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Abstract

In this paper, we introduce a notion of free solidarity value with partial participation
of solidary players that takes into account situations of voluntary formation of solidary
group. Adhering to which a unanimity game that forms a basis for games involving
the Solidarity and Shapley values is considered. We also add two new axioms, partial
positivity and unreserved allocations of solidary players for the characterization of the
value.

1 Introduction

A basic feature of an evolving society is that of people coming together as group or unions.
This leads to better productivity as well as an understanding to share the profit fairly. In
particular, we will consider the players volunteer to form a solidary group as highlighted
in the working paper [8] titled as ”the free solidarity value” of Dhaou and Ziad. Wherein
they considered that two types of players; solidary and non-solidary can co-exist without
harming the interest of any group. The Shapley value [17] and the solidarity value [12]
are employed for the payoffs of the non solidary and solidary players respectively.
Principally, the work attempted to highlight solidarity that can exist in a social structure
in situations where players are free to choose to form a solidary group. This voluntary
formation of a group of solidary players sets the game in motion. But there also maybe
a situation where at least one or more member of the solidary group need to opt out of
internal or external factors. In those situations, it will no longer be fair to follow the
mode of solidarity value [12] distribution as some of the members need to take the extra
burden for the missing ones. In that sense, it is fair to implement the Shapley value [17]
distribution if some members of the solidary group get separated.
Dhaou and Ziad characterized the value by engaging the axioms of efficiency, additivity,
conditional symmetry, unaffected allocation of non-solidary players and conditional null
player. They defined unanimity games to be the basis for the game. But we find that the
value function constructed from the unanimity games do not correspond totally with the
value function of the free solidarity value as defined in the paper. Whereas for specific
unanimity games the equality holds. Evidently, this restricts an efficient payoffs for all
the unanimity games.
However, it is reasonable to assume this restriction is valid as the game structure depends
on the solidary group of players and so efficiency fails to hold in cases when all solidary
players are not present. So, in the light of which we reconsider the payoffs of players when
all solidary players are not present.
In particular, the notion of free solidarity do not follow the classic concept of Owen [14] as
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well as the Shapley solidarity value [5], which in fact follows a different approach though
solely based on the Shapley and Solidarity distribution.
Owen [14] gave an approach when players organize themselves into groups to better their
bargaining position in the game. This notion was incorporated into TU games by means
of coalition structure which partitioned players into a set of groups or unions. In the
Owen value, players interact at two levels, first among unions and then within unions.
In both the levels, the payoffs are given by the Shapley value [Shapley,1953]. Calvo and
Gutierrez [5] modelled the Shapley-solidarity value following the same approach as Owen.
X.-F. Hu, D.-F. Li [20] proposed another axiomatization of the Shapley-Solidarity value
[5] for coalitional structure TU- games. Su, Liang et.al [19] provided cooperative and
non-cooperative interpretation of the Shapley-Solidarity value.
In this paper, first, we analyse the unanimity games constructed as a basis game in the
working paper of Dhaou and Ziad [2015]. We find that the value function based on the
unanimity games agrees partially with the value function employing the Shapley and Sol-
idarity values as defined in their paper. Albeit, for restricted unanimity game equality,
holds it fails for the remaining games. We give a restriction that the unanimity games
will strictly follow the Shapley distribution when all solidary players are not in a game
that allows the solidary players to be treated as non solidary players. And for which we
define the notion of partial participation of solidary players. This provides an effective
measure to deal with efficiency thereby at the same time allowing free association without
making it obligatory. It is relevant to ask how a solidarity group would be sustainable
if the interests of some members are provided at the expense of other members. So, our
attempt in this paper is to provide fair distribution when some members of the solidary
group fail to participate.

We organize the paper as follows. Section 2 emphasizes on the mathematical prelim-
inaries and all related values namely, the Shapley and the Solidarity values. Section 3
discusses on the free solidarity value as defined in their paper and further reconstruct the
definition of the unanimity games. Section 4 we define partial participation of solidary
players and we provide additional axioms called partial positivity and unreserved alloca-
tion of solidary players along with the existing axioms in the characterization of the free
solidarity value.

2 Preliminaries

Given a finite set N = {1, 2, ..., n} of players. 2N is the set of all subsets S of N . Any
non-empty subset S of N is said to be a coalition. The set N is the grand coalition. A
transferable utility (TU) game on a set N is a characteristic function v : 2N → R+ which
assigns to each coalition S a real number denoted by v(S), such that v(∅) = 0. v(S) is
the worth of the coalition S. The cardinality of any non empty coalition T, S,N etc can
be denoted by t, s, n. A cooperative game with transferable utility (TU) is represented
by (N, v) or simply v. The set of all games for player set N is denoted by GN .

Consider any two games v, u ∈ GN , α ∈ R. Under the usual operations of addition
and scalar multiplication, we can define, (v + u)(S) = v(S) + u(S) and (αv)(S) = αv(S)
where S ∈ 2N \ ∅. The set GN forms a vector space with dimension 2N − 1. A value
is a mapping Φ : GN → Rn defined by Φ(v) = (ϕ1(v), ..., ϕi(v)..., ϕn(v)). For any game
v ∈ GN , the mapping determines a unique payoff vector in Rn. The vector represents the
payoffs to each individual player i ∈ N by taking into account their role in the game.

For any game v ∈ GN and for every S ⊆ N , the marginal contributions of a player i
to a coalition S denoted by mi(v, S) is given by

mi(v, S) =

{
v(S)− v(S \ i) if i ∈ S
v(S ∪ i)− v(S) if i /∈ S
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In Nowak and Radzik [12], the average marginal contribution of a coalition S in a game
denoted by mav(v, S) and is given by
mav(v, S) = 1

s

∑
i∈S

(v(S)− v(S \ i)) = 1
s

∑
i∈S

mi(v, S).

In Dhaou and Ziad [8], the average marginal contribution of a coalition S in a game is
denoted by m̃av(v, S) and is given by
m̃av(v, S) = 1

|S∩S∗|
∑

i∈S∩S∗
(v(S)− v(S \ i)) = 1

|S∩S∗|
∑

i∈S∩S∗
mi(v, S).

A game v ∈ GN is said to be monotonic if v(T ) ≤ v(S) for any T, S ⊂ N such that T ⊆ S.
In a game v ∈ GN , two players are said to be symmetric if v(S ∪ i) = v(S ∪ j) ∀S ⊆

N \ {i, j}. If v(S ∪ i) = v(S), ∀S ⊆ N \ i then i ∈ N is a null player. If m̃av(v, S) = 0
for some i which belongs to every coalition S and S ⊆ N then i is an A-null player.
Some of the properties of a value function Φ in GN are as follows:

1. Efficiency: For v ∈ GN ,
∑
i∈N

Φi(N, v) = v(N).

2. Additivity: For v, u ∈ GN , Φi(N, v + u) = Φi(N, v) + Φi(N, u).

3. Symmetry: If i, j ∈ N are symmetric players in v ∈ GN then Φi(N, v) = Φj(N, v).

4. Null-player axiom: If i ∈ N in v ∈ GN is a null player then Φi(N, v) = 0.

5. A-null player axioms: If i ∈ N in v ∈ GN is an A-null player then Φi(N, v) = 0.

Players with zero contribution is highlighted in both the Shapley value [17] and the Soli-
darity value [12] or simply non-productivity is highlighted by null player and A-null player
conditions respectively. In the null player axiom, a player will get a zero payoff if all her
marginal contributions in a game are zero. That is to label a player as strictly unpro-
ductive. In contrast, in the A- null player axiom a player will get a zero payoff when the
average productivity of all the coalitions to which she belongs to is zero. This takes into
consequence the presence of a player in a coalition before discarding her as unproductive.

2.1 The Shapley value

The Shapley value [17], Φsh
i (N, v) which gives the payoff for every player i ∈ N is given

by:
Φsh
i (N, v) =

∑
S⊆N,i∈S

(n−s!)(s−1)!
n! mi(v, S) ∀i ∈ N .

The Shapley value was characterized using the axioms of efficiency, additivity, symmetry
and null-player axiom. The Shapley value can also be defined by using the unanimity
games. A unanimity game uT with ∅ ≠ T ⊆ N is defined as

uT (S) =

{
1 if T ⊆ S
0 otherwise

The Shapley value in terms of each vector of the unanimity game uT is given by:

Shi(N, uT ) =

{ 1
|T | if i ∈ T

0 otherwise

The unanimity games (uT )∅̸=T⊆N forms a basis for GN . It has been established that
any game can be written as a linear combination of the unanimity games and coeffi-
cients of which is ∆T . That is, v =

∑
∅≠T⊆N

∆TuT where ∆T =
∑
T⊆S

(−1)s−tv(T ) is the

Harsanyi dividend. Thus, the Shapley value in the dividend form is defined as
Shi(N, v) = ∆T

1
|T | for every i ∈ N .

Theorem 1 [17]. A value Ψ on GN satisfies efficiency, additivity, symmetry and the
null player axiom if, and only if, Ψ is the Shapley value.
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2.2 The Solidarity value

Sprumont [18], defined the solidarity value Φsd
i in a recursive manner as follows

Sdi(N, v) =
1
sm

av(v, S) +
∑

j∈S\i

1
sSdi(S \ j, v). i ∈ S ⊆ N ,

Firstly, Sdi({i}, v) = v(i) ∀i ∈ N .
Nowak and Radzik [12] gave another version of the solidarity value and characterized
the value with the axioms of efficiency, additivity, symmetry and A-null player condition.
The difference in the characterization with the Shapley value is in the the axiom of A-null
player which replaces the null player axiom.
The Solidarity value in Nowak and Radzik [12] is defined as

Sdi(N, v) =
∑
i∈S

(n−s)!(n−1)!
n! mav(v, S) ∀i ∈ N .

In the authors also constructed a new basis game for GN . The game is defined as

bT (S) =

{ (|S|
|T |
)−1

if T ⊆ S

0 otherwise

For the game (N, bT )∅̸=T⊆N they showed that all the players in N \ T are A-null players.
The solidarity value based on this basis game is as follows:

Sdi(N, bT ) =

{ 1
|T |bT (N) if i ∈ T

0 otherwise

Theorem 2 [12]. A value Ψ on GN satisfies efficiency, additivity, symmetry and the
A-null player axiom if and only if Ψ is the solidarity value.
A coalition structure over a finite set of players, say N , is a partition, that is, P =
{P1, .., Pm} if it satisfies the following conditions:

(i)
m⋃
k=1

Pk = N

(ii) Pk ∩ Pl = ∅ when k ̸= l
(iii) Pk ̸= ∅ for all k.
The elements of P are termed as components or unions or blocks. {N} and {{i1}, {i2}, ..., {in}}
are the trivial coalition structures. P(N) denote the set of all coalition structures over
N . A game (N, v) with coalition structure P ∈ P(N) is a triple (N, v, P ). The family of
all games with coalition structure of player set N is denoted by PGN .
In a coalition structure (N, v, P ), a quotient game is a game between unions. For every
(N, v, P ) ∈ PGN where P = {P1, .., Pm}, the quotient game is denoted by (M, vP ) ∈ GN

where M = {1, 2, ...,m} such that vP (T ) = v(∪Pi) for every T ⊆M .
The coalition structure is used to model situations where players with similar interests
and characteristics form groups as in the case of trade unions, political parties, non-profit
organisations etc. Also, groups may be formed due to geographical constraints of play-
ers located in cities, states and countries. Groups are formed for bargaining payoffs in
cooperative games.

3 The Free Solidarity value

Dhaou and Ziad (working paper, [8]) defined the free solidarity value wherein they consid-
ered two types of players, solidary and non-solidary players. The group of solidary players
is fixed from the onset of the game. The group of solidary players is denoted by S∗.
They defined the unanimity game for the Free Solidarity value:

B(T,S∗)(S) =

{
|T∩S∗|
|T |

(|S∩S∗|
|T∩S∗|

)−1
+ |T\(T∩S∗)|

|T | if T ⊆ S

0 otherwise
(1)
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The authors showed that the unanimity games (B(T,S∗))∅≠T⊆N exhibit the following prop-
erties: (i) If T = S then B(T,S∗)(S) = 1. (ii) If T ⊂ S and S∗ = ∅, then B(T,∅)(S) = 1.

(iii) B(T,S∗) is a basis for GN .
The free solidarity value based on the unanimity games is defined as follows:

Ψi(N,B(T,S∗), S
∗) =


1
|T |

( |S∗|
|T∩S∗|

)−1
if i ∈ T ∩ S∗

1
|T | if i ∈ T \ (T ∩ S∗)

0 otherwise

(2)

Theorem 3 [8]. A value Ψ on GN satisfies efficiency, additivity, conditional symmetry,
conditional null player condition, and unaffected allocation of non-solidary players axioms
if and only if Ψ is the free solidarity value.
In the free Solidarity value [8], the authors assert that the existence of an exogenous coali-
tion of solidary players promotes fairness in the payoffs of the players. The payoffs are
considered according to the players being solidary or non-solidary. So, the authors distin-
guishes the non-solidary and solidary players by accordingly considering their payoffs to
be the Shapley value and the Solidarity value respectively. From which it follows that the
contributions of the players in a game are regarded as marginal contribution or average
marginal contribution depending on the player being non-solidary or solidary. Thus, if
∀i ∈ S ⊆ N \ ∅, S ∩ S∗ ̸= ∅, then, mi(v, S) = v(S) − v(S \ i). And, if i ∈ S \ S ∩ S∗ or
m̃av(v, S) = 1

|S∩S∗|
∑

i∈S∩S∗
(v(S)− v(S \ i)) = 1

|S∩S∗|
∑

i∈S∩S∗
mi(v, S) , if i ∈ S ∩ S∗.

These contributions distinguishes a null player and an A-null player. Null Players will get
zero payoffs if their marginal contributions are zero and A-null players will get nothing if
average marginal contributions are zero for every coalition the player belongs.

The free solidarity value for an exogeneous coalition S∗ is defined as

Φfs
i (N, v, S∗) :=


∑
i∈S

(n−s)!(s−1)!
n! [v(S)− v(S \ {i})] if i /∈ S∗∑

i∈S

(n−s)!(s−1)!
n!

1
|S∩S∗| [

∑
k∈S∩S∗

(v(S)− v(S \ k))] if i ∈ S∗ (3)

Φfs
i (N, v, S∗) :=

{
Shfsi (N, v) if i /∈ S∗

Sdfsi if i ∈ S∗ (4)

The following relations hold true for equations 3 and 4:

1. If S∗ = ∅ then Φfs(N, v, S∗) = Shfs(N, v).

2. If S∗ = {i} then Φfs(N, v, S∗) = Shfs(N, v).

3. If S∗ = N , then Φfs(N, v, S∗) = Sdfs(N, v).

We illustrate with an example that the definition (Eq.3) is not in total agreement with
the definition (Equ.2) given with respect to the unanimity games.
Example 1: The matrix of the unanimity game (N,B(T,S∗), S

∗) based on the example,
N = {1, 2, 3}; S∗ = {2, 3} is as follows:

B(T,S∗)(S) {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
B{1} 1 0 0 1 1 0 1

B{2} 0 1 0 1 0 1
2

1
2

{3} 0 0 1 0 1 1
2

1
2

{1,2} 0 0 0 1 0 0 3
4

{1,3} 0 0 0 0 1 0 3
4

{2,3} 0 0 0 0 0 1 1

{1,2,3} 0 0 0 0 0 0 1

The payoff matrix for free solidarity value (Eq.2) in example 1 is as follows:
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B(T,S∗) i = 1 i = 2 i = 3 Ψ(N,B(T,S∗), S
∗)

∑
i∈N

Ψi

{1} 1 0 0 (1,0,0) 1

{2} 0 1
2 0 (0, 1

2 ,0)
1
2

{3} 0 0 1
2 (0,0, 1

2)
1
2

{1,2} 1
2

1
4 0 ( 1

2 ,
1
4 ,0)

3
4

{1,3} 1
2 0 1

4 (12 ,0,
1
4)

3
4

{2,3} 0 1
2

1
2 (0,12 ,

1
2) 1

{1,2,3} 1
3

1
3

1
3 (13 ,

1
3 ,

1
3) 1

Again we apply the unanimity games on the definition of the free solidarity value (Eq.3)
as given in the paper.

B(T,S∗) i = 1 i = 2 i = 3 Φfs(N,B(T,S∗), S
∗)

∑
i∈N

Φfs
i

{1} 1 0 0 (1,0,0) 1

{2} 0 1
2 0 (0, 1

2 ,0)
1
2

{3} 0 0 1
2 (0,0, 1

2)
1
2

{1,2} 5
12

1
4 0 ( 5

12 ,
1
4 ,0)

2
3

{1,3} 5
12 0 1

4 ( 5
12 ,0,

1
4)

2
3

{2,3} 0 1
2

1
2 (0,12 ,

1
2) 1

{1,2,3} 1
3

1
3

1
3 (13 ,

1
3 ,

1
3) 1

In the above payoff matrix, we see that efficiency does not hold for all the unanimity games.
In general, the unanimity games are in partial agreement, restricted to those unanimity
games which has all solidary players with one or more or all non-solidary players, including
only all the solidary players. In order to maintain efficiency for all the unanimity games
we need to consider the Shapley value distribution payoffs for the games that do not have
all the solidary players. For which we modify the unanimity games by adding an element
implementing the Shapley value.
In the light of which, we implement the following Shapley distribution when players from
the already formed solidary group move out of the solidary group.

Φfs
i (N, v, S∗) :=

{ ∑
i∈S

(n−s)!(s−1)!
n! [v(S)− v(S \ {i})] for i ∈ N (5)

4 Definitions

1. Solidary group: In a game, when players voluntarily agrees to form a group to
promote the common interest with mutual support of its members, we say the players
form a solidary group. In this case, players are known as solidary players. We denote this
coalition group by S∗.
2. Non-Solidary group: In a game, when players do not join the solidary group, they
naturally give rise to a non-solidary group. In this case, players are known as non-solidary
players.
3. Partial participation of solidary players: We introduce the notion of partial
participation of solidary players in the context of unanimity games where all members of
the solidary group do not participate. Then in all those unanimity games the remaining
solidary players are treated as non-solidary players.
In other words, if after the voluntary formation of the solidary group, if certain players
decide to step out of the solidary group then for the particular game the remaining solidary
group members will also be treated as non-solidary players.
Nonetheless, this does not change the spirit of free solidarity which forms the original
notion of construction of the unanimity games in their paper. To maintain the solidarity
property of solidary group all members of group should fully participate in the game as a
solidary player. So, keeping the original axioms we add two axioms that will compensate
for the discrepancy that arises in the original construction of the unanimity games.
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4.1 Axiomatic Characterization of the Free Solidarity value

Let Ψfs(N, v, S∗) be a value of a cooperative TU-game GN . The following are the axioms
for Ψfs:

1. Efficiency (E): For any (N, v, S∗) ∈ GN , we have,∑
i∈N

Ψfs
i (N, v, S∗) = v(N).

2. Additivity (A): For any (N, v, S∗), (N
′
, w, T ∗) ∈ GN

with N = N
′
, S∗ = T ∗, we have, Ψfs

i (N, v+w, S∗) = Ψfs
i (N, v, S∗)+Ψfs

i (N,w, S∗).

3. Conditional symmetry (C − S): If i, j ∈ N are symmetric players in (N, v, S∗), then

Ψfs
i (N, v, S∗) = Ψfs

j (N, v, S∗) if either i, j ∈ S∗ or i, j ∈ S \ S ∩ S∗.

4. Partial Null Player Property(P−N): For any game (N, v, S∗) ∈ GN , if i ∈ S \S∩S∗

has the null player property then Ψfs
i (N, v, S∗) = 0. Moreover, if there is partial

participation of solidary players then any i ∈ N with the null player property has
Ψfs

i (N, v, S∗) = 0.

5. Partial positivity(P − P ): For any game (N, v, S∗) ∈ GN , if there is no partial

participation of solidary players then Ψfs
i (N, v, S∗) > 0 for every i ∈ S∗.

6. Unaffected allocation of non-solidary players: When players decide freely to be sol-
idary to form a solidary group S∗, it will neither affect the allocation of the players
who have chosen to stay out of the group nor the value v. For every S ⊆ N ,
v(S, S∗) = v(S, ∅) and ∀i /∈ S∗ ̸= ∅, Ψfs

i (N, v, S∗) = Ψfs
i (N, v, ∅).

7. Unreserved allocation of solidary players: When partial participation of solidary
players in a game takes place due to some external or internal factors, all the solidary
players are treated as non-solidary and hence their payoffs is given by the Shapley
distribution.
Ψfs

i (N, v, S∗ \ j) = Shi(N, v) where j denotes the number of non participating
solidary players.

Theorem 4. A value Ψfs : GN → Rn satisfies efficiency, additivity, conditional sym-
metry, partial null player property, partial positivity, unaffected allocation of non-solidary
players, and unreserved allocation of solidary players axioms if and only if Ψfs = Φfs,
that is, Ψfs is the free solidarity value.

We define the reconstructed unanimity game as follows:
Definition 4

B(T,S∗)(S) =


|T∩S∗|
|T |

(|S∩S∗|
|T∩S∗|

)−1
+ |T\(T∩S∗)|

|T | if T ⊆ S when all solidary players are in T

1 if T ⊆ S when all solidary players are not in T
0 otherwise

(6)
Lemma 4.1: The unanimity game B(T,S∗)(S), ∀T ⊆ S with T ̸= ∅, has the following

properties:

1. If T = S, then B(T,S∗)(S) = 1.

2. If T ⊂ S with S∗ = ∅, then B(T,∅)(S) = 1.

3. If T ⊂ S with T ⊂ S∗, then B(T,S∗)(S) = 1.

4. The unanimity games with B(T,S∗) with T containing all the solidary players has
strictly m̃av(B(T,S∗), S) ̸= 0.

5. In the unanimity games, if i ∈ S∗ and i ∈ N \ T with T not containing all the
solidary players and T ⊆ S, then we have, m̃av(B(T,S∗), S) ̸= 0 for every solidary
player i ∈ T , that is,
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B(T,S∗), (S) ̸= 1
|S∩S∗|

∑
j∈(S∩S∗)

(B(T,S∗), (S)−B(T,S∗), (S\j)). This imply thatmi(B(T,S∗), S) =

0 will hold for any i ∈ N \ T having the null player property.

Proof: The proof follows immediately from the definition of the unanimity games. The
parts 1, 2, 3 are direct. Also, the games B(T,S∗) with T containing all the solidary players
has strictly m̃av(B(T,S∗), S) ̸= 0 for every solidary player i ∈ T . Hence, in this case none of
the solidary players will have the A-null player property. Again, by the definition of games
B(T,S∗) with T containing all the solidary players will exhibit the null-player property if
i ∈ N \ T that is mi(B(T,S∗), S) = 0.

Lemma 4.2: Let (N, v, S∗) be a game and S∗ be the coalition group of solidary
players with |S∗| ≥ 2. If there is no partial participation of solidary players in a game,
then no player in S∗ is an A-null player.
Proof: Clearly, it follows from part 4 of the lemma 3.3.

Remark 1. We conclude that, the A-null player condition will not hold for the
solidary players and for which we imply that a player will only have the null player
property. So all players regardless of being solidary or non solidary will only possess the
null player property.

Lemma 4.3: The set B = {B(T,S∗)(S)|T ̸= ∅} of games is a basis for the vector space

GN .
We follow the proof as given in Nowak and Radzik [12]. Firstly, GN is a K-dimensional
vector space. K = 2n−1 is the number of possible coalitions of the player set N excluding
the empty set ∅. Suppose that T1, T2, ..., Tk be a fixed sequence of non-empty coalitions
of the player set N satisfying 1 = |T1| ≤ |T2| ≤ ... ≤ |Tk| = n. We define a KXK matrix
A = [aij ] as aij = B(Ti,S∗)(Sj), for i, j = 1, 2, ..., k. By the definition of unanimity game
(Equation 6), it follows that matrix A is a triangular matrix with all diagonal entries
equal to 1. This implies |A| ≠ 0. Hence, the set {B(Ti,S∗) : i = 1, 2, ..., k} forms k linearly

independent vectors in the vector space GN . So, the set B is a basis.

Lemma 4.4: If the value Ψfs satisfies efficiency, additivity, symmetry, partial null
player property, partial positivity, unaffected allocation of non-solidary players and un-
reserved allocation of solidary players axioms, then for every player i ∈ N , non-empty
coalition T , and a real constant β we have the following two cases:
Case 1: When all solidary players are in T

Ψfs
i (N, βB(T,S∗), S

∗) =


β
|T |

( |S∗|
|T∩S∗|

)−1
if i ∈ T ∩ S∗

β
|T | if i ∈ T \ (T ∩ S∗)

0 otherwise

(7)

Case 2: When all solidary players are not in T

Ψfs
i (N, βB(T,S∗), S

∗) =

{
β
|T | if i ∈ T

0 otherwise
(8)

Proof: Suppose that ∅ ̸= T ⊆ N . As β is any real number, it follows that βB(T,S∗) is
a game. Consider β = 0, then the lemma follows from efficiency and symmetry axioms.
Assume that β ̸= 0. For T ⊆ N , in both the cases of T consisting of all solidary and not
all solidary players, every player i ∈ N \ T will be a null player in the game βB(T,S∗) by

lemma 3.4. Hence Ψfs
i (N, βB(T,S∗), S

∗) = 0 for each i ∈ N \ T . By efficiency, the two
cases can be derived.

Illustration using example 1:
The matrix of the new unanimity game (N,B(T,S∗), S

∗) based on example 1,
N = {1, 2, 3}; S∗ = {2, 3} is as follows:
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B(T,S∗)(S) {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
{1} 1 0 0 1 1 0 1

{2} 0 1 0 1 0 1 1

{3} 0 0 1 0 1 1 1

{1,2} 0 0 0 1 0 0 1

{1,3} 0 0 0 0 1 0 1

{2,3} 0 0 0 0 0 1 1

{1,2,3} 0 0 0 0 0 0 1

Then, the payoff matrix for free solidarity value (Eq. 7 and 8) in example 1 is as
follows:

B(T,S∗) i = 1 i = 2 i = 3 Ψfs(N,B(T,S∗), S
∗)

∑
i∈N

Ψfs
i

{1} 1 0 0 (1,0,0) 1

{2} 0 1 0 (0,1,0) 1

{3} 0 0 1 (0,0,1) 1

{1,2} 1
2

1
2 0 ( 1

2 ,
1
2 ,0) 1

{1,3} 1
2 0 1

2 (12 ,0,
1
2) 1

{2,3} 0 1
2

1
2 (0,12 ,

1
2) 1

{1,2,3} 1
3

1
3

1
3 (13 ,

1
3 ,

1
3) 1

Again we apply the unanimity games on the definition of the free solidarity value (Eq. 3)
as given in the paper.

B(T,S∗) i = 1 i = 2 i = 3 Φfs(N,B(T,S∗), S
∗)

∑
i∈N

Φfs
i

{1} 1 0 0 (1,0,0) 1

{2} 0 1 0 (0,1,0) 1

{3} 0 0 1 (0,0,1) 1

{1,2} 1
2

1
2 0 ( 1

2 ,
1
2 ,0) 1

{1,3} 1
2 0 1

2 (12 ,0,
1
2) 1

{2,3} 0 1
2

1
2 (0,12 ,

1
2) 1

{1,2,3} 1
3

1
3

1
3 (13 ,

1
3 ,

1
3) 1

Remark: By axiom of additivity, lemma 4.3 and lemma 4.4, we have the following
lemma.

Lemma 4.5: Any value that satisfies axioms A1-A7 is a linear mapping from GN into
Rn.

Proof of the theorem:

Existence: We first prove the existence of a value which satisfies the axioms 1 to 7.
Firstly, the efficiency of Φfs is justified by the fact that Φfs is efficient for any unanim-
ity game B(T,S∗). Let v ∈ GN . Then, there exist constants λT , ∅ ≠ T ⊂ N , such that
v =

∑
∅≠T⊂N

λTB(T,S∗)

To show that Φfs is efficient, we use the linearity of Φfs.∑
i∈N

Φfs
i (v) =

∑
∅≠T⊂N

λT
∑
i∈N

Φfs
i (B(T,S∗)) =

∑
∅≠T⊂N

λTB(T,S∗)(N) = v(N). Thereby, show-

ing that Φfs is an efficient value.
It also follows that the value function Φfs satisfies conditional symmetry, partial null
player condition, partial positivity, unaffected allocation of non-solidary players, and un-
reserved allocation of solidary players. Φfs is additive as it is a linear mapping.
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Uniqueness: Let Ψfs(N,B(T,S∗)) be a value function on GN satisfying the axioms A1-
A7. As β is any real number, it follows that βB(T,S∗) is a game.

If i /∈ T and T ̸⊆ S then Ψfs
i (N,B(T,S∗)) = 0. If i /∈ T and T ⊆ S, that is, for any

i /∈ N \ T , βB(T,S∗)(S) = βB(T,S∗)(S ∪ i) which implies that mi(βB(T,S∗), S) = 0.
Let T1 = T \ (T ∩ S∗) and T2 = (T ∩ S∗). For any two players i, j ∈ T \ (T ∩ S∗)
or i, j ∈ T ∩ S∗ with i, j /∈ S, we have T1, T2 ̸⊂ S which implies T1, T2 ̸⊂ S ∪ {i} and
T1, T2 ̸⊂ S ∪ {j}. It follows that for T = T1 ∪ T2, βB(T,S∗)(S ∪ i) = βB(T,S∗)(S ∪ j).

Then, by conditional symmetry Ψfs
i (N, βB(T,S∗)) = Ψfs

j (N, βB(T,S∗)) for every i, j ∈ T .

Moreover,
∑
i∈T

Ψfs
i (N, βB(T,S∗)) = |T |Ψfs

i (N, βB(T,S∗)) for any i ∈ T .

If there is no partial participation of solidary players then
m̃av(B(T,S∗), S) ̸= 0 for every solidary player i ∈ T . This implies by the partial positivity

axiom that ψfs
i (N,B(T,S∗)) > 0.

As the unaffected allocation holds for non solidary players, in a similar way the unreserved
allocation of solidary players hold. By definition of the unanimity game, if in a game
solidary players withdraw from the formed solidary group, they are to be treated as non
solidary. Hence no reservation is set for them as well. Hence by the axiom, partial
participation of the solidary players will make it necessary for their payoffs to follow the
Shapley distribution which is indicated to be Ψfs

i (N, βB(T,S∗), S
∗ \ j) = Shi(N, βB(T,S∗))

where j denotes the number of non participating solidary players. More precisely, in terms
of unanimity game βB(T,S∗) with T containing not all the solidary players.

By lemma 4.5, Ψfs is a linear mapping. Applying lemma 4.4 to both Ψfs and Φfs,
we observe that Ψfs(B(T,S∗)) = Φfs(B(T,S∗)) for each unanimity game B(T,S∗). Hence,

Ψfs(v) = Φfs(v) for every game v ∈ GN .
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