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ABSTRACT 

In this comparative study, we investigate the performance of nine popular pre-trained deep-learning 

models for the classification of cataracts and normal eyes using color fundus images. The models under 

consideration include VGG16, VGG19, InceptionV3, DenseNet121, DenseNet201, MobileNet, MobileNetV2, 

ResNet50, and ResNet152. Through rigorous experimentation and analysis, we evaluate the models' training, 

validation, and testing accuracies to gauge their effectiveness in this medical image classification task. 

Our results reveal varying degrees of accuracy across the models. To provide a comprehensive 

assessment, we propose further analysis avenues, including the examination of accuracy and loss curves, 

confusion matrices, number of model parameters, and prediction times. These supplementary analyses offer 

insights into the models' capabilities and potential deployment considerations. Additionally, we recommend 

exploring ensemble methods and fine-tuning strategies to optimize classification accuracy. 

This study contributes to the understanding of utilizing deep learning models for medical image 

classification tasks, specifically in the context of cataract detection using fundus images. The findings offer 

valuable guidance for practitioners seeking to leverage pre-trained models for similar healthcare applications, 

taking into account both performance metrics and practical implementation considerations. 

 

Keywords—Deep learning; Cataract Prediction; Pre-trained models; Medical Image Classification; Fundus 

Images, Transfer Learning; Convolution Neural Network. 

 

I. INTRODUCTION 

 

In the realm of medical diagnostics, the integration of artificial intelligence and deep learning has 

revolutionized the way diseases are detected and diagnosed [1]. Among the myriad applications, the analysis of 

medical images has seen significant advancements, propelling the development of accurate and efficient 

diagnostic tools. Cataract, an opacification of the eye's natural lens that leads to impaired vision, is a prevalent 

ocular condition, particularly among the elderly [2]. Early detection and classification of cataracts are crucial for 

timely medical intervention and preserving patients' quality of life [3]. The advent of digital imaging 

technologies has opened up new possibilities for diagnosing and managing cataracts, where the use of deep 

learning models presents a promising avenue [4]. 

The human eye is a complex organ with intricate structures, including the lens, retina, and other 

components that collectively contribute to vision. Color fundus images, which capture the detailed structures of 



the posterior segment of the eye, provide valuable insights for diagnosing various ocular conditions, including 

cataracts [5]. These images, acquired through non-invasive methods such as fundus cameras, offer a rich source 

of data for training deep learning models to discern between healthy eyes and those afflicted by cataracts. 

Deep learning, a subset of machine learning, has exhibited remarkable capabilities in image analysis 

tasks. Pre-trained deep learning models, in particular, have gained prominence due to their ability to learn 

intricate features from vast datasets, often in the domain of natural images. These pre-trained models, which 

have been pre-trained on diverse datasets for general image recognition tasks, can be adapted for medical image 

analysis with fine-tuning techniques [6]. This project delves into the investigation and comparative analysis of 

nine popular pre-trained deep learning models to ascertain their performance in the classification of cataracts 

and normal eyes using color fundus images. 

The models selected for this study encompass a range of architectures, each with distinct characteristics 

and complexities. The ensemble of models includes VGG16, VGG19, InceptionV3, DenseNet121, 

DenseNet201, MobileNet, MobileNetV2, ResNet50, and ResNet152. These models have been chosen due to 

their prevalence in image classification tasks and their potential to extract meaningful features from medical 

images like color fundus images. 

The primary objective of this study is to comprehensively assess the performance of these pre-trained 

models in the context of cataract classification. Accurate classification hinges on the ability of these models to 

recognize subtle patterns and anomalies present in the fundus images, thereby distinguishing between cataract-

affected eyes and those that are normal. The study evaluates the models across various phases, including 

training, validation, and testing, to establish their capability to generalize beyond the training data. 

After this introduction section, the paper’s subsequent sections are organised as follows: In the 

Literature Survey section, we delve into the existing research and state-of-the-art techniques related to medical 

image analysis and cataract detection. Following that, the Methodology section elaborates on the experimental 

setup, including dataset details, preprocessing steps, and model configuration. In the Result Analysis and 

conparisons section, we present the quantitative and qualitative findings of our study, comparing the 

performance of each model and interpreting the results. In the Future Work section, we outline our aim to 

explore ensemble methods for combining the strengths of multiple models to enhance classification accuracy. 

Finally, the Conclusion section encapsulates the key insights gained from this study and underscores its 

implications in the medical image analysis field. 

In conclusion, this project embarks on a journey to explore the capabilities of deep learning models that 

have already been trained in the critical domain of cataract detection using color fundus images. The outcomes 

of this study offer valuable insights into the performance of these models and their potential applicability in 

medical diagnostics. By bridging the gap between advanced machine learning techniques and ophthalmic 

healthcare, this research contributes to the ongoing efforts to enhance disease detection, thereby advancing the 

well-being of individuals affected by cataracts. 

 

II. LITERATURE SURVEY 

 

A significant body of research has been dedicated to the detection of cataracts and similar ocular 

conditions using various imaging modalities and advanced computational techniques. In a pioneering work, Smith 

et al. introduced a method for automated cataract diagnosis based on ultrasound images, achieving an accuracy of 

94% by employing texture analysis and machine learning techniques [7]. However, the shift towards non-invasive 

imaging methods has garnered attention. Jones et al. proposed a method utilizing optical coherence tomography 

(OCT) to identify cataract-induced changes in lens thickness, demonstrating promising results in early-stage 

detection [8]. 

Moving into the realm of fundus imaging, Wang et al. employed a deep learning approach for diabetic 

retinopathy and cataract classification, leveraging a convolutional neural network (CNN) to achieve high accuracy 

rates [9]. Similarly, Li et al. combined deep learning with transfer learning to accurately detect cataracts from 

fundus images, showing superior performance in comparison to traditional machine learning techniques [10]. 

These advances underline the power of deep learning in extracting intricate features from medical images. 

However, challenges persist, particularly in handling data imbalances and limited annotated datasets. To 

deal with this, Xu et al. proposed a GAN-based model to replicate fake cataract images, augmenting the dataset 

and enhancing the model's generalization capability [11]. Furthermore, the interpretability of deep learning models 

has been a topic of concern. Zhang et al. introduced a method utilizing Grad-CAM to visualize the regions of 

interest in fundus images that contribute to cataract classification decisions, thereby enhancing transparency and 

trust in the model's predictions [12]. 

Beyond traditional machine learning, ensemble methods have gained traction. Chen et al. explored the 

effectiveness of combining multiple classifiers for cataract detection, achieving improved accuracy and robustness 

through model aggregation [13]. In a similar vein, Wu et al. proposed a hybrid ensemble model, fusing CNNs 



with support vector machines to enhance the accuracy and interpretability of cataract classification [14]. These 

studies underscore the potential of combining diverse models to achieve enhanced performance. 

While most research has focused on individual diseases, a broader approach has also been explored. Guo et al. 

introduced a multi-disease classification framework, utilizing a single model to simultaneously classify cataracts, 

diabetic retinopathy, and glaucoma from fundus images, showcasing the potential for comprehensive ocular 

disease diagnosis [15]. 

In conclusion, the field of cataract detection has considerable developments, particularly due to the use 

of modern imaging technology and machine learning techniques. Deep learning models, particularly CNNs, have 

emerged as powerful tools for cataract classification from fundus images. However, challenges such as data 

scarcity and model interpretability remain, prompting innovative solutions including data augmentation and 

visualization techniques. Moreover, exploring ensemble methods and multi-disease classification showcases the 

evolving landscape of ocular disease diagnosis. This literature review sets the stage for the current study, which 

aims to comprehensively analyze and compare pre-trained deep-learning models for cataract detection in color 

fundus images. 

 

III. METHODOLOGY 

 

A. Dataset Details 

For the purpose of this study, we utilized the Ocular Disease Intelligent Recognition (ODIR) dataset, a 

publicly available resource found on the Kaggle platform [16]. The ODIR dataset comprises a structured 

ophthalmic database consisting of data from 5,000 patients. This dataset contains age information, color fundus 

photographs from both left and right eyes, along with the keywords provided by medical professionals while 

diagnosis. The data in ODIR is designed to represent a real-world collection of patient information, aggregated 

from diverse hospitals and medical centers across China, primarily by Shanggong Medical Technology Co., Ltd.  

The ODIR dataset contains fundus images which are captured using different cameras available in the market, 

including Kowa, Zeiss and Canon. Consequently, the dataset exhibits variations in image resolutions due to the 

diverse camera sources. This diversity contributes to a more comprehensive and representative dataset, mirroring 

the inherent variability found in clinical practice. 

In this study, we harnessed the rich information within the ODIR dataset to evaluate the performance of 

pre-trained deep learning models for the classification of cataract and normal eyes using color fundus images. The 

dataset's extensive annotations, encompassing diagnostic keywords from medical experts, offer a valuable 

foundation for training and evaluating the models. 

 

B. Preprocessing Steps 

Effective preprocessing of the dataset is crucial to ensure that the data is appropriately prepared for 

training the pre-trained deep learning models. In alignment with this objective, a comprehensive preprocessing 

pipeline was implemented, tailored to enhance the quality, diversity, and suitability of the dataset for the task of 

cataract and normal eye classification. 

The initial stage of preprocessing involved the extraction of images categorized under the "cataract" and 

"normal" diagnostic keywords, as provided by medical experts. This selective extraction ensured that the dataset 

specifically captured instances of cataract-affected and normal eyes, forming the basis for the subsequent model 

training and evaluation. 

Following image extraction, a series of transformational steps were applied to the images, facilitating 

optimal learning and generalization by the models. The images underwent pixel normalization through rescaling, 

achieved by dividing each pixel value by 255. This step standardized the pixel values within a uniform range, 

aiding in the convergence of model training. 

To augment the dataset and enrich its diversity, a set of data augmentation techniques were incorporated. 

These included rotations with an angle range of up to 90 degrees, vertical and horizontal flips, and random 

shearing with a shear range of 0.2. By introducing controlled variations in image orientation and geometry, the 

augmentation process aimed to enhance the models' ability to capture varying perspectives and patterns inherent 

in the data. 

To further enhance the dataset's robustness, brightness variations were introduced within a defined range 

of 0.3 to 1. This augmentation strategy mimicked changes in illumination, preparing the models to handle varying 

lighting conditions during classification. The augmented images were then subjected to shuffling to introduce 

randomness and diversify the training experience across epochs. This step aimed to prevent model memorization 

and improve the model's generalization capabilities. 

Lastly, a target image size of (224, 224) was specified during preprocessing, aligning with the input 

dimensions expected by the pre-trained models. This standardization facilitated the seamless integration of the 

preprocessed images into the model architectures, allowing for consistent training and evaluation. 



The culmination of these preprocessing steps resulted in the creation of a data generator, effectively transforming 

the dataset into a format conducive to model training and evaluation. The generator incorporated the 

aforementioned transformations, ensuring that each batch of images presented to the model during training was 

augmented and preprocessed consistently. 

 

C. Model Configuration 

The configuration of the pre-trained deep learning models is a critical aspect that determines their 

architecture, optimization parameters, and overall structure. In this study, we selected nine popular pre-trained 

models known for their efficacy in image classification tasks, named VGG16, VGG19, InceptionV3, 

DenseNet121, DenseNet201, MobileNet, MobileNetV2, ResNet50, and ResNet152. These models encompass a 

range of architectures, each offering distinct features for feature extraction and classification. 

For each model, the top classification layers were modified to suit the binary classification task of 

distinguishing between cataract-affected and normal eyes. Specifically, the original fully connected layers were 

replaced with new layers comprising a dense layer with a sigmoid activation function. This sigmoid layer ensured 

that the models' output was a probability score within the range [0, 1], facilitating binary classification. 

The models were compiled using the Adam optimizer with a binary cross-entropy loss function. This 

configuration aligns with the binary classification task, where the objective is to minimize the divergence between 

predicted probabilities and actual labels. The choice of Adam optimizer, a popular variant of stochastic gradient 

descent, enabled efficient model convergence by adapting learning rates based on the gradient magnitudes. 

To further enhance the models' generalization capabilities and mitigate overfitting, we incorporated 

dropout layers after the dense layers. The dropout layers introduced a regularization mechanism by changing a 

percentage of the input units to zero at random throughout each training loop. This dropout strategy encouraged 

the models to rely on a broader set of features during training, reducing the likelihood of memorizing the training 

data. 

The selected models were initialized with pre-trained weights on large-scale image datasets, leveraging 

transfer learning to expedite convergence and enhance performance. The models were fine-tuned on the 

preprocessed dataset, allowing them to specialize in discerning cataract and normal eye features from color fundus 

images. 

In conclusion, the configuration of the pre-trained deep learning models involved adapting the top 

classification layers, selecting suitable optimizers and loss functions, and incorporating dropout layers for 

regularization. These configurations, tailored to the specific binary classification task of cataract detection, aimed 

to maximize model performance and robustness. 

 

VGG16 and VGG19 

The Visual Geometry Group (VGG) architectures, specifically VGG16 and VGG19, are renowned for 

their simplicity and effectiveness in image classification tasks [17]. Both models are characterized by their deep 

and homogeneous convolutional layers, consisting of multiple 3x3 convolutional filters followed by max-pooling 

layers. VGG16 comprises 16 layers, while VGG19 extends to 19 layers, making them deep architectures capable 

of capturing intricate features from images. 

We chose VGG16 and VGG19 for this project due to their simplicity and established performance in 

image classification tasks. These models have demonstrated remarkable capability in extracting meaningful 

hierarchical features, making them suitable candidates for analyzing the complex structures present in color 

fundus images. Despite their depth, VGG architectures are easy to configure and train, allowing us to focus on 

assessing their efficacy in cataract detection using the ODIR dataset. 

 

InceptionV3 

InceptionV3, an evolution of the original Inception architecture, introduces a series of improvements 

designed to enhance feature extraction and promote efficient training [18]. The model's hallmark is its utilization 

of inception modules, which employ a combination of parallel convolutions with varying kernel sizes, enabling 

the network to capture features of different scales. This strategy aids in capturing both fine-grained and global 

features present in complex images. 

We selected InceptionV3 for this project due to its effectiveness in handling medical image analysis tasks 

and its ability to balance depth and computational efficiency. With its complex architecture and feature-rich 

inception modules, InceptionV3 has demonstrated competence in extracting intricate features from diverse 

datasets. Given the complexities of color fundus images, this model's capacity to capture multiscale features is 

particularly valuable. 

InceptionV3's architectural advancements align with the nuances of medical image analysis, making it 

an apt choice for our cataract classification task. By leveraging its ability to extract diverse features, we aimed to 

determine its suitability for detecting cataract-affected and normal eyes within the ODIR dataset. 

 



DenseNet121 and DenseNet201 

DenseNet models, known for their densely connected architecture, have garnered attention for their 

efficient parameter utilization and robust feature extraction capabilities [19]. DenseNet121 and DenseNet201 are 

variants of this architecture, with the numbers indicating the total number of layers in each model. In a DenseNet, 

Feature maps are received by each layer from the layers that came before it, fostering rich feature reuse and 

enabling the network to capture intricate patterns effectively. 

We opted for DenseNet121 and DenseNet201 due to their architectural innovation, which addresses 

challenges posed by vanishing gradients and encourages feature propagation. These models incorporate dense 

connections between layers, allowing for better gradient flow and information sharing. This characteristic is well-

suited for extracting features from medical images with subtle textures and structures. Our choice of DenseNet 

models was also influenced by their parameter-efficient design, which aids in training deep networks with limited 

computational resources. By choosing DenseNet121 and DenseNet201, we aimed to assess their capacity to 

capture the complex features present in color fundus images and to determine their efficacy in cataract 

classification tasks. 

 

MobileNet and MobileNetV2 

MobileNet and its evolution, MobileNetV2, are renowned for their lightweight and efficient 

architectures, making them well-suited for applications with limited computational resources [20][21]. These 

models employ depthwise separable convolutions, which significantly reduce the number of parameters, 

facilitating rapid training and inference without compromising performance. 

The choice of MobileNet and MobileNetV2 for this project was motivated by their efficiency in 

processing images while maintaining competitive accuracy. Given the resource constraints often encountered in 

medical settings, these models offer a balance between computational efficiency and classification performance.  

MobileNetV2, an advancement over the original MobileNet, further refines the architecture with inverted 

residuals and linear bottlenecks, resulting in improved feature extraction capabilities. By opting for MobileNet 

and MobileNetV2, we aimed to explore their potential in cataract classification tasks using the ODIR dataset, with 

a focus on leveraging their efficiency to facilitate real-time diagnosis. 

 

ResNet50 and ResNet152 

ResNet (Residual Networks) models have revolutionized deep learning with their residual blocks, which 

enable training of very deep networks without vanishing gradient issues [22]. ResNet50 and ResNet152 are 

variants with 50 and 152 layers respectively, using skip connections to address the degradation issue often 

encountered in deeper networks. 

We selected ResNet50 and ResNet152 due to their pioneering approach to alleviating the challenges of 

training deep architectures. The incorporation of residual blocks, which allow layers to directly learn residual 

functions, facilitates smooth gradient flow and eases the training of extremely deep networks. 

ResNet152, being a more intricate model, presents an opportunity to evaluate the impact of increased 

model depth on cataract classification. The selection of ResNet models was motivated by their well-established 

performance in image recognition tasks and their suitability for the complexities present in fundus images. 

Our aim in choosing ResNet50 and ResNet152 was to investigate the advantages of residual architectures 

in the context of cataract detection. By leveraging their architectural innovations, we sought to assess their 

capacity to capture both subtle and significant features in fundus images from the ODIR dataset. 

 



IV. RESULT ANALYSIS AND COMPARISONS 

 

Table 1: Comparison of Accuracies and Losses 

 

Model Training Accuracy Validation Accuracy Testing Accuracy Training Loss Validation Loss 

VGG16 89.75% 89.62% 91.70% 0.2379 0.2608 

VGG19 88.80% 83.61% 93.89% 0.2774 0.5834 

InceptionV3 96.72% 92.90% 94.76% 0.0861 0.2216 

DenseNet121 95.77% 94.54% 96.94% 0.1077 0.1821 

DenseNet201 97.40% 92.90% 93.89% 0.0787 0.1799 

MobileNet 97.81% 95.08% 97.38% 0.073 0.2196 

MobileNetV2 96.45% 93.99% 96.51% 0.1172 0.1472 

ResNet50 53.83% 56.83% 56.77% 0.6785 0.6813 

ResNet152 51.09% 54.10% 61.14% 0.6853 0.6828 

 

  
 

Figure 1: Accuracy and Loss Curve of VGG16 Model 

 

 
 

Figure 2: Accuracy and Loss Curve of VGG19 Model 

 



 
 

Figure 3: Accuracy and Loss Curve of InceptionV3 Model 

 

 

 

Figure 4: Accuracy and Loss of DenseNet121 Model 

 

  
 

Figure 5: Accuracy and Loss of DenseNet201 Model 

 

  



 
 

Figure 6: Accuracy and Loss of MobileNet Model 

 

 
 

Figure 7: Accuracy and Loss of MobileNetV2 Model 

 

 

 

Figure 8: Accuracy and Loss of ResNet50 Model 

 

  



 
 

Figure 9: Accuracy and Loss of ResNet152 Model 

 

Table 1 showcases the training, validation, and testing accuracies, as well as the corresponding training 

and validation losses, for each of the evaluated pre-trained models. The observed patterns in the curves in Figure 

1 to Figure 9 offer valuable insights into the models' performances and the dynamics of their training processes. 

The models with the highest overall testing accuracies were DenseNet121, MobileNet, and 

MobileNetV2, achieving accuracies of 96.94%, 97.38%, and 96.51% respectively. This consistent performance 

across training, validation, and testing phases indicates their capacity to learn and generalize effectively, a critical 

attribute in medical image analysis. In contrast, ResNet50 and ResNet152 exhibited substantially lower testing 

accuracies of 56.77% and 61.14% respectively, suggesting challenges in capturing meaningful features from 

fundus images. It is intriguing to note that while VGG16 and VGG19 exhibited similar testing accuracies (91.7% 

and 93.89% respectively), VGG19 demonstrated lower validation accuracy than VGG16. This discrepancy might 

be attributed to VGG19's increased complexity, possibly leading to overfitting on the validation set. InceptionV3, 

known for its ability to capture multiscale features, achieved a commendable testing accuracy of 94.76%. 

Analysis of the training and validation losses provides further insights into the models' convergence 

dynamics. Models with lower training losses tend to have better convergence during training, indicative of their 

capability to fit the training data well. However, the degree of overfitting can be better assessed by examining the 

gap between training and validation losses. In this regard, DenseNet121 and MobileNetV2 exhibited 

comparatively smaller gaps, implying a more balanced approach to fitting training data and generalising to 

validation data. 

 

Table 2: Comparison of Number of Parameters 

 

Model Trainable Parameters Non-Trainable Parameters Total Parameters 

VGG16 25822594 14714688 40537282 

VGG19 25822594 20024384 45846978 

InceptionV3 52561282 21802784 74364066 

DenseNet121 51512706 7037504 58550210 

DenseNet201 96470402 18321984 114792386 

MobileNet 51512706 3228864 54741570 

MobileNetV2 64357762 2257984 66615746 

ResNet50 102892930 23587712 126480642 

ResNet152 102892930 58370944 161263874 

 

Table 2 presents the breakdown of trainable and non-trainable parameters for each of the assessed pre-

trained models, as well as their total parameter counts. This information is pivotal in understanding the models' 

complexity, memory requirements, and potential for overfitting, ultimately contributing to the informed selection 

of models for medical image classification tasks. While models with more parameters may achieve higher 

accuracy, the trade-off lies in increased memory and computational demands. The relationship between parameter 

counts and model performance underscores the need for a judicious complexity-accuracy trade-off. 

 

  



Table 3: Comparison of Prediction Time 

 

Model Prediction Time 

VGG16 0.5 

VGG19 0.5 

InceptionV3 0.7 

DenseNet121 0.7 

DenseNet201 0.8 

MobileNet 0.6 

MobileNetV2 0.5 

ResNet50 0.5 

ResNet152 0.9 

 

Table 3 offers insights into the prediction times of the evaluated pre-trained models, a critical aspect 

when considering the real-world deployment of models in medical diagnostics. The observed variations in 

prediction times provide valuable information for selecting models based on time-sensitive requirements and 

resource constraints. Several models, including VGG16, VGG19, MobileNetV2, and ResNet50, exhibit relatively 

quick prediction times of around 0.5 seconds. These models' efficient prediction speeds render them well-suited 

for applications demanding rapid diagnoses and real-time responsiveness. 

 

Table 4: Comparison of Classification Reports of the Models 

 

Model Precision Recall F1-Score 

VGG16 0.92 0.92 0.92 

VGG19 0.94 0.94 0.94 

InceptionV3 0.95 0.95 0.95 

DenseNet121 0.97 0.97 0.97 

DenseNet201 0.94 0.94 0.94 

MobileNet 0.97 0.97 0.97 

MobileNetV2 0.97 0.97 0.97 

ResNet50 0.59 0.57 0.52 

ResNet152 0.64 0.61 0.58 

 

Table 4 provides the tabulated precision, recall, and F1-score metrics which gives a comprehensive 

understanding of the performance of the evaluated pre-trained models in terms of classifying cataract and normal 

eyes. These metrics, collectively known as evaluation metrics, offer insights into the models' capabilities and 

shortcomings, contributing to informed model selection. 

The VGG16, VGG19, InceptionV3, DenseNet121, DenseNet201, MobileNet, and MobileNetV2 models 

consistently exhibit high precision, recall, and F1-scores, all hovering around 0.97. These models demonstrate 

robust performance across various aspects of evaluation, indicating their capacity to both correctly classify 

cataract and normal cases and effectively capture true positives and true negatives.  

It's important to highlight the varying performance of ResNet50 and ResNet152 compared to the other 

models.  Both exhibit comparatively lower precision, recall, and F1-scores. These discrepancies could stem from 

their architectural complexities, convergence dynamics, or overfitting tendencies. 

Figure 10 to Figure 18 shows the confusion matrices of different models. The examination of confusion 

matrices for the various pre-trained models offers a granular view of their classification performance by revealing 

the true positive, true negative, false positive, and false negative prediction distribution which provide deeper 

insights into the models' abilities to accurately classify cataract and normal cases. 

For models such as DenseNet121, MobileNet, and MobileNetV2, the confusion matrices reflect a 

balanced distribution of true positives and true negatives, resulting in high precision and recall scores. These 

models demonstrate consistent and reliable classifications across both categories. VGG16, VGG19, and 

InceptionV3 models also exhibit well-balanced confusion matrices. 

On the other hand, ResNet50 and ResNet152 present confusion matrices that emphasize the challenges 

these models face in striking a balance between true positives, true negatives, false positives, and false negatives. 



These matrices highlight the models' struggles in accurately classifying both categories, resulting in a lower 

precision-recall equilibrium and F1-scores. 

 

 
 

Figure 10: Confusion Matrix of VGG16 

 

 
 

Figure 11: Confusion Matrix of VGG19

 

 

 
 

Figure 12: Confusion Matrix of InceptionV3 

 

 
 

Figure 13: Confusion Matrix of DenseNet121 

 

 
 

Figure 14: Confusion Matrix of DenseNet201



 

 

 
 

Figure 15: Confusion Matrix of MobileNet 

 
 

Figure 16: Confusion Matrix of MobileNetV2

 

 
 

Figure 17: Confusion Matrix of ResNet50 

 

 
 

Figure 18: Confusion Matrix of ResNet152

Figure 19 to Figure 27 shows the predictions of the different models along with their filenames and true image 

type, namely Cataract or Normal, in the ODIR dataset. 

 

 
 

Figure 19: Prediction of VGG16 Model 

 

 
 

Figure 20: Prediction of VGG19 Model 

 



 

 
 

Figure 21: Prediction of InceptionV3 Model 

 

 

 
 

Figure 22: Prediction of DenseNet121 Model 

 

 

 
 

Figure 23: Prediction of DenseNet201 Model 

 

 

 
 

Figure 24: Prediction of MobileNet Model 

 

 

 
 

Figure 25: Prediction of MobileNetV2 Model 

 

 

 
 

Figure 26: Prediction of ResNet50 Model 



 

 

 
 

Figure 27: Prediction of ResNet152 Model 

 

V. FUTURE WORK 

 

As this study delves into the comparative analysis of pre-trained deep learning models for cataract 

detection, several promising directions for future research and development emerge. One potential avenue is the 

exploration of ensemble methods that combine the predictive power of multiple models to enhance classification 

accuracy [13]. Ensemble techniques, such as model averaging, stacking, or boosting, could address the limitations 

of individual models and potentially result in more robust predictions. 

Fine-tuning strategies offer another compelling area of future investigation [6]. By selectively freezing 

and retraining specific layers of pre-trained models, fine-tuning can adapt the models to the intricacies of the 

cataract detection task and improve their overall performance. 

Extending the scope of transfer learning beyond cataract detection to encompass a broader range of ocular 

diseases, such as diabetic retinopathy or glaucoma, holds potential for more comprehensive multi-disease 

classification [15]. This expansion could yield models with the capability to simultaneously identify various ocular 

conditions, enhancing their clinical utility. 

Exploring variations in data augmentation techniques tailored specifically to ocular images could also 

lead to further performance improvements [23]. By simulating a wider range of lighting conditions, ocular 

orientations, and other domain-specific variations, models could better generalize to unseen data. 

Lastly, enhancing the deep learning model interpretability and explainability in medical image analysis 

remains an essential future area [12]. Incorporating techniques such as attention mechanisms or saliency maps 

could provide insights into the features driving model decisions, making the models more transparent and 

interpretable for medical professionals. 

 

VI. CONCLUSION 

 

In this comprehensive study, we embarked on a thorough analysis of nine pre-trained deep learning 

models for the classification of cataract and normal eyes using color fundus images. The results obtained shed 

light on the effectiveness of these models in a critical medical image classification task.  

Among the models assessed, DenseNet121, MobileNet, and MobileNetV2 demonstrated consistent and 

commendable performance, boasting high testing accuracies of 96.94%, 97.38%, and 96.51%, respectively. These 

models exhibited not only robust training but also the ability to generalize effectively to unseen data. On the other 

hand, models like VGG19, InceptionV3, and ResNet152 revealed some discrepancies between training and 

validation/testing phases, suggesting potential challenges with overfitting or suboptimal generalization. 

The outcomes of this study underscore the importance of selecting appropriate pre-trained models for 

medical image classification. DenseNet architectures, with their dense connections, exhibited exceptional feature 

learning capabilities that contribute to their top-tier performance. Moreover, MobileNet and MobileNetV2 proved 

their efficiency in resource-constrained environments without compromising accuracy. 

Our findings have implications beyond this specific project, providing insights for practitioners venturing 

into medical image analysis. By considering the models' training and testing performances, researchers can make 

informed decisions when selecting models for various healthcare applications. We also recommend further 

exploring ensemble methods and fine-tuning techniques to harness the strengths of multiple models and enhance 

classification accuracy. This study, anchored in a rigorous analysis of pre-trained models, contributes to the 

advancement of medical image analysis and offers valuable guidance for future endeavors in ocular disease 

detection. 
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