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ABSTRACT 

The back propagation (B.P) procedure is a useful partial application of weight change in artificial neural 

networks. Here we use two term algorithms for dynamic learning rate (LR) and the momentum factor (MF). 

Here disadvantages of these two term BP algorithms are the native minimum and reduce confluence speed and 

limited real time application. So, we add an additional term named proportional factor (PF) for two terms B.P 

algorithm. This PF improves the speed of the BP algorithm and decreases the confluence of the B.P algorithm. 

These criteria are evaluating convergence for required facilities and use of three term BP algorithm. In this 

paper we define transcendental convergence of three term back propagation algorithm with optimization 

derivative information. This paper satisfies some conditions for learning parameters of the B.P algorithm. We 

present learning rate, momentum factor and proportional factor derivative approach. These approaches 

presented derivative of weight space and using forward and backward procedures. 

Keywords -- Back propagation algorithm, Stability analysis, Optimization Technique, Transcendental 

function, momentum factor (MF), learning rate (LR), proportional factor (PF)  

 

I. INTRODUCTION 

1.1 Neural Network 

   An elementary computing unit of the nervous system is neurons or nervous cells. Humans apparently have 1010 

and 1011 neurons perhaps more. The human nervous system consumes close to 25% of the body’s energy and 

it makes up only 1% or 2% of body weights. It requires far more energy than most tissue [5] this tells us how 

active this system. 

   1.2 Historical Background of Neural Network 

 McCulloch and Pitts established a model for artificial neural network created on simple logic functions such 

as “X OR Y” and “X AND Y”. Rosenblatt [13] stirred substantial attention and action in this field when he 

invented and created the Perception with three layers, the middle layers and association layer. This structure 

could connect or associate a assigned input to a random output unit.  

In 1960 Windrow and Hoff develop a system called ADALINE (Adaptive Linear Element). Here technique 

applied for learning was distinct to that of the perception, it is working the Least Mean square (LMS) learning 

rule. Minsky (1969) wrote a paper and book [8] in which they simplified the limits of single layer Perceptions 

to multi layered system. 

1.3 Type of Neural Network 

(a) Artificial Neural Networks 

information processing system uses technique of artificial neural network. Here some implementation 

properties mutual with biological neural networks [7] Artificial neural network has been established 

simplifications of mathematical models of human thought or neural biology, based on the statements that  



 (i) Information handling appears at various easy elements called neurons. Every neuron has an inner state, called 

its beginning or motion level. 

 (ii) Rays proceed between neurons over connection links. 

(iii) Every correlation link has a correlated weight. Which in an average neural network multiplies the signal 

transferred. Weight represents knowledge being used by the network to explain a problem. 

 (iv) Every neuron applies an activation function to its net input to determine its output signal. 

 (v)The technique of neural network applied broad selection of problem, storage, remembering data, 

optimization, and pattern recognition. 

(b)  Biological Neural Networks 

There are three types of factors of biological neuron dendrites, soma and axon useful and understanding for 

artificial neurons. Here biological neurons properties propose artificial neural networks [7]. 

(i)  There are many signals received by processing element 

(ii) weight and receiving synapses could be useful for modified signal 

(iii) Neural transmit a signal output only appropriate circumstance. 

(iv) Sums weight input described by processing element 

1.4 Uses of Neural Network  

(i)  Investing analysis  

(ii)  Sign analysis 

(iii) Procedure control  

(iv) Monitoring   

   (v) Advertising 

1.5 New application areas 

(i) Neural Networks are becoming progressively part of system that are created as a good white toy 

(ii) Neural networks are a useful part of soft computing and neural computing. 

 

1.6 Optimization Techniques 

(i) Definition- Any problem that requires a positive decision to be made can be classified as operation research 

(Optimization Technique). The approach used in decision making has changed considerably over the years. 

The name (O.R) probably came from a program undertaking by Great Britain during World War II “Research 

in Military Operation.”  

(ii) Definition - Optimization technique is useful for solving complex real word problems. All engineering and 

science branches. There are many algorithms designed for technological front by inspiration from different 

phenomena. Here some admired algorithms named as Genetic Algorithm (GA) based on Darwin’s principle 

of survival of the fittest, Ant Colony Optimization (ACO) based on the foraging behavior of ants, Particle 

Swarm Optimization (PSO) based on the behavior of birds flocking in swarms and many more. There are many 

algorithms proposed for technological front by motivation from different phenomena. 

 



(a). linear optimization 

(b). Meta-heuristics 

(c). Nature inspired Optimization.  

1.7 Application area of Optimization Techniques 

(i).  In mathematical programming method used rigid body dynamics for solving constraint manifold by 

ordinary differential equation. There are many several nonlinear geometric restrictions i. e “two points 
must always coincide”, This surface must not infiltrate any other, or "this point must perpetually lie 

somewhere on this curve”. In this type of problem, linear complementarity problem solves computation 

contact forces.  

(ii).   Design problem solve by optimization designs this technique called design optimization. This is a single 
subset is the engineering optimization and alternative current subset of the field multidisciplinary design 

optimization. In aerospace engineering several problems solve this technique and this method also applied 

in cosmology and astrophysics. 

(iii).  Economic is intently connected to optimization technique that is significant definition linked economics 
science as the "analysis of human behaviour as a connection between ends and unusual means" with 

unconventional uses. Recent optimization concept comprises established optimization concept, but they 

also intersect with game theory and the study of economic equilibria.  

(iv).  In electrical engineering several applications of optimization method i.e. active filter design, microwave 

structure, electromagnetics-based design. 

(v). Optimization technique generally use in civil engineering. Transportation engineering and construction 

management and are amid the major division of civil engineering that closely rely on optimization. 
Here optimization technique solves maximum usual civil engineering problem.  

 

(vi). Operations technique applied stochastic modelling, simulation to assist   and expanded decision-making. 

Progressively, operations research applies programming of stochastic model, decision dynamic that fit 

to events. 

 

1.8 Stability  

The solution of differential equations describes Stability. The trajectory of dynamical system defines initial 

condition for small perturbations. The heat equation is an example of unchanging partial differential calculation 

since minor agitation of early data lead to minor variation in temperature after some time results of supreme 

principle in partial differential equation useful to find distance among LP norm or sub norm while differential 

geometry portions the distance among space using the Gromov -Hausdroff distance. 

In the dynamical system, if the forward orbit is in a minor neighborhood or it remains in a minor neighborhood 

called Lyapunov stable. There are different conditions that have been generated to show stability or instability 

of an orbit. Below satisfactory situations eigenvalues of matrices might be changed to a well-studied difficulty. 

There are popular methods that include Lyapunov functions. Generally, we can apply any one method stability 

criteria. 

1.9 Studying Method in ANN 

(i). Studying method change on the quantity of layers in the network single layers or multi layers. 

(ii).  Learning process also depends on signal flow of direction i.e feedforward or recurrent neural network. 



(iii). There are numeral of node in the input layer is equivalent to the numeral of structures of input data set. 

The numeral of output node will express in probable outcome i.e. the numeral of modules in the basis of 

supervised studying and the numeral of hidden layers chosen by the user. Here hidden layer nodes provide 

higher performance but too many nodes in the hidden layers results in overlapping as well as increasing 

computation expanse. 

(iv). Weight interrelated nodes process the rate of weights involved with every inter correlation among each 

neuron. So, we can solve many learning problems can be solve correctly, fully a difficult problem such 

as multi layered feed forward network. 

(v). Supervised learning process depends on input variable x and equivalent needed output variable y.  Neural 

networks produce an output created on the input. This output is equated to the needed output. 

Unsupervised learning process has input figures x and no equivalent output variable. The aim is to 

structure the primary diagram of the figures to recognize additional figures.  Classification and regression 

are called the keywords of supervised machine learning though are clustering and association.  

There are three foremost learning patterns for neural networks: supervised learning, unsupervised learning, 

and reinforcement learning. Here so many algorithms to train a neural network, including. 

     (a) Gradient descent  

     (b) Newton's method  

     (c) Conjugate gradient  

     (d) Quasi-Newton method  

     (e) Levenberg-Marquardt algorithm  

 

II. DESCRIPTION OF PROBLEM 

The number of researchers investigates recovering the effectiveness and confluence rate of back propagation 

system. Though are not higher orders byproducts but determine independent studying rates for every element 

of weights vector clearly. The conventional B.P require three new parameters for slow convergence rate. In 

right parameter [1] describe large number of trial run require and proposed a different cost function [14],[15] 

explain dynamic learning rate momentum factor by derivative information [12] define previous step 

modification and learning rate though a genetic theorem for self-modification to increase for steepest descent 

rate. A modern method incremental education for pattern recognition structural adaptation weight adjustment 

learning systems and apply primary learning to limit the erudition method [6]. The behavior of B.P investigates 

constant learning rate with static arbitrary input circumstances [3].Two-layer SOM neural network explains 

theorical basis representing homotopological shape involving input vector and output solution. They 
independently studied topological organization for DDOA vector and calculated value of AOA in the problem 

of equivalent linear array [10]. 

 
Neural network learning method uses optimization three-term backpropagation system [16]. This method 

represents optimized Learning Rate, Momentum Factor and Proportional Factor terms and recursive formula 

evaluating for derivatives and optimization goal with manner Learning Rate, Momentum Factor and 

Proportional Factor. The behavior of B.P algorithm does not raise computational difficulty. The convergence 
performance for three backpropagation process [17] established and show the numbers of three term B.P 

process though verify some condition for stable system and convergence to local minima. Adaptive momentum 

[4] analyzed with convergence back-propagation algorithm when it uses hidden layer for teaching feedforward 

neural networks. Convergence theorems describe sufficient conditions for ineffective and effective 

convergence result. The two objectives accuracy and complexity of the network [2] define hybrid non-

subjugated sorting genetic algorithm-II for optimize three-term backpropagation. A multiclass classification 

problem is effective by experimental results. The stability of RNNs with several equilibria is calculated. There 

are many recurrent neural network model main factors pretending, many equilibria, activation functions, multi 

stability and whole stability procedure. The result of total stability and multi stability recurrent neural network 

[11]. 

 



Here we define transcendental function for three-term back propagation algorithm in convergence actions and 

they satisfy definite situation of coefficient for three-term back propagation algorithm. If the system is stable 

and covers local minima, then the cost function of local minima is asymptotically stable. cost function also 

analysis by proportional factor and back propagation algorithm. We also find optimum solution for the learning 

rate, momentum factor and proportional factor terms. Mentioned equation is modified version Yahya H Zweiri 

[17]. 

∆W (K) = tanhα (−∇E(W(K))) + tanhβ ∆W(K-1)                                                                                        (1)               

Let W be a vector established by the whole networks weight and ∇E(W(K))  be the gradient of E at W=W(K) 

with k=1,2, 3....N existence the iteration number of the weight vector. The momentum term algorithm for two-

term back propagation [16] where tanhα learning rate and tanhβ momentum factor correspondingly. 

∆W (K) = - tanhα ∇E(W(K)) + tanhβ ∆W(K-1) +tanhγ e(W(K))                                                                  (2)                                                                    

We modified this equation for three terms of back propagation algorithm is analyzed. Here we show that the 

local minima for least square error function are the single nearby asymptotically stable point of algorithm. 

Then the equation (2) defines as 

 W (K+1) = W(K) -  tanhα ∇E(W(K)) + tanhβ ∆W(K-1) + tanhγ e(w(K))                                                   (3)                                                        

Ψ1 = W(K) and Ψ2 = W(K) − W(K − 1) then equation (3) represents state variable 

Ψ1(K + 1) = Ψ1(K) − tanhα(Ψ1(K)) + tanhβ (Ψ2(K)) + tanhγ e(Ψ1(K))                                                (4)                                        

Ψ2(K + 1) = −tanhα(Ψ1(K)) + tanhβ (Ψ2(K)) + tanhγ e(Ψ1(K))                                                            (5)                                            

Lemma 1. The system of equations (4) and (5) define a equilibrium point at c = (c1, c2 ). If c2 = 0 and  

tanhα ∇E(ψ1(K)) = tanhγ e(W(K)). 

Proof: - Let Ψ1(K) = c1 and Ψ2(K) = c2, If c = (c1, c2) define equilibrium points 

Ψ1(K + 1) − Ψ1(K) = 0                                                                                                                                  (6) 

and Ψ2(K + 1) − Ψ2(K) = 0                                                                                                                           (7) 

when we substitute equation (4) and (5) we find 

 (1 − tanhβ)(Ψ2(K)) = −tanhα ∇E (Ψ1(K) + tanhγ e(Ψ1(K))                                                                   (8) 

−tanhβ (Ψ2(K)) = −tanhα ∇E (Ψ1(K)) + tanhγ e(Ψ1(K))                                                                         (9)      

Subtracting eq.(8) from (9) yields Ψ2(K) = 0 ⇒ c2 = 0 replacing Ψ2(K) = 0 in eq.(8) and (9) gives 

tanhhα∇E (Ψ1(K)) = tanhhγ e(Ψ1(K))                                                                                                       (10) 

Remark: - If e(Ψ1(K)) = 0 is equilibrium place of equation (4) and (5) so ∇E(Ψ1(K))= 0 for c = (c1 ,c2) . 

The small signal analysis examined regional stability possessions about the equilibrium point (c1, c2). Let  

λ1 = Ψ1 − c1 and λ2 = Ψ2 − c2 perturbed signal then we find state equation 

λ1(K + 1) = λ1(K) − tanhα∇E (c1 + λ1(K)) + tanhβ(λ2(K) + tanhγ e(c1 + λ1(K))                               (11) 

λ2(K + 1) = −tanhα∇E (c1 + λ1(K)) + tanhβ(λ2(K) + tanhγ e(c1 + λ1(K))                                          (12) 

When we can linearize about the equilibrium point c equation (11) and (12) suited 



λ1(K + 1) = λ1(K) − tanhα∇2E (c1) (λ1(K)) + tanhβ(λ2(K) + tanhγ e(c1) − λ1(K))                            (13)       

λ2(K + 1) = −tanhα∇2E (c1) (λ1(K)) + tanhβ(λ2(K) + tanhγ e(c1) − λ1(K))                                       (14) 

If Q is a size of weight vector, then Hessian matrix equivalent to A ∈  RQXQ and ∇ e (c1) equivalent to D ∈

RQ X Q 

[
λ1(K + 1)
λ2(K + 1)

] = [
1 − tanhα A + tanhγ D tanhβ I
−tanhα A + tanhγ D tanhβ I

] [
λ1(K)
λ2(K)

]                                                                        (15) 

The more compact from of above matrix  

λ(K + 1) = ξ λ(K)                                                                                                                                          (16) 

we know that equation (16) is discrete time system and asymptotically stable if ξ has distinct eigen values 

values ∅i of ξ satisfy by (Leigh, 1985) 

 |∅1| < 1                                                                                                                                                         (17) 

Lemma 2: - (
𝐴

tanhγ
−

𝐷

tanhα
) the corresponding eigen value of  λi of F, of pairs ξ are given by the solution of 

quadric equation 

∅i
2 − (1 + tanhβ − tanhαtanhγ)∅i + tanhβ = 0                                                                                        (18)       

Proof. Whichever A and D invertible by ξ as long as tanhβ ≠ 0. Let ξ eigenvalue is ∅𝑖 and nonsingular ξ is 

nonzero. Let z = (x,y) be non-zero eigen vector analogous to ∅i then  

ξ z = ∅𝑖  𝑧                                                                                                                                                       (19) 

which directs to      

x – tanhα Ax + tanhγ Dx +tanhβ y = ∅ix                                                                                                       (20) 

and 

– tanhα Ax + tanhγ Dx +tanhβ y = ∅iy                                                                                                          (21) 

By substituting equation (21) in equation (20) and resolving for y(∅𝑖  ≠ 0) given  

y = 
(∅i−1)

∅i
x                                                                                                                                                       (22) 

by substituting equation (22) in equation (21) gives 

(– tanhα A + tanhγ D) x + ((∅i − 1) −
tanhβ(∅𝑖−1)

∅𝑖
)x                                                                                    (23) 

Since [(
A

tanhγ
) − (

D

tanhα
)] = F substituting in equation (23) gives 

FX = (
(∅i−1)(

tanhβ

∅i
 −1)

tanhαtanhγ 
)  x                                                                                                                                (24) 

Horn & Johnsm 1985 says if vector x fulfilled these equations, then x is called eigen vector of F.  

Where (
(∅i−1)(

tanhβ

∅i
 −1)

tanhαtanhγ 
)   is scalar and nonzero. 



 Now λi eigen value of F and Fx = λi x then linear 

λi = (
(∅i−1)(

tanhβ

∅i
 −1)

tanhαtanhγ 
)                                                                                                                                    (25) 

With corresponding eigen vector x. Rearranging equation (25) yields  

∅i
2 − (1 + tanhβ − tanhα λi tanhγ)∅i + tanhβ = 0                                                                                    (26) 

Theorem 1: - If system describe stable condition of equation (13) and (14) and ∅i is roots of equation (26) 

and satisfy |∅i| < 1. If they satisfy following condition 

0 < tanhβ < 1       and                                                                                                                                  (27) 

 0 <  tanhα  tanhγ λi < 4                                                                                                                              (28) 

Proof: - The equation (26) represents the polynomial of second degree. Then equation shows as    f(z) = a2 + 

z2 + a1 z + a0 = 0 from the jury test the roots of f(z) describe a unit circle for the following condition  

 |𝑎0| < 𝑎2                                                                                                                                                              (29) 

f(1) > 0                                                                                                                                                            (30) 

and (-1)2 f(-1) > 0                                                                                                                                           (31) 

applying the jury test to equation (26) yields roots within the unit circle if  

|tanhβ| < 1                                                                                                                                                    (32) 

(1 + tanhβ) > ((1 + tanhβ) − tanhα tanhγ λi )                                                                                         (33) 

and 

(1 + tanhβ) > (−(1 + tanhβ) + tanhα tanhγ λi )                                                                                      (34) 

Hence inequality (33) leads to  

  tanhα tanhγ λi > 0                                                                                                                                      (35) 

and inequality (34) 

tanhβ >
tanhα tanhγ λi

2
−  1                                                                                                                              (36) 

since the momentum factor tanhβ is positive 0 < 𝑡𝑎𝑛ℎ𝛽 < 1                                                                     (37) 

using inequality (36) on equation (37) yields 

0 < tanhα tanhγ λi < 4                                                                                                                                 (38) 

tanhα  and tanhγ values must be positive though accept the system and understand. 

 

 

 

 



III. Inference of optimal Term learning rate, momentum factor and proportional factor  

 

Suppose a group of teaching example pairs describe as (I1, T1) (I2, T2) ------------- (In, Tn) where Is, 1 ≤ s ≤ n 

indicate the sth  input and Ts , 1 ≤ s ≤ n is the corresponding desired output of back propagation system for 

multi-layer neural system for random hidden layers then least square error function  

 

E =
1

n ZM  
∑ [  TS − OS

M]Tn
S = 1 [  TS − OS

M]                                                                                                        (39) 

 

Where OS
M, IS and ZM is the output vector, input, and output neurons for M-layered network. If feed forward 

calculation of system with IS   shows input layer  

 

OS,i
m = f([Wi

m(K + 1)]T OS
m−1)                                                                                                                      (40) 

 

Where O S,i
 m  , 1 ≤ i ≤ Zm describe the ith output of layer m, 1 ≤ m ≤ M and f(.) is the activation function. If 

Wi
m(K + 1) is a sub vector of W (K+1) then it contains all weights of neurons of layer m-1 to O S,i

 m  and O S,i
 m−1 

is a vector created by all the output of layer m-1and is given by  

 

OS,i
m = {

[ 1  OS,1
m−1 … … . OS,Zm  

m−1 ]T     for m > 1,

[ 1      IS
T   ]T                           for m = 1  

                                                                                              (41) 

Here w(K+1) minimize E is needed for optimization tanhα, tanhβ, tanhγ.Here we use as a function of 

equation with a three independent variables E(tanhα, tanhβ, tanhγ) called objective function E. 

 W(K + 1) = W(K) + tanhα P(K) +  tanhβ ∆w(K − 1) +  tanhγ e (w(K))                                              (42) 

where P(K) = −∇E W(K) is descent directional vector exchanging eq. (42) into eq. (40) provides. 

O S,i
m = f([ Wi

m(K) + tanhαPi
m(K) + tanhβ ∆Wi

m(K − 1) + tanhγ ei
m(K)]T OS

m−1)                                  (43) 

By the calculation of first and second derivative of E with respect to tanhα, tanhβ, tanhγ yield  

g(tanhα, tanhβ, tanhγ) =

[
 
 
 
 
∂E(tanhα,tanhβ,tanhγ)

∂tanhα
∂E(tanhα,tanhβ,tanhγ)

∂tanhβ

∂E(tanhα,tanhβ,tanhγ)

∂tanhγ ]
 
 
 
 

                                                                                           (44) 

∂E(tanhα,tanhβ,tanhγ)

∂tanhα
= −

2

nzm
∑ [TS − OS

M]
∂OS

M

∂tanhα
n
s=1                                                                                        (45) 

∂E(tanhα,tanhβ,tanhγ)

∂tanhβ
= −

2

nzm
∑ [TS − OS

M]
∂OS

M

∂tanhβ
n
s=1                                                                                        (46) 

∂E(tanhα,tanhβ,tanhγ)

∂tanhγ
= −

2

nzm
∑ [TS − OS

M]
∂OS

M

∂tanhγ
n
s=1                                                                                         (47) 

Hessian matrix of E is defined as 

H(tanhα, tanhβ, tanhγ) =

[
 
 
 
 
 
∂2E(tanhα,tanhβ,tanhγ)

∂(tanhα)2
  

∂2E(tanhα,tanhβ,tanhγ)

∂(tanhα) ∂(tanhβ)
  

∂2E(tanhα,tanhβ,tanhγ)

∂(tanhα) ∂(tanhγ)

∂2E(tanhα,tanhβ,tanhγ)

∂(tanhβ) ∂(tanhα)
  

∂2E(tanhα,tanhβ,tanhγ)

∂(tanhβ)2
  

∂2E(tanhα,tanhβ,tanhγ)

∂(tanhβ) ∂(tanhγ)

∂E(tanhα,tanhβ,tanhγ)

∂(tanhγ) ∂(tanhα)
  

∂2E(tanhα,tanhβ,tanhγ)

∂(tanhγ) ∂(tanhβ)
   

∂2E(tanhα,tanhβ,tanhγ)

∂(tanhγ)2 ]
 
 
 
 
 

                    (48) 



When we compute equation (44) for gradient vector and derivatives of OS
M at  (tanhα0, tanhβ0, tanhγ0) for 

Hessian matrix equation and computed equation (48) thus the derivative of objective function E(X) define as  

 X = [tanhα, tanhβ, tanhγ]𝑇                                                                                                                          (49) 

We use second order and second-degree Taylor polynomial for estimated E(X) and X near 

(tanhα0, tanhβ0, tanhγ0). The condition of E(X) has continuous second order partial derivative though define 

as 

E(X) = E(tanhα0, tanhβ0, tanhγ0) + (tanhα − tanhα0)
∂E

∂tanhα
+ (tanhβ − tanhβ0)

∂E

∂tanhβ
  

            +(tanhγ − tanhγ0)
∂E

∂tanhγ
+

1

2
(tanhα − tanhα0)

2 ∂2E

∂tanh2α
+

1

2
(tanhβ − tanhβ0)

2 ∂2E

∂tanh2β
 

             +
1

2
(tanhγ − tanhγ0)

2 ∂2E

∂tanh2γ
 + (tanhα − tanhα0)(tanhβ − tanhβ0)

∂2E

∂tanhα∂tanhβ
  

            +(tanhβ − tanhβ0)(tanhγ − tanhγ0)
∂2E

∂tanhβ ∂tanhγ
    +(tanhγ − tanhγ0)(tanhα −

                  tanhα0)
∂2E

∂tanhγ∂tanhα
 

             =
1

2
ΨT HeΨ + ΨTge + ae                                                                                                                 (50) 

Where Ψ = [tanhα − tanhα0 tanhβ − tanhβ0  tanhγ − tanhγ0 ]
T, η0 = E(tanhα0, tanhβ0, tanhγ0). 

 Here equation (44) defines gradient vector g and equation (48) defines hessian matrix H. 

Case I: - According to M.A. Wolfe [9] E(X) represents convex set C continuous second partial derivatives and 

we assume the Hessian matrix H(X) at x for all X in C be positive definite. Here crucial point y of E(X) in C. 

So, we can say if E(X) is closely convex in C then y is powerful global minimize of E(X) above C. We assume 

function E (0,0,0) = 0 and gradient E(0,0,0) = 0 for equation (50) and simplifies quadratic polynomial 

The discriminates are  

D1 = 4(
1

4
Etanhαtanhα) (

1

4
Etanhβtanhβ) − (Etanhαtanhβ)

2
 

D2 = 4(
1

4
Etanhαtanhα) (

1

4
Etanhγtanhγ) − (Etanhαtanhγ)

2
 

D3 = 4(
1

4
Etanhβtanhβ) (

1

4
Etanhγtanhγ) − (Etanhβtanhγ)

2
 

  𝐸(𝑋) =
1

2
(tanhα)2Etanhαtanhα +

1

2
(tanhβ)2Etanhβtanhβ +

1

2
(tanhγ)2Etanhγtanhγ 

           + tanhαtanhαEtanhαtanhα + tanhβ tanhβ Etanhβtanhβ + tanhγtanhγEtanhγtanhγ                             (51) 

If   Etanhαtanhα > 0, D1 > 0  is a positive definite for H then symmetric matrix and (D2 > 0,D3 > 0) the 

optimal learning rate, momentum factor and proportional factor terms can be calculated as  

dE

dΨ
= HΨ + g = 0 ⇒ Ψ = −H−1g                                                                                                                (52) 

It is noted that this process defines equation (50) is minimized.  



Case II: - If one of D2 or D3 is negative and H is a positive definite matrix, then E(tanhα, tanhβ, tanhγ) can’t 

be categorized as convex. Though, E(tanhα, tanhβ, 0 ) is convex and optimal learning rate and momentum 

factor terms can be designed as in case first by location tanhγ = 0 

Case III: - If Etanhαtanhα > 0 and H is a non-positive definite matrix then the expansion of second order 

E(tanhα,0,0) convex alongside the descent direction of P(K). We calculate the optimal learning rate in case 

first by location tanhβ = tanhγ = 0 

Case IV: - Suppose H is non positive definite matrix and Etanhαtanhα < 0  the optimization aim comportment 

accelerated declined method along the descent direction P(k) because both Etanhα and Etanhαtanhα accept 

negative values. Yu and several authors [15] represent the optimal LR and estimated line search method and 

efficient of supplying an effective descent to the optimization aim. 

 

IV Estimate of sigmoid nonlinear transcendental function 

 

Suppose the equation  

 

                       y = f([ Wi
M(k) + tanhαPi

M(k) + tanhβ ∆Wi
M(k − 1) + tanhγ ei

M(k)]T OS
M−1) 

 

Here we describe sigmoidal nonlinear function, for output layer and approximated. Set of liner function  

 

f(y) = {

m1y + b1                                                                         for  y1 ≤ y ≤ y2      
m2y + b2                                                                                    for  y1 ≥ y  

m2y + (2b1 − b2)                                                                       for y1 ≤ y
                               (53) 

 

        OS
M = f([ Wi

k(k) + tanhαPi
M(k) + tanhβ ∆Wi

m(k − 1) + tanhγ ei
m(k)]T OS

M−1)                               (54) 

 On substituting eq. (54) into equation (45)-(47) and equating etanhα , etanhβ , etanhγ to zero yield  

  tanhα mj Pi
M  ∑ [

∂𝑂𝑠
𝑀

∂tanhα
]
T

   Os
M−1n

s=1 + tanhβ mj ∆Wi
M(K − 1) ∑ [

∂𝑂𝑠
𝑀

∂tanhα
]
T

   Os
M−1n

s=1  

     + tanhγ mj ei
M  ∑ [

∂𝑂𝑠
𝑀

∂tanhα
]
T

   Os
M−1n

s=1 = ∑ [
∂𝑂𝑠

𝑀

∂tanhα
]
T

 (Ts − mjWi
M(k)Os

M−1 − bj
n
s=1  )                          (55) 

 tanhα mj Pi
M  ∑ [

∂𝑂𝑠
𝑀

∂tanhβ
]
T

   Os
M−1n

s=1 + tanhβ mj ∆Wi
M(K − 1) ∑ [

∂𝑂𝑠
𝑀

∂tanhβ
]
T

   Os
M−1n

s=1  

+ tanhγ mj ei
M  ∑ [

∂𝑂𝑠
𝑀

∂tanhβ
]
T

   Os
M−1n

s=1 = ∑ [
∂𝑂𝑠

𝑀

∂tanhβ
]
T

 (Ts − mjWi
M(k)Os

M−1 − bj
n
s=1  )                             (56) 

tanhα mj Pi
M  ∑[

∂𝑂𝑠
𝑀

∂tanhγ
]

T

   Os
M−1

n

s=1

+ tanhβ mj ∆Wi
M(K − 1) ∑[

∂𝑂𝑠
𝑀

∂tanhγ
]

T

   Os
M−1

n

s=1

 

+ tanhγ mj ei
M  ∑ [

∂𝑂𝑠
𝑀

∂tanhγ
]
T

   Os
M−1n

s=1 = ∑ [
∂𝑂𝑠

𝑀

∂tanhγ
]
T

 (Ts − mjWi
M(k)Os

M−1 − bj
n
s=1  )                          (57) 

 

From equation (59) define a non-singular matrix A2 then the optimal tanhα, tanhβ and tanhγ can be 

calculated by solving equation (55)-(57) simultaneously  

 

                                                                      τ = A2
−1R2                                                                           (58) 

A2 = [
A11 A12 A13

A21 A22 A23

A31 A32 A33

]                                                                                                                            (59) 

 



Where  

𝐴11 = mj Pi
M  ∑ [

∂𝑂𝑠
𝑀

∂tanhα
]
T

   Os
M−1n

s=1  ,                         𝐴12 = mj ∆Wi
M(K − 1) ∑ [

∂𝑂𝑠
𝑀

∂tanhα
]
T

   Os
M−1n

s=1  

𝐴13 = mj ei
M  ∑ [

∂𝑂𝑠
𝑀

∂tanhα
]
T

   Os
M−1n

s=1  ,                          𝐴21 = mj Pi
M  ∑ [

∂𝑂𝑠
𝑀

∂tanhβ
]
T

   Os
M−1n

s=1   

𝐴22 = mj ∆Wi
M(K − 1) ∑ [

∂𝑂𝑠
𝑀

∂tanhβ
]
T

   Os
M−1n

s=1   ,        𝐴23 = mj ei
M  ∑ [

∂𝑂𝑠
𝑀

∂tanhβ
]
T

   Os
M−1n

s=1  

𝐴31 = mj Pi
M  ∑ [

∂𝑂𝑠
𝑀

∂tanhγ
]
T

   Os
M−1n

s=1  ,                          𝐴32 = mj ∆Wi
M(K − 1) ∑ [

∂𝑂𝑠
𝑀

∂tanhγ
]
T

   Os
M−1n

s=1  

𝐴33 = mj ei
M  ∑ [

∂𝑂𝑠
𝑀

∂tanhγ
]
T

   Os
M−1n

s=1         

 

and 

𝑅2 =

[
 
 
 
 
 ∑ [

∂𝑂𝑠
𝑀

∂tanhα
]
T

 (Ts − mjWi
M(k)Os

M−1 − bj
n
s=1  )

∑ [
∂𝑂𝑠

𝑀

∂tanhβ
]
T

 (Ts − mjWi
M(k)Os

M−1 − bj
n
s=1  )

∑ [
∂𝑂𝑠

𝑀

∂tanhγ
]
T

 (Ts − mjWi
M(k)Os

M−1 − bj
n
s=1  )]

 
 
 
 
 

                                                                                (60) 

   

 

V. CONCLUSIONS 

Here we describe ascertains necessary and sufficient condition for confluence and stability actions of three-

term back propagation transcendental function equation (35) and (36) satisfy the concurrent of three-term back 

propagation system. This equation also shows a stable system and will cover local minima. Constraint (36) 

also defined the large eigen value of matrix F. The most of all cases minima though are sit inside a bounded 

set because F is bounded and hence if tanhα , tanhγ are adequately small, all the neighboring minima stable. 

If the system is unstable, it means one eigen value of matrix F is minus. It is also describing cost function of 

all minima are single locally asymptotically point for the system. This paper shows an optimization approach 

for development, finds optimal training limits, improving learning rate for three term of back propagation 

algorithm. We use an optimization approach for transcendental function and generate sigmoidal nonlinearity 

function. 
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