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Abstract 

In this Communication a new parameter called Local Isolate Domination in 

graphs is defined and Studied. A Dominating Set S is a Local Dominating set iff 

for each u in S ,< N(u) > has an isolate.  
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1 Introduction 

Throughout this paper , Simple Finite Graphs without loops and multiple edges are 

considered. For terminologies and notations  refer Chartrand  And Lesniak[3]. 

Domination and related topics are dealt in  [1 , 4, 5, 6]. 

A subset S of the vertex set V(G) is a Dominating set if each vertex in the set V \ S  

is adjacent to a vertex in S. Minimum cardinality of a minimal dominating set is 

the Domination number of a Graph denoted by(G). 

It is  an isolate dominating set if the induced graph<S> contains an isolate and is 

introduced  and studied in [7]. 

A Dominating set S is called a Doubly Isolate Dominating set if  both the induced 

graphs < S > and < V \ S > have isolates. Doubly Isolate Dominating set is 

introduced and studied in [2]. 
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Also when the concept of Isolate Dominating set is localized to the 

Neighbour set we arrive at a new variant called Local Isolate Dominationin 

Graphs. This motivated us to define a new parameter that  is introduced and 

studied in this communication.  

2 Preliminary Results 

Theorem 2.1 “For a Graph G with order atleast 3, ∆(G)= n−1 and 

minimum degree atleast 2, G has no Local Isolate Dominating Set. ” 

Proof:From the hypothesis we observe that G is a graph without isolates and 

with Domination number as one and hence this dominating set is not a Local 

Isolate Dominating set of G.  “Suppose S is any dominating set of G  and 

S \ {v} ≠  where {v} is a full degree vertex of G.Now for each  u in {S \ {v}} 

the induced graph < N(u) >  has no isolated vertex. Hence S is not a Local 

Isolate Dominating Set of G. 

 

Corollary 2.2 “The Local Isolate Dominating Set Does Not Exist For The 

Following Graphs: 

 

(i) Complete Graph Kn. 

(ii) Wheel Graph Wn. 

(iii) Fan Graph Fn.” 

 

Observation 2.3 “The Local Isolate Dominating Set Does Not Exist For 

Complete r- P a r t i t e  Kn1,n2,…nr, r ≥ 3 Graph.” 

 

3. Main results 

Proposition3.1 

“(i)  For the Paths Pn and the Cycles Cn we have 
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(ii) If G is a Graph of Order n, Then 𝛾(𝐺+)= Γ𝑙o(𝐺
+)=𝑛, Where G+ is the Graph that was 

produced from G by attaching at each of G's  vertex's e Edges.” 

Proof.(i) “Obviously 2)( 4 Plo and when n≠4, any -set of Pn is a local isolate 

dominating set as well, so that )()( nnlo PP   .” Every Local Isolate D dominating set is 

a dominating set so )()( nlon PP    thus )()( nnlo PP   and so 
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more than vertices of Pn  is no longer able to be a minimal isolation dominating, we 

have .
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(ii) Each pendant vertex is required to be present in any minimal isolate-dominating set 

S of G+ or one of its neighbours, in order to have at least n vertices. “Further, if |𝑆|>𝑛, 

S must consequently include a pendant vertex along with its support and so 𝑆−{𝑣}, 

where v is the support, is an isolate dominating set of 𝐺+,a contradiction to the 

minimality of S.” Hence  |𝑆|=𝑛. 

 

Theorem3.2 “For a Graph G of order at least 2, γlo(G)=1 iff there exists  a 

pair u,vin V(G), degG(u) = 1 and degG(v) =n−1.” 

Proof: Let G be a graph with n≥2. Suppose γlo(G)=1. Let S={v} be a Local Isolate 

Dominating set of G. “Since S is a dominating set and |V(G)\ S|=n−1, degG(v)=n−1.” 

Also since S is a γlo-set of G, <n(v) > has an isolate vertex, say u. Therefore u is 

a pendent vertex of G. Hence degG(u)=1. Conversely, {V} is a dominant set of 

G since there is a vertex v with degG(v)=n. Since “degG(u)=1, u is a isolate 

vertex in <n(v)>”, thus γlo(G)=1. 
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Corollary3.3 “For a Star Graph Sn with n≥2,  lo(Sn) = 1.” 

Theorem 3.4 “If G is a Tree with n ≥ 2 then G has a Local Isolate Dominating 

Set.” 

Proof :Let G be a Tree of Order n ≥2 and S be any Dominating Set of G. 

“Suppose G has no Local Isolate Dominating Set, there exist a vertex v ∈S, 

and < n(v)>has no isolate vertex.” Thus <n(v)> is a connected Graph. This 

implies < n[v] > contains a cycle, which contradicts that G is a Tree. 

Therefore G has a Local Isolate Dominating Set. 

 

Corollary3.5 “For  any Tree T, (T)=o(T)=lo(T)”. 

 

Theorem 3.6 “Let S be any Local Isolate Dominating Set of a Graph G and  

U ∈ S. Then there exist a vertex v ∈V(G) such that uv ∈ E(G) and  

N(U) ∩ N(V) = .” 

 

Theorem3.7 “For a Complete bipartite Graph Km,n , lo(Km,n)=2, m ≥2, n ≥2.” 

 

Theorem3.8 “A Local isolate dominating set S of a graph G  is minimal iff it is  

1-minimal.” 

proof : “Let S be a 1-minimal Local Isolate Dominating Set of a graph G. 

Suppose there exists a  S’ S that is also a Local Isolated Dominating Set of G, 

then for all v in S’, <n(v) >has an isolate vertex”. Since S’ is a Dominating 

Set, for all vertex in u in S \ S’ is adjacent to at least one vertex in S’and either 

u is an isolate vertex in <n(v)>,v ∈ S’ or <n(v) >has an isolated vertex in V \ 

S. 

case(i): u is an isolate vertex in <n(v)>, v∈ S’ then S\{v} is Local Isolate 

Dominating Set of G which contradicts the “1-minimality of S”.  
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case(ii): <n(v)>has an isolated vertex in V \ S. Let w∈<n(v)>be isolate vertex 

in V \ S then S \{u} is Local Isolate Dominating Set of G which contradicts the 

1-minimality of S. Hence S is  minimal. 

Converse is obvious. 

 

Theorem3.9 “A Local Isolate Dominating Set S of a  Graph G is  Minimal iff every 

vertex in S has a Private Neighbor with respect to S.” 

 

Corollary 3.10 “A minimal Local Isolate Dominating Set S of a Graph G is also 

a minimal Dominating Set of a Graph G.” 

 

4. Join of  Graphs 

 

Observation 4.1 “Let G and H be any two Graphs of order m , n ≥3 with 

isolate vertex and S be a Local Isolate Dominating Set of G+H. Then S∩V(G)  

≠    ≠  and S∩V(H) ≠ .” 

Theorem 4.2 “Let G and H be any two Graphs. Then S a subset of 

V(G+H) is a Local Isolate Dominating Set of G+H iff G and H have 

isolated vertices.”  

Proof “Let G and H be any two Graphs and S ⊆V(G+H) be a Local 

Isolate Dominating Set of G+H.” Suppose G and H have no isolated 

vertex then for each u ∈ S, < n(u)>is connected, which is a contradiction. 

Therefore there are isolated vertex in both G and H. 

Conversely, U and V be isolated vertices of G and H respectively, 

“Then S={u,v} is a Dominating Set of G + H and also n(u) ≥V(H) 

and n(v)≥V(G).” Thus <n(u)> and < n(v)> have isolated vertex. 

Therefore “S is a Local Isolate Dominating Set of G+H.” 
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Corollary4.3 “Let G and H  be any Graphs with isolated vertex, Then 

lo(G+H)≤2.” 

Proof. “Let G and H be Graphs with isolated vertex.” Suppose either 

G=K1 or H= K1or G= H= K1 Then Clearly, lo(G +H) = 1. Suppose 

G≠K1 and H ≠ K1, by the theorem 4.2, lo(G +H) = 2. Thus lo(G +H)≤ 2. 
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