
Cloud Computing Security by DevSecOps 

S.Brindha1,J.A.Sophiya2 

1 Assistant Professor, Department of Computer Science 

2 Associate Professor, Department of Computer Science and Applications 

1&2 St.Peter’s Institute of Higher Education & Research, Chennai, Tamilnadu, India. 

brindhas.mca@spiher.ac.in. sophiyaja.mca@spiher.ac.in, 

 

There are many emerging trends in Cloud computing, With this DevSecOps is an approach to 

software development that integrates security into the development process. Tools and services from 

cloud providers are available to assist enterprises in implementing DevSecOps procedures.  

This article contains What is cloud computing?, Cloud computing Architecture, What is 

DevOps and How it works?, How DevSecOps can be used for cloud computing security?  

Cloud Computing: 

As an alternative to local hardware and infrastructure, cloud computing offers computer 

resources (such as servers, storage, databases, and software applications) through the Internet. This 

indicates that users can use any internet-connected device at any time and from any location to access 

this content. 

Cloud computing features three levels of connectivity such as cloud, network devices like 

routers and switches, and end-user. Resources including virtual desktops, software platforms, servers, 

apps, and data storage are included in the cloud. They process data through routers and switches. Any 

device can be used by the end user to access the data.   

 

mailto:brindhas.mca@spiher.ac.in
mailto:sophiyaja.mca@spiher.ac.in
https://www.simplilearn.com/what-is-devsecops-article


 

Cloud Architecture:  

When discussing cloud computing settings, the term "cloud architecture" refers to how 

different cloud technology elements, such as hardware, virtual resources, software capabilities, and 

virtual network systems, interact and connect. It serves as a roadmap for the most effective approach 

to strategically integrate resources to create a cloud environment for a particular business purpose. 

 

Components Of Cloud Computing Architecture 

                                      

The following are crucial elements of the cloud computing architecture: 

• Front-end platform 

• Back-end platform 

• Cloud-based delivery 

Any platform's face and brain are located at its front and back ends, respectively. Information can 

be transmitted via cloud-based application platforms thanks to cloud-based delivery. The terms 

Infrastructure-as-a-service (IaaS), Platforms-as-a-service (PaaS), and Software as a service (SaaS) 

refer to three prevalent types of infrastructure that can be utilised with cloud-based delivery services. 



 

Benefits of cloud architecture 

Cloud architecture has numerous advantages for businesses, including: 

Cost-effective 

You can decide to employ a cloud service provider's infrastructure in place of paying upfront 

charges for servers. By only paying for the computer resources you actually use, dynamic 

provisioning enables you to further reduce your cost.  

Faster time to market 

You don't have to wait to buy, install, and configure computing infrastructure anymore. You 

can quickly get up and running thanks to cloud architectures, which frees up more time for product 

development and delivery. 

Scalability 

Cloud architectures provide you more freedom to adjust the amount of processing power you 

have according to your infrastructure needs. Whether demand is increased as a result of growth or 

because of seasonal traffic surges, it is simple to scale.  

Accelerated transformation 

Utilising cloud services and automated environments to speed up modernization and promote 

digital transformation is possible with the help of cloud-native architectures like Kubernetes.  

More innovation 

Utilise the most recent technology for storage, security, analytics, and machine learning that 

resembles artificial intelligence.   

High availability 

High-performance computing resources enable continuous availability for applications 

managed and run on cloud architectures, independent of changing load.  

Strong security 

With the support of knowledgeable personnel and the newest technologies, cloud service 

providers continuously upgrade and improve their security measures to help protect your data, 

systems, and workloads.  

 

 

 

 

 



DevOps: 

In comparison to conventional procedures, DevOps increases the effectiveness, speed, and 

security of software development and delivery. The best way to describe it is as a team of people 

coming up with, creating, and delivering secure software quickly. Through automation, teamwork, 

quick feedback, and iterative improvement, DevOps practices allow software development (dev) and 

operations (ops) teams to expedite delivery. 

The DevOps methodology's four core principles govern the efficacy and efficiency of 

application development and deployment. These recommendations, which are outlined below, focus 

on the best aspects of modern software development. 

1. Automation of the software development lifecycle. This covers manual processes that could slow 

down the supply of software or involve human mistake, such as automated testing, builds, releases, 

the provisioning of development environments, and others. 

2. Collaboration and communication. A competent DevOps team also has efficient communication 

and cooperation skills in addition to automation. 

3. Continuous improvement and minimization of waste. High-performing DevOps teams are 

constantly searching for areas that could be improved, from automating repetitive operations to 

monitoring performance indicators for ways to decrease release delays or mean-time-to-recovery. 

4. Hyperfocus on user needs with short feedback loops. Through automation, improved 

communication and collaboration, and continuous improvement, DevOps teams can take a moment 

and focus on what real users want, and how to give it to them. 

By putting these ideas into practice, organizations can improve the quality of their code, shorten their 

time to market, and design their applications more effectively. 

 

The goal of DevOps: 

DevOps signifies a shift in the way the IT culture thinks. DevOps emphasises quick software 

delivery and incremental software development as a way of expanding on Agile practices. Success 

requires a culture of shared responsibility for corporate outcomes, improved cooperation, empathy, 

and accountability. 

Businesses may improve operational efficiency, provide better products more quickly, and 

lower security and compliance concerns by using a DevOps strategy. 

 

 

 

https://about.gitlab.com/topics/devops/#what-is-the-goal-of-dev-ops
https://about.gitlab.com/topics/devops/#what-is-the-goal-of-dev-ops


LifeCycle of DevOps: 

The software lifecycle starts with software development and continues with delivery, 

maintenance, and security. The DevOps lifecycle's phases are: 

• Plan 

Prioritise, organise, and keep track of the work that has to be done.. 

• Create 

Write, design, develop, and properly manage code and project data with your team.. 

• Verify 

Make sure your code functions well and complies with your quality requirements; preferably, 

use automated testing. 

• Package 

Manage containers, build artefacts, and package your apps and dependencies. 

• Secure 

Utilise static and dynamic testing, fuzz testing, and dependency scanning to look for 

vulnerabilities. 

• Release 

Deploy the software to end users. 

• Configure 

You must manage and set up the infrastructure required to support your applications. 

• Monitor 

Track performance metrics and mistakes to lessen incident severity and frequency. 

• Govern 

Govern Manage compliance, regulations, and security vulnerabilities throughout the entire 

organization. Some businesses combine a number of technologies to acquire all of this 

capability, but doing so can be very expensive and difficult to implement, run, and maintain. 

 



DevSecOps Approach to Cloud Security:  

By include security teams in the collaboration between the development and operations teams, 

DevSecOps aims to introduce security early in the software development life cycle (SDLC). This set 

of concepts, cultural philosophies, practices, team organization structures, and tools increases an 

organization’s ability to deliver applications and services at high velocity to its clients. It assists in 

promptly responding to both production-related issues and new requirements. This enables 

organizations to serve their customers better and compete more effectively in the market. 

The goal of DevSecOps is to improve operational processes' predictability, effectiveness, 

security, and maintainability. It aids in integrating security across the entire process of developing an 

application. 

Organizations need to understand the relationship between DevSecOps and cloud computing. 

Cloud computing is about technology and services, while DevSecOps focuses on improving software 

development processes and culture. Organizations need to understand the value that both can bring, 

when combined, to achieve their transformation objectives. 

 

DevSecOps tools 

Organizations in multiple industries can implement DevSecOps to break down silos between 

development, security, and operations so that they can release more secure software faster. 

• Automotive: DevSecOps can reduce lengthy cycle times and help meet software 

compliance standards. 

• Healthcare: It can support efforts to digitally change the industry while ensuring the 

security and privacy of sensitive patient data in accordance with laws like HIPAA. 

• Financial, retail, and e-commerce: For transactions involving customers, merchants, 

financial services, etc., DevSecOps can assist with fixing the Open Web Application 

Security Project as well as preserving data privacy and security compliance with PCI DSS 

payment card requirements. 

DevSecOps solutions on cloud platforms are expected to help organizations deploy codes 

easily in the production process, along with enhanced IT security, high performance, and increased 

scalability. 

 

 

 

 



Cloud and DevSecOps:  

  Cloud and DevSecOps adoption by an organization helps in providing agility, security, speed, 

and quality to software processes Any programming language may be used to create apps, and any 

infrastructure can be used to deploy and run such applications rapidly and consistently.. The adoption 

of these technologies also supports the automation of software release processes, faster application 

development, and better monitoring of applications and infrastructure performance. 

Applications built on next-generation technologies include components such as omnichannel 

enablement, microservices adoption, API middleware, mobile apps, content management systems, 

etc. These applications require fault tolerance and high availability. The infrastructure or platform 

resources may be quickly made available with the aid of the cloud. 

Cloud automation or Infrastructure as a Code should become a part of the culture of an organization 

to eliminate manual activities in application installation and configuration. 

 

DevSecOps reference framework 

DevSecOps is a set or combination of tools that help in the delivery, development, and 

management of applications throughout a system’s life cycle. At the organization level, the software 

teams need to automate the entire cycle of build, provisioning, and deployment of test environments, 

including the tools, scripts, and test data to ensure rapid delivery. These teams need to collaborate 

around the application architecture and monitor event-based mechanisms for seamless data flow 

across the toolchains. 

The several phases that every software or application must go through as part of the DevSecOps 

transformation process are listed below.: 

• Portfolio management and collaboration 

• Build 

• Source code management 

• Testing 

• Continuous integration 

• Deployment 

• Configuration/provision 

• Containerisation tools 

• Repositories 

• Database management 

• Monitoring 



 

The many stages of the DevSecOps life cycle and open-source products are as follows: 

Portfolio management: At this step, the application's current state and future planning are taken into 

account. The enterprise-wide DevSecOps readiness assessment is carried out, together with the 

specifications for DevSecOps implementation and the method for development and entry into 

operations. Plans for transformation and execution are created along with a definition of the target 

stage. In this stage, the business plan is developed and the ROI is calculated. The initial DevSecOps 

methodology, the DevSecOps solution, and its connection to the cloud platform are also identified. 

 

Build: DevSecOps establishes the interdependence of software development and IT operations and 

helps an organization produce software and IT services more rapidly, with frequent iterations. 

Code development can be done in any language, but version control systems are used to maintain it. 

The most often used programmes are SonarQube, Maven, Ant, Git, SVN, and SonarQube. 

Source code management: Versions are kept up to date in a central location that serves as the only 

reliable source. The 'latest committed' code makes it easier for developers to work together, and 

operations teams may access the same code when preparing a release. Whenever there is a fault 

during the release, Ops can quickly roll back the deployed code and revert to the previous stable state. 

The most popular source control systems are Git and GitLab. Git allows developers to collaborate on 

a distributed version control system. GitLab provides a centralized and integrated platform for 

developers. 

 

Figure 1: DevSecOps life cycle and mapping of open-source tools 



Testing: Continuous testing promotes organization-wide cultural change to promote capabilities like 

testing early, testing faster, and automating. Continuous testing synchronizes testing and QA with 

Dev and Ops processes that are optimized to achieve business and development goals. 

Tosca, Selenium, Veracode, SonarQube, Cucumber, and JUnit are a few examples of tools used to 

automate test case execution. 

Continuous integration: Developers can integrate code into a shared repository numerous times per 

day with the use of continuous integration (CI). It checks each check-in and enables teams to identify 

issues early. It can identify faults more rapidly and locate them more easily by periodically 

integrating. Jenkins is the most widely used CI tool on the market. The CI tools Bamboo and Hudson 

are also widely used. 

Continuous deployment: With continuous deployment, every change automatically enters production 

after passing through the pipeline, leading to a daily increase in the number of production 

deployments and the delivery speed and frequency of complicated applications. The best continuous 

deployment tools for use in a cloud environment are Ansible, Kamatera, and Vagrant.  

 

Configuration/provision management: Management of configuration aids in establishing and 

preserving consistency in the functional requirements and performance of an application. Tools for 

configuration management operate on a master-slave design. 

Puppet, Chef, Ansible, and SaltStack are common configuration management programmes 

used in cloud environments. 

Containerization: Containerization tools help in maintaining consistency across the environments 

where the application is developed, tested, and deployed. Containerization eliminates the failure in a 

production environment by packaging and replicating the same dependencies and packages that are 

used in the development, testing, and staging environments. 

Docker is the most used containerization tool. 

Repositories: A collection of binary software artefacts and metadata kept in a specified directory 

structure is referred to as an artefact repository While snapshot repositories are often updated 

repositories that store binary software artefacts from projects that are always in progress, release 

repositories are for stable, static release artefacts. The code is maintained in a central repository called 

GitHub. There are also two other repository tools: Bitbucket and Nexus. 



Database management: This aids in the control of script revisions for databases. A popular open-

source database solution that supports different databases is called Liquibase. 

Continuous monitoring: A successful DevSecOps implementation requires continuous monitoring 

during all stages of application development, testing, and deployment. Improving service quality by 

monitoring application performance and log management solves the problem of aggregating, storing, 

and analyzing all logs in one place. Some of the well-known monitoring tools include Splunk, ELK 

Stack, Nagios, Sensu, and NewRelic. 

 

Open Source DevSecOps Tools: 

Open-source DevSecOps tools for the cloud are designed and developed using open-source 

technologies to fulfill the DevSecOps toolchain capabilities. These are: 

• Portfolio management tools, which provide transparency to stakeholders and participants 

• Collaboration tools that facilitate teamwork anywhere and at any time. 

• Source control tools, which are the single source of truth 

• Tools for tracking issues to improve visibility and responsiveness 

• Tools for configuration management that impose the intended state. 

• Continuous integration tools 

• Binary repositories that manage builds, releases, and dependencies 

• Monitoring tools that guarantee service availability and peak performance, 

• Automated test tools for higher quality 

• Time-to-market tools for deployment 

Security technologies for the DevOps life cycle, including runtime application and self-

protection, interactive application security and testing, and cloud security. 

 

Tools for cloud-based DevSecOps that are open source: 

Ansible: Red Hat owns Ansible. This programme automates a number of routine IT operations 

processes, including cloud provisioning, configuration management, and application deployment. 

Jenkins, JIRA, Git, and many other DevOps technologies are just a few of the ones it integrates with. 

Ansible's open-source, free version is accessible on GitHub. 

 



Chef: A framework for open-source automation called Chef turns infrastructure into code. It operates 

in the cloud, on-premises, or a hybrid environment. The Chef development kit provides the tools to 

develop and test infrastructure automation code from a local workstation before deploying changes 

into production. 

Docker: Docker is software used for OS-level virtualization. Containers are used to build, distribute, 

and operate application packages. With the aid of containers, a developer is able to bundle a 

programme with all of its necessary components, such as libraries and other dependencies, and ship it 

as a single file. Docker is lightweight, open, and secure. 

Docker has two parts. The tool used to create and manage Docker containers is called Docker Engine. 

Application sharing and workflow automation are covered by the cloud-based service application 

known as Docker Hub. 

GitHub: It is a platform for group code reviews that supports about 200 different programming 

languages. Additionally, it supports all of the version control features, including push and pull to and 

from GitHub and check-in, commits, branches, merging, labels, task management, and wikis. Git is a 

well-liked distributed version control system that works well for teams dispersed throughout the 

globe.  

Hudson: This cloud-based or VMware-based continuous integration solution was created in Java. 

Managing, monitoring, continuous testing, and integration are all done with it. It supports various 

systems for the management of source code, application servers, code analysis tools, testing 

frameworks, and build tools. Change set support, real-time test failure messages, and simple 

installation and configuration procedures are all included. 

Jenkins: Jenkins is a cloud-based continuous integration tool that helps to automate the activities of 

build, code analysis, and storing of artifacts. Once a developer or the team commits the code to the 

version control repository, certain actions are initiated. 

Jenkins has many plugins and works as a CI tool for various technologies like C/C++, 

Java/J2EE, .NET, Angular JS, etc. It also provides plugins to integrate with SonarQube for code 

review, JFrog Artifactory for storing binary artifacts, and testing tools like Selenium, etc, as a part of 

the automation process. 

Through plugins, Jenkins assists in automating deployments to container platforms like 

Docker as well as app servers like Tomcat, JBoss, and Weblogic. 



Kubernetes: Open source platform Kubernetes Kubernetes can be downloaded for free from its 

GitHub site. Administrators must build and deploy the Kubernetes release to a local system or cluster, 

or a system or cluster in a public cloud such as AWS, Google Cloud Platform (GCP), or Microsoft 

Azure. 

Puppet: Puppet is a DevSecOps cloud tool for managing and distributing software. By automating 

deployment, Puppet offers dependability and agility. Over the course of the whole software delivery 

life cycle, it offers continual automation and speedier delivery. The technology also improves 

infrastructure as code, configuration management, automated testing, and continuous delivery in 

addition to productivity and operational efficiency. 

Veracode: This potent cloud-based software testing service suite can aid in the implementation of 

end-to-end security. In order to lower risk in Web, mobile, and third-party applications, it offers 

application security services and solutions. Veracode offers a range of security services for 

DevSecOps, including: 

• Static analysis security testing 

• Software composition analysis 

• Vendor analysis security testing 

• Web application scanning 

Selenium: This is an automated functional testing tool to test Web applications. It facilitates the 

recording and replay of test situations when installed as a Firefox browser plugin. Selenium 

automated testing is launched in a DevSecOps scenario after the application has been installed in a 

test environment. 

Supergiant: This open-source platform for container management can be utilized for Kubernetes 

deployment on multiple clouds in a matter of minutes. Production deployment is streamlined using 

the Supergiant API. 

Apache Mesos: Apache Mesos makes it simple to create and efficiently operate fault-tolerant and 

elastic distributed systems by abstracting CPU, memory, storage, and other computing resources 

away from machines, whether they are physical or virtual.. The Mesos kernel runs on every machine 

and provides applications like Hadoop, Spark, Kafka, and Elastic search, with APIs for resource 

management and scheduling across the entire data center and cloud environments. 



Synk: This open-source security management tool is used to automatically find, prioritize and fix 

vulnerabilities in the open-source code and its dependencies. It helps in developing cloud-native 

applications. 

 

Key Benefits of adopting DevSecOps processes are: 

• It eliminates silos and promotes collaboration and teamwork. 

• It decreases the price and duration of software delivery while identifying vulnerabilities. 

• A DevSecOps tools setup reduces the time of deployment by 80-90%. For instance, it cuts 

the deployment time in half, from 12 to 2 hours. 

• It increases software quality with automated testing. It offers better and stable operations, 

lessens security concerns, minimizes rework, and improves the dependability of service 

delivery. 

• It also decreases the cost and time needed for testing and deployment-related downtime. 

• It improves development productivity and overall software quality by 20% with automated 

and early detection of defects in the cycle. 

• Increases consumer value and enhances business value by being adaptable to change. 

Application development and monitoring are automated and quick thanks to cloud computing 

and DevSecOps. This improves a company's capacity for rapid application and service delivery. 


