝑡→∞

𝐸(‖∇𝑓(𝒘𝑡)‖
2) = 0

This proof was made, available, and provided by Christopher De Sa (De Sa, 2021) in the course

of Principles of Large-Scale Machine Learning Systems, College of Computing and

Information Science, Cornell University. By expending f(wt+1) at wt according to Taylor’s

theorem, there is a ξt between wt and wt+1 such that (De Sa, 2021, p. 2):

𝑓(𝒘𝑡+1) = 𝑓 (𝒘𝑡 − 𝛾𝑡∇𝑓�̂�𝑡(𝒘𝑡))

= 𝑓(𝒘𝑡) − (𝛾𝑡∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡) +
1

2
(𝛾𝑡∇𝑓�̂�𝑡(𝒘𝑡))

𝑇

∇2𝑓(𝜉𝑡) (𝛾𝑡∇𝑓�̂�𝑡(𝒘𝑡))

25

≤ 𝑓(𝒘𝑡) − 𝛾𝑡 (∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡) +
𝛾𝑡
2𝐻

2
‖∇𝑓�̂�𝑡(𝒘𝑡)‖

2

(Due to ‖𝒘𝑇∇2𝑓(𝒘)𝒘‖ ≤ 𝐻‖𝒘‖2)

≤ 𝑓(𝒘𝑡) − 𝛾𝑡 (∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡) +
𝛾𝑡
2𝐺2𝐻

2

(Due to ‖∇𝑓𝑖(𝒘)‖ ≤ 𝐺)
The inequation above was also proved by Wang (Wang, 2016) in another way. This implies:

𝛾𝑡 (∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡) ≤ 𝑓(𝒘𝑡) − 𝑓(𝒘𝑡+1) +
𝛾𝑡
2𝐺2𝐻

2

Taking expectation on both sides of the inequation above by both stochastic distribution g(wt)

and selective distribution P(𝑖̂𝑡), we have:

𝛾𝑡𝐸 ((∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡)|𝑔(𝒘𝑡), 𝑃(𝑖̂𝑡)) ≤ 𝐸(𝑓(𝒘𝑡) − 𝑓(𝒘𝑡+1)|𝑔(𝒘𝑡), 𝑃(𝑖̂𝑡)) +
𝛾𝑡
2𝐺2𝐻

2

Please pay attention that γt is independent from both stochastic distribution g(wt) and selective

distribution P(𝑖̂𝑡). Because f(wt) and f(wt+1) are independent from the selective distribution P(𝑖̂𝑡),
we have:

𝛾𝑡𝐸 ((∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡)|𝑔(𝒘𝑡), 𝑃(𝑖̂𝑡)) ≤ 𝐸(𝑓(𝒘𝑡) − 𝑓(𝒘𝑡+1)|𝑔(𝒘𝑡)) +
𝛾𝑡
2𝐺2𝐻

2

Due to (De Sa, 2021, p. 2):

𝑃(𝑖̂𝑡) =
1

𝑛
, ∀𝑖̂𝑡

We have:

𝐸 ((∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡)|𝑔(𝒘𝑡), 𝑃(𝑖̂𝑡)) = ∫∑𝑃(𝑖̂𝑡 = 𝑖) ((∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

∇𝑓(𝒘𝑡)𝑔(𝒘𝑡)𝑑𝒘𝑡)

𝑛

𝑖=1𝒙𝑡

= ∫(∑𝑃(𝑖̂𝑡 = 𝑖) (∇𝑓�̂�𝑡(𝒘𝑡))
𝑇

𝑛

𝑖=1

)∇𝑓(𝒘𝑡)𝑔(𝒘𝑡)𝑑𝒘𝑡

𝒙𝑡

= ∫(
1

𝑛
∑(∇𝑓�̂�𝑡(𝒘𝑡))

𝑇
𝑛

𝑖=1

)∇𝑓(𝒘𝑡)𝑔(𝒘𝑡)𝑑𝒘𝑡

𝒙𝑡

= ∫(∇𝑓(𝒘𝑡))
𝑇
∇𝑓(𝒘𝑡)𝑔(𝒘𝑡)𝑑𝒘𝑡

𝒙𝑡

(Due to ∇𝑓(𝒘𝑡) =
1

𝑛
∑∇𝑓�̂�𝑡(𝒘𝑡)

𝑛

𝑖=1

)

= ∫‖∇𝑓(𝒘𝑡)‖
2𝑔(𝒘𝑡)𝑑𝒘𝑡

𝒙𝑡

= 𝐸(‖∇𝑓(𝒘𝑡)‖
2|𝑔(𝒘𝑡))

This implies:

𝛾𝑡𝐸(‖∇𝑓(𝒘𝑡)‖
2|𝑔(𝒘𝑡)) ≤ 𝐸(𝑓(𝒘𝑡) − 𝑓(𝒘𝑡+1)|𝑔(𝒘𝑡)) +

𝛾𝑡
2𝐺2𝐻

2

As a convention, g(wt) is the default distribution and so it is implied in the expectation and so

we can denote:

𝛾𝑡𝐸(‖∇𝑓(𝒘𝑡)‖
2) ≤ 𝐸(𝑓(𝒘𝑡) − 𝑓(𝒘𝑡+1)) +

𝛾𝑡
2𝐺2𝐻

2

Summing both sides of the equation above via T iterations of SGD, we have (De Sa, 2021, p.

2):

26

∑𝛾𝑡𝐸(‖∇𝑓(𝒘𝑡)‖
2)

𝑇−1

𝑡=0

≤∑𝐸(𝑓(𝒘𝑡) − 𝑓(𝒘𝑡+1))

𝑇−1

𝑡=0

+
𝐺2𝐻

2
∑𝛾𝑡

2

𝑇−1

𝑡=0

= 𝑓(𝒘0) − 𝑓(𝒘𝑇) +
𝐺2𝐻

2
∑𝛾𝑡

2

𝑇−1

𝑡=0

Suppose the optimization problem is minimization problem, let f* is the expected optimal value

such that f* ≤ f(wT) for all T, we have (De Sa, 2021, p. 2):

∑𝛾𝑡𝐸(‖∇𝑓(𝒘𝑡)‖
2)

𝑇−1

𝑡=0

≤ 𝑓(𝒘0) − 𝑓
∗ +

𝐺2𝐻

2
∑𝛾𝑡

2

𝑇−1

𝑡=0

Suppose the probability that SGD runs the τ = t iteration is (De Sa, 2021, p. 3):

𝑃(𝜏 = 𝑡) =
𝛾𝑡

∑ 𝛾𝑘
𝑇−1
𝑘=0

The expected gradient (averaged gradient) over T iteration represented at some time point τ is

(De Sa, 2021, p. 3):

𝐸(‖∇𝑓(𝒘𝜏)‖
2) = ∑𝐸(‖∇𝑓(𝒘𝑡)‖

2)𝑃(𝜏 = 𝑡)

𝑇−1

𝑡=0

=
1

∑ 𝛾𝑘
𝑇−1
𝑘=0

∑𝛾𝑡𝐸(‖∇𝑓(𝒘𝑡)‖
2)

𝑇−1

𝑡=0

This implies (De Sa, 2021, p. 3):

𝐸(‖∇𝑓(𝒘𝜏)‖
2) ≤

1

∑ 𝛾𝑡
𝑇−1
𝑡=0

(𝑓(𝒘0) − 𝑓
∗ +

𝐺2𝐻

2
∑𝛾𝑡

2

𝑇−1

𝑡=0

) (2.7)

If fixing learning rate such that γt = γ, we have (De Sa, 2021, p. 3):

𝐸(‖∇𝑓(𝒘𝜏)‖
2) ≤

𝑓(𝒘0) − 𝑓
∗

𝑇𝛾
+
𝛾𝐺2𝐻

2

Due to:

lim
𝜏→∞

(
𝑓(𝒘0) − 𝑓

∗

𝑇𝛾
+
𝛾𝐺2𝐻

2
) = lim

𝑇→∞
(
𝑓(𝒘0) − 𝑓

∗

𝑇𝛾
+
𝛾𝐺2𝐻

2
) =

𝛾𝐺2𝐻

2
≠ 0

The convergence of SGD is not proved yet because the problem here is that γt (0 < γ ≤ 1) is

larger than γt
2 and γt is dependent on time points. Therefore, suppose let γt is inversely

proportional to time point t as follows (De Sa, 2021, p. 3):

𝛾𝑡 =
1

√𝑡 + 1
 (2.8)

We have (De Sa, 2021, p. 3):

∑𝛾𝑡

𝑇−1

𝑡=0

=∑
1

√𝑡 + 1

𝑇−1

𝑡=0

≅ ∫
1

√𝑥
𝑑𝑥

𝑇

0

= 2√𝑇

∑𝛾𝑡
2

𝑇−1

𝑡=0

=∑
1

𝑡 + 1

𝑇−1

𝑡=0

≅ ∫
1

𝑥
𝑑𝑥

𝑇

0

= log(𝑇 + 1)

We have:

0 ≤ 𝐸(‖∇𝑓(𝒘𝜏)‖
2) ≤

2(𝑓(𝒘0) − 𝑓
∗) + 𝐺2𝐻 log(𝑇 + 1)

4√𝑇
= 𝒪 (

1

√𝑇
) (2.9)

Due to:

lim
𝜏→∞

(
2(𝑓(𝒘0) − 𝑓

∗) + 𝐺2𝐻 log(𝑇 + 1)

4√𝑇
) = lim

𝑇→∞
𝒪 (

1

√𝑇
) =0

We obtain:

27

lim
𝜏→∞

𝐸(‖∇𝑓(𝒘𝜏)‖
2) = 0

As a result, we assert that SGD will converge if all member functions fi(w) and their gradients

∇2fi(w) are Lipschitz continuous with note that the learning rate which is an augmented

important parameter of NN must be inversely proportional to time points (iterations).

Obviously, these conditions are satisfied with squared error function with decreased learning

rate because squared error function and its gradient are Lipschitz continuous. The condition of

decreased learning rate is not hazard by setting it to be inversely proportional to time point. In

other words, the convergence of delta rule is asserted with Lipschitz continuity.

3. Recurrent network
Default NN is feedforward NN in which there is no circle in the network, which means that

there is no feedback connection from next layers back to previous layers. Conversely, recurrent

neural network (RNN) (Kröse & Smagt, 1996, p. 47) allows such feedback connection, which

means that an output unit or hidden unit can connect to a previous hidden unit directly or

indirectly. Because input layer is fixed or not counted in the network, feedback connections

exist among only hidden units and output units. In general, there are two types of feedback

connections:

- An output unit or a hidden unit is connected directly to a previous hidden unit in

previous layer.

- An output unit or a hidden unit is connected directly to an immediate unit which in turn

connects to a previous hidden unit in previous layer.

Most of traditional RNNs follows the second type of feedback connection. Moreover, as usual

immediate units connect to hidden units of the first hidden layer. In other words, such

immediate units play the role of input units and so, they are called extra input units which

compose an extra input layer. Some RNNs can call extra input unit by other names, for example,

state unit or context unit. Some RNNs may modify backpropagation algorithm for learning

NN via modifying weight update rule and bias update rule but some others may not change the

learning NN algorithm. However, propagation rule is not changed. Now we should skim some

traditional RNNs along with their learning algorithms.

Jordan network developed by Jordan 1986 (Kröse & Smagt, 1996, p. 48) establishes that

outputs (activation values) of output units are fed backwards the so-called state units playing

the role of input units where state units in turn connect directly to the first hidden units. In other

words, Jordan network follows the second type of feedback connection and the extra input units

are called state units, as follows (Kröse & Smagt, 1996, p. 48):

28

Figure 3.1. Jordan network

In Jordan network, the layer of state units is called state layer. The connection weights between

output units and state units are fixed by +1 (Kröse & Smagt, 1996, p. 48) and so

backpropagation algorithm does not modify these weights.

Elman network developed by Elman 1990 (Kröse & Smagt, 1996, pp. 48-49) establishes

that outputs (activation values) of hidden units are fed backwards the so-called context units

playing the role of input units where context units in turn connect directly to the first hidden

units. In other words, Elman network follows the second type of feedback connection and the

extra input units are called context units, as follows (Kröse & Smagt, 1996, p. 49):

Figure 3.2. Elman network

In Elman network, the layer of context units is called context layer. The main difference

between Elman network and Jordan network is that Elman network makes feedback

connections between hidden units and extra input units whereas Jordan network makes

feedback connections between output units and extra input units. However, like Jordan network,

the connection weights from hidden units to context units in Elman network are fixed by +1

(Kröse & Smagt, 1996, pp. 48-49). In general, both Jordan network and Elman network can be

trained by backpropagation algorithm.

29

Hopfield network developed by Hopfield 1982 (Kröse & Smagt, 1996, pp. 50-53), which

is very different from Jordan network and Elman network, establishes connections between all

units. In other words, all units in Hopfield network play the role of both input units and output

units and so it is a kind to auto-associator network (Kröse & Smagt, 1996, p. 51), which can be

considered following the first type of feedback connections where each feedback connection

occurs directly between two units.

Figure 3.3. Hopfield network

It is possible to say that auto-associator network is a special NN in which hidden units vanish.

Therefore, backpropagation algorithm cannot be applied into learning Hopfield network, which

requires another learning algorithm that will be mentioned later. Because Hopfield network

leans forward learning processes in time series, its propagation rule should be written in time

point t as follows (Kröse & Smagt, 1996, p. 51):

𝑥𝑘(𝑡 + 1) =∑𝑤𝑗𝑘𝑦𝑗(𝑡)

𝑗≠𝑘

+ 𝜃𝑘

𝑦𝑘(𝑡 + 1) = 𝑓(𝑥𝑘(𝑡 + 1)) = {

+1 if 𝑥𝑘(𝑡 + 1) > 𝑈𝑘
−1 if 𝑥𝑘(𝑡 + 1) < 𝑈𝑘
𝑦𝑘(𝑡) otherwise

(3.1)

Where Uk is a threshold. It is easy to recognize that units in Hopfield network are binary {1, –

1}. If time point is not concerned, Hopfield propagation rule is written as follows:

𝑥𝑘 =∑𝑤𝑗𝑘𝑦𝑗
𝑗≠𝑘

+ 𝜃𝑘

𝑦𝑘 = 𝑓(𝑥𝑘) = {

+1 if 𝑥𝑘 > 𝑈𝑘
−1 if 𝑥𝑘 < 𝑈𝑘
𝑦𝑘(not changed) otherwise

Suppose there are n units, weights in Hopfield network form a square nxn weight matrix W =

(wij)nxn with convention that wii = 0 which implies that a unit does not connect with itself.

𝑊 = (

𝑤11 𝑤12 ⋯ 𝑤1𝑛
𝑤21 𝑤22 ⋯ 𝑤2𝑛
⋮ ⋮ ⋱ ⋮
𝑤𝑛1 𝑤𝑛2 ⋯ 𝑤𝑛𝑛

)

30

Bias vector of Hopfield is n-elements vectors of n bias θk as follows:

Θ = (𝜃1, 𝜃2, … , 𝜃𝑛)
𝑇

A unit k is called stable at time point t if its output is not changed at time point t as follows:

𝑦𝑘(𝑡) = 𝑦𝑘(𝑡 − 1) (3.2)

If time point is not concerned, a unit k is stable if its yk is not changed from the previous value.

At the time Hopfield network was invented, it was used to model associative memory,

which means that after its weights are trained from sample, units can become stable as

persistent memory. Therefore, given a input vector x = (x1, x2,…, xn)
T, after applying Hebbian

rule many times, the associative memory can be reached at which all units are stable, which

can be considered as training process of Hopfield network.

Input: input vector x = (x1, x2,…, xn)
T of n units, weight matrix W is initialized arbitrarily

with suppose W is symmetric, and bias vector Θ is initialized as zero vector Θ = 0T.

Output: weight matrix W and biases vector Θ are trained at which all units are stable.

All outputs are initialized by inputs such that yk = xk for all k.

Repeat

Calculate biases θk and outputs yk of all units according to Bruce algorithm (Kröse &

Smagt, 1996, p. 52) and propagation rule as follows:

𝜃𝑘 = {
0 if 𝑦𝑘 is stable
1 otherwise

𝑠𝑘 =∑𝑤𝑗𝑘𝑦𝑗
𝑗≠𝑘

+ 𝜃𝑘

𝑦𝑘 = {

+1 if 𝑠𝑘 > 𝑈𝑘
−1 if 𝑠𝑘 < 𝑈𝑘
𝑦𝑘(not changed) otherwise

For every pair of two units j and k where j ≠ k, their weight wjk are updated according to

Hebbian rule as follows:

𝑤𝑗𝑘 = 𝑤𝑗𝑘 + Δ𝑤𝑗𝑘 = 𝑤𝑗𝑘 + 𝑦𝑗𝑦𝑘

Until all units are stable

Table 3.1. Learning Hopfield network

Jordan network, Elman network, and Hopfield network are traditional and typical RNN. In this

research, I also propose another RNN called fishbone neural network (FBNN) in which there

are feedback connections from output units to extra input units called memory units like Jordan

network. Besides, each hidden unit can have an outside connection to an outside unit. Such

outside connection is called rib connection because it attaches from a main unit such as hidden

unit and output unit. Such outside unit to which the rib connection attaches is called rib unit.

Connections from input layer to hidden layers to output layer structure the backbone of FBNN,

which are called backbone connections. Recall that rib connections cannot attach to input units

but they can attach to both hidden units and output units. Following is figure of FBNN.

31

Figure 3.4. Fishbone neural network (FBNN)

An important aspect is that a rib connection is forward connection from a main unit (hidden

unit or output unit) to a rib unit so that propagation rule can move right direction. Rib

connections are associated with rib weights and backbone connections are associated with

backbone weights. Backpropagation algorithm is applied into learning FBNN as usual with

note that the algorithm does not go beyond rib units even though rib units connect with other

FBNNs. The purpose of rib connection is that, for solving some problems, a set of many

FBNNs are created and communicated together via rib connections. In other words, a FBNN

connects with another FBNN via rib unit and rib connection. The set of many FBNNs is

considered as a fish school and each FBNN is considered as a fish. The following figure depicts

the connection between two FBNNs via rib unit and rib connection.

32

Figure 3.5. Two FBNNs connect together

Note, by rib connection mechanism, a FBNN can connect with many FBNNs. In other words,

a fish can communicate with many ones. Recall that, for solving a concrete problem, a set of

many FBNNs are created and communicated together via rib connections. Every FBNN solves

the problem by itself and then shares results or information with other FBNNs by propagation

rule so that the other FBNNs can improve solutions of the concrete problem. The mechanism

of social intelligence can improve the capacity of NN in solving complex problems where

solutions of many FBNN can converge to an optimal solution.

4. Self-organizing network
Standard feedforward neural network (feedforward NN) as well as recurrent neural network

(RNN) need both inputs and desired outputs in sample for matching in training. In other words,

feedforward NN and RNN focus on supervised learning where outputs like attributes, classes,

etc. play the role of supervisors who direct the training process. Backpropagation algorithm is

a well-known supervised learning algorithm, especially for learning feedforward NN. Given

an input x, supervised learning algorithms improve weights and biases in order to make an

approximation to the desired output function v(x) = v. However, in case that there is no desired

outputs v as supervisors, learning algorithms must process only inputs x, which raises a domain

of unsupervised learning. There are many applications as well as algorithms for unsupervised

learning like clustering, vector quantization, dimensionality reduction, and feature extraction

where clustering and feature extraction are very popular in computer science. Especially,

feature extraction is crucial to any recognition applications. Self-organizing network (SON) is

designed to solve the problem of unsupervised learning without desired outputs. This section

focuses on SON along with unsupervised learning algorithms. The term “self-organizing” in

SON implies that SON controls its topology as well as weights and biases by itself without

desired outputs.

33

The most popular SON is competitive SON with competitive learning which is similar to

clustering in which competitive learning will select output unit (s) appropriate to inputs of input

units. In other words, competitive learning aims to divide inputs into clusters and each cluster

is represented by a selected output unit. All inputs in the same cluster share the same output

unit. A simple competitive SON is a feedforward NN having two layers in which all input units

i connect to all output unit o where given input vector x = (xi) there is only one output unit o is

valid, which is called activated output unit or winner (Kröse & Smagt, 1996, pp. 57-58).

Figure 4.1. Simple network of competitive learning

The winner can be considered as cluster if competitive SON aims to clustering data. There are

two methods for winner selection such as dot product method and Euclidean distance method.

According to dot product method, because the bias is assumed to be 0, propagation rule

becomes dot product as follows (Kröse & Smagt, 1996, p. 58):

𝑦𝑜 = 𝑥𝑜 =∑𝑤𝑖𝑜𝑥𝑖
𝑖

= 𝒘𝑜
𝑇𝒙 (4.1)

Where x = (xi) = (x1, x2,…, xn,…)T is input vector and wo = (w1o, w2o,…, wno,…)T whereas yo is

output of output unit o. Note, activation function f(.) is not applied to this competitive learning.

The winner o is the output unit o whose output is maximum (Kröse & Smagt, 1996, p. 58).

∀𝑜′ ≠ 𝑜, 𝑦𝑜′ ≤ 𝑦𝑜 (4.2)

After the winner was selected, its output is activated to be zero as yo = 1 and other outputs of

output units are deactivated to be zero as 𝑦𝑜′ = 0 (Kröse & Smagt, 1996, p. 58).
𝑦𝑜 = 1

∀𝑜′ ≠ 𝑜, 𝑦𝑜′ = 0
 (4.3)

Within dot product method, only weight vector wo = (w1o, w2o,…, wno,…)T of the winner o is

updated to be moved forward the input vector x and then normalized, as follows (Kröse &

Smagt, 1996, p. 58):

𝒘𝑜 =
𝒘𝑜 + 𝛾(𝒙 − 𝒘𝑜)

‖𝒘𝑜 + 𝛾(𝒙 − 𝒘𝑜)‖
 (4.4)

The denominator of equation above is used to normalize the winner weight vector wo where

notation ||.|| denotes Euclidean norm. Note, γ (0 < γ ≤ 1) is learning rate as usual.

Similarly, Euclidean distance method selects the winner based on Euclidean distance

between output weight vector and input vector. Therefore, the winner o is the output unit o that

Euclidean distance between the output weight vector wo and the input vector x is minimum,

which means that the winner o is the nearest to the input vector x.

∀𝑜′ ≠ 𝑜, ‖𝒘𝑜′ − 𝒙‖ ≥ ‖𝒘𝑜 − 𝒙‖ (4.5)

After the winner was selected, its output is activated to be zero as yo = 1 and other outputs of

output units are deactivated to be zero as 𝑦𝑜′ = 0.

34

𝑦𝑜 = 1

∀𝑜′ ≠ 𝑜, 𝑦𝑜′ = 0

Like dot product method, only weight vector wo = (w1o, w2o,…, wno,…)T of the winner o is

updated to be moved forward the input vector x but such winner weight vector is often not

normalized.

𝒘𝑜 = 𝒘𝑜 + 𝛾(𝒙 − 𝒘𝑜) (4.6)

Note, γ (0 < γ < 1) is learning rate as usual. Indeed, the winner weight vector updating conforms

to delta rule. Indeed, the squared error of output unit o is:

𝜺(𝑦𝑜) = 𝜺(𝒘𝑜) =

(

1

2
(𝑤1𝑜 − 𝑥1)

2

1

2
(𝑤2𝑜 − 𝑥2)

2

⋮
1

2
(𝑤𝑛𝑜 − 𝑥𝑛)

2

⋮)

 (4.7)

Gradient of the squared error of output unit o with regard to wio, known as tangent vector of

ε(wo), is:

∇𝜺(𝒘𝑜) =
𝑑𝜺(𝒘𝑜)

𝑑𝑤𝑖𝑜
=

(

𝑥1 − 𝑤1𝑜
𝑥2 − 𝑤2𝑜

⋮
𝑥𝑛 − 𝑤𝑛𝑜

⋮)

= 𝒙 −𝒘𝑜 (4.8)

Note,
𝑑𝜺(𝒘𝑜)

𝑑𝒘𝑜
 is Jacobian matrix but the equation above expresses tangent vector for easily

understandable explanation.

𝑑𝜺(𝒘𝑜)

𝑑𝒘𝑜
= (

𝑥1 −𝑤1𝑜 0 ⋯ 0
𝑥2 −𝑤2𝑜 0 ⋯ 0

⋮ ⋮ ⋱ ⋮
𝑥𝑛 − 𝑤𝑛𝑜 0 ⋯ 0

)

Obviously, the rule of updating winner weight vector wo = wo + γ(x – wo) is result of stochastic

gradient descent (SGD) method and so, its convergence is asserted as same as the theorem is

stated in (Kröse & Smagt, 1996, p. 60). However, there is a question that how the error between

output unit o and input unit i is defined as ½(wio - xi)
2 rather than ½(wioxo – xi)

2. Exactly, the

error is ½(wioxo – xi)
2 but xo is assumed to be 1 as xo = yo = 1 because the output unit o is

assumed to be the winner and hence, we have ½(wioxo – xi)
2 = ½(wio*1 – xi)

2 = ½(wio - xi)
2.

Competitive SON can be extended with many layers, which is learned by backpropagation

algorithm based on SGD without modification.

Kohonen network is an extension of competitive SON, in which outputs of output units are

ordered. For instance if input vector x = (x1, x2,…, xi,…, xm) is a vector in real vector space ℝm

and output vector y = (y1, y2,…, yo,…, yn) is a vector in real vector space ℝn, there are some

orderings which are defined in ℝm and ℝn. Based on such orderings, the concept of

neighborhood is defined. Given two output units o and o’, a so-called neighborhood function

g(o, o’) is defined so that it should be inversely proportional to distance between o and o’. For

example, g(o, o’) is defined based on exponential function as follows:

𝑔(𝑜, 𝑜′) = exp(−‖𝑦𝑜 − 𝑦𝑜′‖
2) (4.9)

Note, g(o, o) or g(o’, o’) is always 1 regardless of how to define g(o, o’). Two output units o

and o’ are neighbors together if their neighborhood function g(o, o’) is large enough (larger

than a threshold) or their distance is small enough (smaller than a threshold). Winner selection

methods such as dot product method and Euclidean distance method are still applied into

35

Kohonen network but the rule of updating winner weight vector is extended to neighbors of

the winner unit o. Concretely, for the winner o, we still have:

𝒘𝑜 = 𝒘𝑜 + 𝛾(𝒙 − 𝒘𝑜)
For any other output units o’ which are neighbors of the winner o, their weight vector is updated

as follows:

𝒘𝑜′ = 𝒘𝑜′ + 𝛾𝑔(𝑜, 𝑜
′)(𝒙 − 𝒘𝑜′), ∀𝑜

′ ∈ 𝑛𝑏(𝑜) (4.10)

Note, nb(o) is a set of units which are neighbors of the winner o where the neighborhood is

determined based on neighborhood function g(o, o’) or Euclidean distance. Kohonen network

can be extended with many layers, which is learned by backpropagation algorithm based on

SGD without modification except that putting neighborhood function g(o, o’) into the updating

rule of output units as the equation above.

5. Reinforcement learning
Recall that there are three main types of machine learning where machine learning is a branch

of artificial intelligence (AI):

- Supervised learning matches inputs and outputs to find out rules and knowledge where

the outputs direct such knowledge searching. Classification is a popular supervised

learning algorithm.

- Unsupervised learning analyzes inputs so as to discover patterns under the inputs. Such

patterns do not obey any output because simply there is no output in unsupervised

learning. Clustering is a popular unsupervised learning algorithm.

- Reinforcement learning (RL) draws and finetunes adaptively and progressively rules

and knowledges from environment. Control theory, game theory, robotics applications

are typical examples of RL.

Neural network (NN) supports all three main types of machine learning where feedforward NN

supports supervised learning and self-organizing network supports unsupervised learning,

which is mentioned in previous sections. Fortunately, NN also supports RL where concepts

and algorithms of RL are implemented in NN. Therefore, we should skim what RL is. In

general, RL has two main objects such as an agent and an environment. When the environment

issues a state, the agent will make an action that responds to such state and then, the

environment gives feedback to the agent by a reward as benefit or penalty for the agent’s action

(Chandrakant, 2023). The purpose of RL is to maximize the reward such that the agent’s action

is most appropriate to the environment’s state; in other words, RL maximizes the benefit of

action given state. The mapping between state and action is called policy and so, essentially,

RL finds out optimal policy. This interaction of agent and environment repeats progressively

until the optimal policy is reached. The following figures (Chandrakant, 2023) sketches RL.

Figure 5.1. Overview of reinforcement learning

There are two types of RL such as model-based RL and model-free RL (Chandrakant, 2023).

As the hint of these names, model-based RL (Chandrakant, 2023) uses explicitly some

mathematical model to interpret and explain RL shown by the overview figure above whereas

model-free RL (Chandrakant, 2023) takes advantages of experiences to simulate the interaction

between agent and environment when mathematical model is unknown or not supported. We

research model-based RL first and model-free RL later. Therefore, Markov decision process

36

(MDP) is a popular mathematical model which is applied into explaining and implementing

model-based RL. MDP uses some results from dynamic programming (Wikipedia, Dynamic

programming, 2002) for maximizing value function which is cumulative reward in essentially

besides taking advantages of Markov property that the probability of future state depends only

on current state. So, the environment in MDP follows Markov property. The following figures

sketches RL and MDP.

Figure 5.2. Roadmap of RL methodologies

From the figure above, this section mentions MDP because MDP is the most popular

mathematical model for RL. An MDP (Wikipedia, Markov decision process, 2004) consists of

4 main components as follows (Wikipedia, Reinforcement learning, 2002):

- Let S be a set of states of environment and let s be any state belonging to S. Let st be

the state at time point t.

- Let A be a set of actions of agent and let a be any action belonging to A. Let at be the

action at time point t.

- Let Pa(s, s’) = P(st+1 = s’ | st = s, at = a) be the transition probability at time point t from

the current state st = s to the next state st+1 = s’ given action at = a. This transition

probability is conditional probability. A set of all transition probabilities for all states

given an action compose a transition probability matrix Pa. The transition probability

implies that Markov property where the probability of next state s’ depends only on

current state s.

- Let Ra(s, s’) be the immediate reward that the environment issues immediately when

the agent does the current action at = a such that the current state st = s is changed

immediately to the next state st+1 = s’. Reward function is the heart of model-based RL.

From the MDP model, the mapping from state to action is called policy which is modeled by a

so-called policy function a = π(s). The essence of MDP is to train policy function a = π(s) to

be optimal, which in turn maximizes a so-called value function based on the immediate reward

function Ra(s, s’) which is a component of MDP. Note, maximization of value function is

derived from dynamic programming. For any state s, value function V(s) is expectation of

reward function Ra(s, s’) multiplied with discount factor αt under the transition distribution Pa(s,

s’). Therefore, V(s) is also called discounted reward expectation, which is determined from s

= 𝑠𝑡𝑘 at some tk
th time point to infinity.

𝑉(𝑠 = 𝑠𝑡𝑘) = 𝐸 (∑ 𝛾𝑡𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)

+∞

𝑡=𝑡𝑘

) = ∑ 𝛾𝑡𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)𝑃𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)

+∞

𝑡=𝑡𝑘

 (5.1)

Where,

𝑎𝑡 = 𝜋(𝑠𝑡)
Proof,

𝑉(𝑠 = 𝑠𝑡𝑘) = 𝐸 (∑ 𝛾𝑡𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)

+∞

𝑡=𝑡𝑘

) = ∑ 𝛾𝑡𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)𝑃(𝑠𝑡+1|𝑠𝑡, 𝑠𝑡−1, … , 𝑠𝑡𝑘 , 𝑎𝑡)

+∞

𝑡=𝑡𝑘

37

= ∑ 𝛾𝑡𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

+∞

𝑡=𝑡𝑘

(Due to Markov property)

= ∑ 𝛾𝑡𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)𝑃𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)

+∞

𝑡=𝑡𝑘

∎

The discount factor αt (0 < αt ≤ 1) indicates that a reward 𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1) can be delayed at time

point t. The longer the delay is, the smaller discount factor is and so, only the first reward

𝑅𝑎𝑡𝑘
(𝑠𝑡, 𝑠𝑡+1) gains highest discount factor 𝛾𝑡𝑘. If 𝛾𝑡𝑘 = 1 then, the first reward 𝑅𝑎𝑡𝑘

(𝑠𝑡, 𝑠𝑡+1)

is immediate reward such that 𝑅𝑎𝑡𝑘
(𝑠𝑡, 𝑠𝑡+1) which is reserved. Discount factor should be

inversely proportional to time point, for example αt = 1 / (t+1). The equation above is the

general case of value function with infinite expectation. Dynamic programming solves problem

of MDP for finding optimal policy by firstly, redefining value function V(s) recursively as

follows (Wikipedia, Markov decision process, 2004):

𝑉(𝑠) =∑𝑃𝜋(𝑠)(𝑠, 𝑠
′) (𝑅𝜋(𝑠)(𝑠, 𝑠

′) + 𝛼𝑉(𝑠′))

𝑠′

 (5.2)

Now value function is determined by a finite sum and so, it is called discounted reward sum in

which s ∈ S, a ∈ A, and both S and A are finite sets. In first view, discount factor α is fixed but,

actually, it is decreased in time because of the recursion inside the formulation of finite V(s)

and hence, only the immediate rewards Rπ(s)(s, s’) are reserved. Consequently, policy function

π(s) is updated as maximizer regarding value function as follows (Wikipedia, Markov decision

process, 2004):

𝜋(𝑠) = argmax
𝑎

{∑𝑃𝑎(𝑠, 𝑠
′)(𝑅𝑎(𝑠, 𝑠

′) + 𝛼𝑉(𝑠′))

𝑠′

} (5.3)

An implementation of MDP learning is an iterative algorithm so that whenever the environment

feeds back a next state st+1 and gives back a reward 𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1) for the agent’s action at at the

current state st (time point t), the iterative algorithm will update value and policy as follows:

Value update rule:

𝑉(𝑠𝑡) =∑𝑃𝑎𝑡(𝑠𝑡, 𝑠
′) (𝑅𝑎𝑡(𝑠𝑡, 𝑠

′) + 𝛼𝑉(𝑠′))

𝑠′

Policy update rule:

𝜋(𝑠𝑡) = argmax
𝑎

{∑𝑃𝑎(𝑠𝑡, 𝑠
′)(𝑅𝑎(𝑠𝑡, 𝑠

′) + 𝛼𝑉(𝑠′))

𝑠′

}

Table 5.1. Markov decision process learning for model-based reinforcement learning

A possible terminated condition for the iterative algorithm is that all states are stable, which

means that there is no change in policy function π(s). However, RL does not require

mandatorily terminated conditions because it aims to adapt to the environment. Note that all

values V(s) and Ra(s, s’) for all s, s’, and a are initialized by 0. Of course, the agent’s action at

at the current state st is based on the policy function at = π(st) where st is raised by the

environment.

There is no problem for model-based RL with MDP but it is hazard for model-free RL

where none of transition distribution and reward function is specified explicitly. Fortunately,

Q-learning (Wikipedia, Q-learning, 2004) is applied into solving the lack of mathematical

model in model-free RL in which there is no transition probability Pa(s, s’) and reward function

Ra(s, s’). With Q-learning, model-free RL broadens its applications, especially neural network

learning. At time point t, the environment still gives back a reward Rt in model-free RL but

38

such Rt is only a value which is not the function Ra(s, s’) in model-based RL. Given time point

t, value function V(s) in model-based RL is replaced by Q-value Q(st, at) for model-free RL

and such Q-value is learned as follows (Wikipedia, Q-learning, 2004):

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛾 (𝑅𝑡 + 𝛼max
𝑎
𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)) (5.4)

Where γ (0 < γ ≤ 1) is learning rate. The equation above is called Bellman equation. Therefore,

whenever the environment feeds back a next state st+1 and gives back a reward Rt for the agent’s

action at at the current state st (time point t). the iterative algorithm of Q-learning for model-

free RL is described as follows:

Q-value update rule:

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛾 (𝑅𝑡 + 𝛼max
𝑎
𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡))

Policy update rule:

𝜋(𝑠𝑡) = argmax
𝑎

𝑄(𝑠𝑡, 𝑎)

Table 5.1. Q-learning for model-free reinforcement learning

Note that all Q-values Q(s, a) for all s and a are initialized by 0. A possible terminated condition

for the iterative algorithm is that all states are stable, which means that there is no change in

policy function π(s). Of course, the agent’s action at at the current state st is selected based on

the policy function at = π(st) where st is raised by the environment.

According to (Chandrakant, 2023), when neural network (NN) is used to implement MDP,

it is a feedforward NN whose input units represent environment’s states and whose output units

represent agent’s actions. The number of hidden layers indicates complexity of RL with note

that deep learning, which is a modern machine learning, is implemented by a NN having as

many as possible hidden layers. Because a NN for RL often needs more than one hidden layer

for improving accuracy of learning method with high complexity, the combination of NN and

RL is often called deep reinforcement learning (DRL). There is a question why the high

complexity with many hidden layers will improve the learning accuracy. The reason is that the

essence of any learning NN algorithm is to make an approximation of the desire function v(x)

where x is inputs, and the approximation can be represented by an estimation function u(x).

Essentially, the estimation function u(x) is a nonlinear regression function because propagation

rule goes through layered weights with multiplications and summing. Because the number of

hidden layers is proportional to the order of the regression function u(x), increasing such order

is obviously to increase the accuracy of u(x) in estimation. Therefore, deep learning and deep

reinforcement learning (DRL) attracts attention of many recent researches about artificial

intelligence.

It is easier to combine NN with RL by Q-learning where inputs represent environment’s

states and outputs represent agent’s actions.

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑥𝑘(𝑡), 𝑦𝑘(𝑡))

Where xk(t) = st and yk(t) = at are input and output of unit k at time point t. Regarding NN, Q-

value is Q-function of xk(t) and yk(t). There are two ways for coding NN for RL:

- Each input unit represents a state and each output unit represents an action. This coding

is appropriate to multi-state and multi-action RL.

- Each input unit represents a possible value of state and each output unit represents a

possible value of action. In this coding, inputs and outputs are binary.

Backpropagation algorithm is still valid for learning feedforward NN with Q-function.

Whenever the environment feeds back a next state st+1 and gives back a reward Rk(t) for the

agent’s action at = yk(t) at the current state xk(t) = st, the Q-function is updated as follows:

𝑄(𝑥𝑘(𝑡), 𝑦𝑘(𝑡)) = 𝑅𝑘(𝑡) + 𝛼max
𝑘
𝑄0(𝑥𝑘(𝑡), 𝑦𝑘(𝑡))

39

Where α is discount factor and vk is desired output. Note that index k in the maximization

expression max
𝑘
𝑄0(𝑥𝑘(𝑡), 𝑦𝑘(𝑡)) indicates browsing units in the same layer of current unit.

There is a question what Q0(xk(t), yk(t)) is. Indeed, according to an invention of OpenAI

(Choudhary, 2019), Q0(xk(t), yk(t)) is the function Q(xk(t), yk(t)) of a so-called target network

which is the duplicate of current NN but parameters of target network such as weights and

biases are kept intact for a period T of time points. After every period T, parameters of target

networks are updated by copying from parameters of current NN. Therefore, the target network

represents next states st+1 in Q-learning. The following figure depicts the target network for Q-

learning (Choudhary, 2019).

Figure 5.3. Target network for Q-learning

Because yk is function of xk due to activation function yk = f(xk), Q-function in NN is considered

as function of yk as follows:

𝑄(𝑦𝑘(𝑡)) = 𝑅𝑘(𝑡) + 𝛼max
𝑘
𝑄0(𝑦𝑘(𝑡))

The deviation of Q-function for unit k at time point t is:

∆𝑄(𝑦𝑘(𝑡)) = 𝑅𝑘(𝑡) + 𝛼max
𝑘
𝑄0(𝑦𝑘(𝑡)) − 𝑄(𝑦𝑘(𝑡))

If the time point t is implicit by default for backpropagation algorithm feeding sample time

point by time point, the deviation is rewritten as follows:

∆𝑄(𝑦𝑘) = 𝑅𝑘 + 𝛼max
𝑘
𝑄0(𝑦𝑘) − 𝑄(𝑦𝑘) (5.5)

Note that the expression max
𝑘
𝑄0(𝑦𝑘) is constant with regard to yk. Recall that index k in the

maximization expression max
𝑘
𝑄0(𝑦𝑘) indicates browsing units in the same layer of current unit

inside the target network. If there is only one unit in such layer by some specific NN coding

for RL, it is possible to browse possible outputs of unit k inside the target network. In the

equation of ΔQ(yk) above, only Q(yk) is function of yk. The simplest way is to set Q-function

as identity function Q(yk) = yk. Derivative of ΔQ(yk) with regard to xk is:
𝑑∆𝑄(𝑦𝑘)

𝑑𝑥𝑘
=
𝑑∆𝑄(𝑦𝑘)

𝑑𝑦𝑘

𝑑𝑦𝑘
𝑑𝑥𝑘

= −𝑄′(𝑦𝑘)𝑓
′(𝑥𝑘) (5.6)

The squared error function is square of deviation ΔQ(.). For instance, the squared error function

of output unit o is:

𝜀(𝑦𝑜) =
1

2
(∆𝑄(𝑦𝑜))

2
=
1

2
(𝑅𝑜 + 𝛼max

𝑜
𝑄0(𝑦𝑜) − 𝑄(𝑦𝑜))

2

 (5.7)

The squared error function ε(yh) of hidden unit h is the sum of output errors ε(yo) with regard

to such set of output units, as follows:

𝜀(𝑦ℎ) =∑𝜀(𝑦𝑜)

𝑜

By applying stochastic gradient descend (SGD) as usual, we obtain weight update rule and bias

update rule according to backpropagation algorithm, as follows:

∆𝑤𝑗𝑘 = 𝛾𝑦𝑗𝛿𝑘

∆𝜃𝑘 = 𝛾𝛿𝑘

Where,

40

𝛿𝑘 =

{

 (𝑅𝑘 + 𝛼max

𝑘
𝑄0(𝑦𝑘) − 𝑄(𝑦𝑘))𝑄

′(𝑦𝑘)𝑓
′(𝑥𝑘)

for ouput unit

𝑄′(𝑦𝑘)𝑓
′(𝑥𝑘)∑𝑤𝑘𝑙𝛿𝑙

𝑙

for hidden unit

 (5.8)

Recall that:
𝑑∆𝑄(𝑦𝑘)

𝑑𝑥𝑘
= −𝑄′(𝑦𝑘)𝑓

′(𝑥𝑘)

Moreover, Q-functions for output units are updated by Q-learning as usual:

𝑄(𝑦𝑜) = 𝑄(𝑦𝑜) + 𝛾 (𝑅𝑜 + 𝛼max
𝑜
𝑄0(𝑦𝑜) − 𝑄(𝑦𝑜)) (5.9)

Indeed, Q-learning is also derived from SGD too. In NN literature, Q-function is also called

the critic (Kröse & Smagt, 1996, p. 76). The sample for deep reinforcement learning with NN

is {x(p), R(p)} where input vector x(p) is a set of states and R(p) is a set of rewards of output units

at p pattern. Agent’s actions are outputs yk from computations inside NN and next states st+1

are represented by the target network.

6. Conclusions
The philosophical essence of neural network (NN) is synaptic plasticity of human neuron

system and the technical essence of NN is nonlinear regression mechanism by multiplicative

overlap of summing weights through many layers. The perfect nonlinear regression function,

which is target of NN learning, is approximated by the multiplicative overlap of applying

propagation rule (being linear function if ignoring activation function) many times, which can

be considered as an interpolation of the nonlinear function by many linear functions via a

complex topology. The approximation will be unfeasible or ineffective unless there is support

of stochastic descent gradient method. Moreover, the approximation is made smoother by

activation function. This is the reason that deep learning with multiple layers will increase

effectiveness and accuracy of NN because deep learning increases order of such nonlinear

regression model. Moreover, the partition of NN into layers where there is an output layer

implicitly reflects analytic and synthetic mechanism which is appropriate to high processing

applications like image processing. The evolution of NN via Hebbian rule and delta rule

learning which simulates human neuron system is appropriate to intelligent applications like

control applications and game applications. In general, the ability of NN extensions is fully

promising, especially NN is combined with evolutionary programming field such as genetic

algorithm and social intelligence. When NN focuses on individual intelligence via human brain,

there is a so-called social intelligence which is a subdomain of evolutionary programming field

where social intelligence focuses on the intelligence inside a group of individuals via

interactions. The combination of individual intelligence and social intelligence issues a multi-

faceted overview of biological world as aforementioned in the abstract that machine learning

(ML), which is a branch of artificial intelligence (AI), sets first bricks to build up an infinitely

long bridge from computer to human intelligence. This great construction may be more feasible

a little bit by concerning such multi-faceted biological problem when AI also computer science

does not reach the limitation of approaching miracle biological phenomenon yet. Fishbone NN

mentioned in this research is a theoretical trial of the combination of individual intelligence

and social intelligence.

41

References
Chandrakant, K. (2023, March 24). Reinforcement Learning with Neural Network. (Baeldung)

Retrieved from Baeldung website: https://www.baeldung.com/cs/reinforcement-

learning-neural-network

Choudhary, A. (2019, April 18). A Hands-On Introduction to Deep Q-Learning using OpenAI

Gym in Python. Retrieved from Analytics Vidhya website:

https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python

De Sa, C. (2021). Lecture 5: Stochastic Gradient Descent. Cornell University, College of

Computing and Information Science. Cornell University. Retrieved from

https://www.cs.cornell.edu/courses/cs4787/2021sp/lectures/Lecture5.pdf

Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques (2nd Edition ed.). (J.

Gray, Ed.) San Francisco, CA, USA: Morgan Kaufmann Publishers, Elsevier.

Kröse, B., & Smagt, P. v. (1996). An Introduction to Neural Networks (8th Edition ed.).

Amsterdam, The Netherlands: University of Amsterdam.

Nguyen, L. (2022). Mathematical Approaches to User Modeling (1st ed.). (O. Sabazova, Ed.)

Moldova: Eliva Press. Retrieved February 16, 2022, from

https://www.elivapress.com/en/book/book-6035512576

Rios, D. (n.d.). Introduction to Neural Networks. Retrieved 2009, from Neuro AI website:

http://www.learnartificialneuralnetworks.com/introduction-to-neural-networks.html

Wang, C. (2016). Notes on Convex Optimization Gradient Descent. GitHub. Chunpai's Blog.

Retrieved from

https://chunpai.github.io/assets/note/1__Gradient_Descent_and_Line_Search.pdf

Wikipedia. (2001, August 30). Lipschitz continuity. (Wikimedia Foundation) Retrieved from

Wikipedia website: https://en.wikipedia.org/wiki/Lipschitz_continuity

Wikipedia. (2002, October 22). Dynamic programming. (Wikimedia Foundation) Retrieved

from Wikipedia website: https://en.wikipedia.org/wiki/Dynamic_programming

Wikipedia. (2002, July 31). Reinforcement learning. (Wikimedia Foundation) Retrieved from

Wikipedia website: https://en.wikipedia.org/wiki/Reinforcement_learning

Wikipedia. (2003, December 16). Hebbian theory. (Wikimedia Foundation) Retrieved April 5,

2023, from Wikipedia website: https://en.wikipedia.org/wiki/Hebbian_theory

Wikipedia. (2003, April 25). Matrix norm. (Wikimedia Foundation) Retrieved from Wikipedia

website: https://en.wikipedia.org/wiki/Matrix_norm

Wikipedia. (2004, November 2). Markov decision process. (Wikimedia Foundation) Retrieved

from Wikipedia website: https://en.wikipedia.org/wiki/Markov_decision_process

Wikipedia. (2004, December 15). Q-learning. (Wikimedia Foundation) Retrieved from

Wikipedia website: https://en.wikipedia.org/wiki/Q-learning

Wikipedia. (2009, January 4). Artificial neural network. (Wikimedia Foundation) Retrieved

2009, from Wikipedia website: http://en.wikipedia.org/wiki/Artificial_neural_network

