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ABSTRACT 

Genomics has emerged as a transformative discipline, revolutionizing various fields of science, and agriculture is no 

exception. In the realm of crop improvement, genomics has played a pivotal role in unlocking the genetic potential of crops, 

leading to the development of more resilient, nutritious, and sustainable varieties. This chapter provides an overview of the 

impact and applications of genomics in crop improvement, highlighting key technologies, challenges, and future prospects. 

Traditional crop breeding methods have been successful in improving crop traits, but they are often constrained by time-

consuming phenotypic selection and limited access to genetic diversity. Genomics, with its high-throughput DNA sequencing 

technologies, has enabled scientists to analyze the entire genome of crops efficiently, providing insights into the genetic basis 

of various desirable traits. Through techniques such as genetic mapping and quantitative trait locus (QTL) analysis, specific 

genes associated with traits like disease resistance, drought tolerance, and nutritional content can be identified, facilitating 

Marker-Assisted Selection (MAS) for more efficient and precise breeding. Moreover, the emergence of genome editing 

technologies, such as CRISPR-Cas9, has empowered scientists to make targeted changes in crop genomes, enabling the creation 

of crops with desired traits without introducing foreign DNA. Omics technologies, including genomics, transcriptomics, 

proteomics, and metabolomics, have been instrumental in harnessing the genetic diversity present in crops and their wild 

relatives. Genomics has escorted in a new era of crop improvement, enabling scientists and breeders to leverage the vast genetic 

resources in agriculture more effectively. With continued advancements in genomics and its integration with traditional 

breeding methods, the future of crop improvement looks promising, offering solutions to global challenges such as food 

security and climate change.  
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I. INTRODUCTION TO GENOMICS IN CROP IMPROVEMENT 

Genomics, a branch of molecular biology, deals with the study of an organism's complete set of DNA, including its 

genes and their functions. Genomic techniques have revolutionized various fields, including agriculture, and have had a 

significant impact on crop improvement efforts.  The world will require a dramatic increase in food production in the next 30 
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years. The most important necessity for food and nutritional security is sustainable food production. According to studies, 151 

million children under the age of five are stunted, and 821 million individuals worldwide are at or below the minimum 

nutritional level. Two billion people also lack the necessary amounts of micronutrients to maintain a healthy lifestyle. The 

manufacturing and supply chain must function properly to satisfy these needs. Various issues connected to the production 

system posed by climate change have been anticipated to need an increase in output of 60% by 2050. These challenges are 

further expected to aggravate by an increase in the price of food to the extent of 1-29% by 2050. The increase in population 

has led to an increase in urbanization, which is directly and indirectly, reducing our access to suitable land for agriculture [1]. 

Population growth is not the only reason we will need to increase food production. Significant income growth in rapidly 

developing economies gave rise to an emerging middle class, accelerating the dietary transition toward higher consumption of 

meat, eggs, and dairy products and boosting the need to grow more grain to feed more cattle, pigs, and poultry [2]. Agriculture 

in 2050 will need to produce almost 60–100% more food and feed than it is doing now [3]. With the advent of high-throughput 

DNA sequencing technologies, scientists can now efficiently analyze the entire genome of crops, enabling a deeper 

understanding of their genetic makeup and potential. Researchers can now identify specific genes associated with key traits, 

such as drought tolerance, disease resistance, and nutritional content, using techniques like genetic mapping and quantitative 

trait locus (QTL) analysis. The identification of these genes facilitates Marker-Assisted Selection (MAS), enabling breeders to 

select plants with desired traits more efficiently.  

A. The Role of Genomic Selection in Crop Improvement: 

Genomic selection takes the use of genomics in breeding a step further by predicting an individual's genetic value 

based on its entire genome. This enables breeders to make selections at the early stages of plant development, even before 

specific traits are fully expressed, resulting in more accurate and faster breeding cycles. Recently the development of genome 

editing technologies, especially CRISPR/Cas9, opened new routes of fast and precise genome modification promising rapid 

translation of knowledge from the lab to the field. Genome editing allows introduction of insertions/deletions or an entirely 

new sequence at a desired location in the target genome [4]. Known genes controlling important traits can be selectively 

modified using genome editing, allowing for manipulation of phenotypes. In recent years, several genome edited crop plants 

entered final stages of commercialization in the United States of America including drought and salt tolerant soybean, Camelina 

with increased oil content, and waxy corn [5]. 

B. Classification of genomics based on the techniques 

The three basic classification of genomics have been listed below along with the techniques and databases used (Fig.1) 

a. Structural Genomics: 

Structural genomics is the study of configuration and sequence of DNA in the whole genome of an organism. It also 

includes the evaluation of three - dimensional structures of each protein encoded by genes. To determine all possible protein 

structures of an organism is the main aim of structural genomics because it is important to study something new about biological 

processes of an organism. Methodologies used in structural genomics are: 

1. Chromosomal maps  

2. Cytogenetic map 

3. Genetic map/Linkage map 

4. Physical map  

5. Transcriptome sequencing 

6. Expressed sequence tags  (ESTs) and cDNA clones 

7. Full-length cDNA sequencing 

8. Whole genome sequencing 

Approaches of structural genomics 

i. de novo method (experimental approach): 

It is conventional method of protein structure determination by using X-ray crystallography, NMR spectroscopy, or 

electron microscopy. Among all these techniques, X-ray crystallography technique is more precise and considered to have a 

better accuracy in determining the structure. NMR spectroscopy is replacement to X-ray crystallography for proteins of small-

to-medium size. In NMR spectroscopy, HSQC (Heteronuclear Single Quantum Coherence) spectra are main factor which is 

used to determine protein structures. At very low resolution electron microscopy determine the protein structure and then it is 

confirmed by using X-ray crystallography technique. For fast determination, there are some new techniques are developed i.e., 

ultra-high field magnet, chilled probe technology, transverse relaxation optimization spectroscopy, and isotope labelling 

techniques. 

ii. Modelling-based methods: 

In this approach, compare with proteins of PDB (Protein Data Bank) are done through profile-profile matching, model 

building, or threading. To determine closely related sequences of query compound in database, a PSI-Basic Local Alignment 

and Search Tool search is done in profile-profile matching. Threading is the most successful method of protein projection. It 

determines the three-dimensional structure of new protein by aligning its primary sequence to similar experimental structure 

in PDB [6]. 

b. Functional Genomics: 



Functional genomics is the study of functions of gene, gene products, and their interactions. It describes functions of 

whole genome of an organism and then characterization of genome done accordingly. Main aim of functional genomics is to 

study relationship between genome of an organism and its phenotype. Techniques used in functional genomics analysis- 

i. GTG banding (Giemsa banding) – This method is used to examine large chromosomal aberrations (more than 5 Mb) in 

karyotype. 

ii. aCGH (Microarray-Based Comparative genomic Hybridization) – It is used to analysis of  gain or lost areas of the genome. It 

detects gain or losses of DNA more accurately than traditional karyotyping. cCGH is specific, delicate, and fast technique 

which detect genomic alignments and copy-number changes [7]. 

iii. FISH (Fluorescence in situ Hybridization) – This technique is used to detect the location of specific DNA sequences using 

radiolabelled probes. Chromosome painting was the first application of FISH technique [8]. 

iv. Sanger or Next-Generation Sequencing – These methods are used to identify known as well as undefined variants in organism’s 

genomic DNA. Both methods have similar notion behind them. During polymerase chain reaction (PCR), which consist of 

several cycles of sequential DNA replication, DNA polymerase catalyses the complementary incorporation of fluorescently 

labeled deoxyribonucleotide 5’-triphosphates (dNTPs) into the DNA template. The detector records the colour of a labeld DNA 

fragment for each cycle, which determines its nucleotide sequences. The main difference between Sanger sequencing and Next 

Generation sequencing is the NGS is not limited to a single DNA fragment, but analyses millions of fragments in massively 

parallel sequencing technology [9]. 

v. Mass spectrometry – It is made up of three parts: an ion source used for converting the gas-phase sample into ions, a mass 

analyser to separate those ions by means of electromagnetic fields and detectors. For mass spectrometry in major proteomic 

studies, that allow proteins and peptides to migrate into the gaseous phase without significant degradation has been essential. 

Matrix-assisted laser electrospray ionization and desorption ionization are the most commonly used ionization techniques. The 

Orbitrap, which has excellent resolution, high mass accuracy and a wide dynamic range making it compatible with many 

applications in proteomics and metabolomics, is currently the most progressive mass spectrometer. 

 

c. Comparative Genomics: 

Comparative genomics is a field of biological research in which the genomic features of different organisms are 

compared. The principle of comparative genomics is to identify the common features of two organisms which are often encoded 

within the DNA that is conserved between the species. The role of comparative genomics is to differentiate gene numbers, 

gene locations, and biological functions of genes, in the genomes of distinct organisms, with an objective to examine groups 

of genes which has specific biological role in particular organism. Using comparative genomics we will be able to identify 

genes that are required for fundamental functions in a wide variety of species. It is important to study evolutionary history of 

organisms by comparing related species. Due to common evolutionary heritage of all living organisms, it can be understood 

that there are great differences and similarities among species as well as minute differences between individuals across species 

which could lead to disease susceptibility in one and resistance in other. It helps in determination of relationship between 

genotype and phenotype. Integrated resources for comparative genomics on some databases: 

1. PlantGDB and GreenPhylDB – for all plants. 

2. Gramene – for cereals. 

3. RoBuST – for root and bulb crop families Apiaceae and Alliaceae 

4. GRASSIUS – for grasses. 

Computational tool for genome sequence alignment - Alignment of two genome sequences is the first step of 

comparative genomics analysis. Recent tools used for genome scale alignment and visualization are BLASTN and 

MEGABLAST, GLASS, MUMmer, PatternHunter, PipMaker, VISTA etc.  

Comparative analysis of genome structure – Understanding similarities and differences between genomes is made possible by 

analysing global molecular structure i.e. the composition of nucleotides, syntenic relationships or gene ordering. These 

comparisons give information on the organisation and development of a genome, as well as its unique characteristics. Structure 

of different genomes can be compared at three levels: a) overall nucleotide statistics  b) genome structure at DNA level c) genome 

structure at gene level [10]. 



 

Fig. 1 Classification of genomics 

C. Harnessing Genetic Diversity through Omics Technologies: 

Genetic diversity is a vital resource for crop improvement, as it provides a reservoir of genes that can be tapped into 

for developing more resilient and adaptable crop varieties. Omics technologies, such as genomics, transcriptomics, proteomics, 

and metabolomics, enable the comprehensive study of crop diversity, facilitating the identification of valuable genes and their 

regulatory networks. 

D. Challenges and Ethical Considerations: 

The integration of genomics in crop improvement is not without challenges. Issues like data management, intellectual 

property rights, and public acceptance of genetically modified crops require careful consideration and regulation to ensure 

responsible and sustainable use of genomic tools in agriculture.  

II. Unraveling the Genetic Blueprint: Genome Sequencing and Analysis 

Advancements in genomics have opened up unprecedented opportunities to decipher the genetic blueprints of organisms, 

providing invaluable visions into their traits, functions, and evolutionary history. Genome sequencing, a fundamental tool in 

genomics, has revolutionized various fields of science, from medicine to agriculture. In this article, we delve into the significance 

of genome sequencing and analysis, its applications, and the profound impact it has had on scientific understanding and practical 

applications. Genome sequencing involves determining the order of nucleotides (A, T, C, and G) that constitute an organism's 

entire DNA sequence. The Human Genome Project, completed in 2003, marked a significant milestone in genomics by decoding 

the human genome—a feat that took over a decade and required the collaborative efforts of scientists worldwide. Since then, 

technological advancements have dramatically reduced the time and cost of genome sequencing, making it accessible to 

researchers and institutions globally. In agriculture, genome sequencing has paved the way for crop improvement, as scientists 

identify genes associated with desirable traits, such as disease resistance and increased yield. It has shed light on the evolutionary 

histories of various species, revealing relationships between organisms and uncovering key events in their divergence. By 

comparing the genomes of different species, scientists can trace their evolutionary paths and discover genetic changes that drove 

speciation and adaptation. Genome sequencing generates vast amounts of data, creating computational challenges in managing, 

analyzing, and interpreting the information. Bioinformatics tools and high-performance computing are essential in handling big 

data and extracting meaningful insights from genomes. 



A. Genome Sequencing 

Genetics and genomics have undergone a major transformation thanks to the introduction of high-throughput 

sequencing tools. Whole genome sequencing (WGS) has become widely used for the first time, allowing detection of a full range 

of common and rare genetic variants of various types across almost the entire genome. This facilitates research and clinical 

applications for rare diseases and can enhance the discovery of common disease and annotation of the causal variants. We are at 

the beginning of a new age when WGS will be a dominating method for genetic analysis now that hundreds of thousands of 

genomes have been sequenced globally. In contrast to earlier decades of human genetic research, which relied on genetic markers 

that serve as indirect proxies of other genetic variations in the surrounding region, or sequencing data only from the exonic 

regions of the genome. In order to understand how variations affect phenotypes, functional interpretation of WGS-discovered 

variants is a crucial part of human genetics investigations. Assays for genome-wide functional genomics now make it possible 

to identify, characterise, and forecast variations' molecular effects with increasing accuracy. But since these impacts reveal the 

whole complexity of genome function, which we still don't fully understand, there is still much to learn about different molecular 

effects and how they could affect higher-level organismal phenotypes (Fig. 2). 

 

Figure 2 :- General frame of WGS 

 

 A typical WGS study's primary goal is to provide a precise map of the samples' genomic variation. Since inaccurately detected 

and genotyped variations won't be directly evaluated in trait-focused studies, this critical step establishes the groundwork for all 

subsequent analyses geared at genome interpretation and genetic discovery. The technology utilised for sequencing and the level 

of coverage attained have a significant impact on the methodologies employed to map genomic variation [11]. Currently, there 

are three main WGS techniques : There are three types of whole genome sequencing (WGS): (1) short-read WGS using Illumina 

technology, which currently produces paired-end reads of 150 bp or less with error rates in the range of 0.1-0.5%; (2) long-read 

WGS using single molecule technologies from Pacific Biosciences (PacBio) or Oxford Nanopore Technologies (ONT), which 

produces reads of 10–100 kb or even longer on occasion; (3) linked-read WGS using technology from 10X Genomics We 

concentrate largely on the analysis of this data format because the vast majority of human genetics research use short-read WGS 

employing the Illumina HiSeq or NovaSeq platform due to factors like as cost, usability, and accuracy. The required amount of 

coverage is a key factor in the design of WGS investigations. Each nucleotide in the genome must be sequenced several times 

from randomly selected DNA molecules in order to identify variations from mistakes. 

B. Functional annotation and genetic variant impact forecasting consequences, both qualitative and quantitative 

The simplest method for annotating genetic variations is based on the allele frequency and location of the variants in 

the genome's coding or noncoding regions. Diverse research communities have historically examined them. The majority of the 

attention in the rare and Mendelian illness community has been on exome-sequenced uncommon, strong-effect gene-disrupting 

coding mutations. The common illness community, on the other hand, has often concentrated on the investigation of non-coding 

variants with plausible regulatory implications driving GWAS relationships and common variants genotyped by SNP arrays. The 

basic coding/noncoding categorization, which frequently contains implicit assumptions that coding variants produce gene 

knockouts or affect protein structure, is challenged by a more nuanced knowledge of the functional impact of genetic variations. 

In truth, protein structure and dose may be affected in a variety of qualitative and quantitative ways by both coding and noncoding 

variations. In the end, annotation of variations according to their projected functional effects rather than their chromosomal 

location will have a stronger biological foundation and be more broadly applicable. For instance, loss-of-function effects from 

non-coding mutations that have a significant impact on gene expression should be comparable to those from coding variants that 

cause nonsense-mediated decay of the same gene. 



 The difficulties in predicting the impacts of variants are more complicated, and the plan and timetable are less distinct. There 

is general agreement, however, that a variety of techniques will be necessary and that they must be used on a variety of systems, 

including cellular, organoid, and animal models as well as human samples. Analysing ever-larger and more varied human 

populations as well as cell kinds is crucial [12]. To enable direct investigation of different impacts and more precise 

computational prediction techniques, we anticipate that advancements in experimental techniques, the generation of substantial 

and comprehensive data sets, and algorithm development will work hand in hand. 

C. Genome sequenced Agriculturally important plants  

Reduced hunger is the main goal of the current boom in plant genome sequencing. Most of the plant genomes that 

have been sequenced are those of food crops, which are crucial for tropical nations. Various grains, pulses, tuber crops, fruits, 

vegetables, and oil plants are among these crops. For several of these crops, functional markers have been created, and genes 

affecting crucial agronomic features have been found. For a thorough knowledge of the genetic mechanisms underlying each 

attribute and to discover allelic variants, re-sequencing and gene expression experiments are still being carried out. Numerous 

genome studies are active or in the planned stages in addition to the crops that have been sequenced. Below is the list of some 

agriculturally important plants which are sequenced (Table 1). The bulk sequencing of genomes and transcriptomes has 

completely changed genetics thanks to the development of sequencing technologies. Many crop genomes have been sequenced 

by taking use of the most recent technology. The research is still in its early stages, though. Draught versions of several crop 

genome assemblies are still common. Assembling the short reads from the NGS platforms is challenging due to the abundance 

of repetitions in many plant genomes. It would be promising to launch third-generation sequencing technologies like Pacific 

Biosciences in order to get longer reads for the assembly of whole chromosomes. Another effective way to extract the whole 

genome assembly is by the purification of individual chromosomes, which may then be used for shotgun sequencing or the 

creation of BAC libraries [13]. The focus of this decade should be on information acquisition, with the expected application of 

that knowledge in the form of enhanced crop varieties with higher yields and resistance to biotic and abiotic stress in the following 

decades [62]. 

III. Breeding for Resilience: Genomic Selection and Marker-Assisted Breeding 

Breeding for resilience is a crucial strategy in modern agriculture and livestock management to enhance the ability of 

crops and animals to withstand various stressors and challenges. With the increasing impacts of climate change, emerging 

diseases, and changing environmental conditions, there is a growing need to develop resilient plant varieties and animal breeds 

that can thrive in these unpredictable circumstances. Two prominent techniques used in breeding for resilience are Genomic 

Selection (GS) and Marker-Assisted Breeding (MAB). These approaches leverage advancements in genomic technology to 

accelerate the breeding process, making it more efficient and targeted. 

A. Genomic Selection (GS): 

Genomic Selection is a revolutionary breeding method that utilizes genomic data to predict an individual's genetic 

merit for specific traits. It involves scanning the entire genome of an organism to identify regions associated with desirable 

traits, such as drought resistance, disease resistance, or yield potential. These genomic regions, known as markers, serve as 

indicators of the presence of favorable genes related to the targeted traits. The GS process involves the following steps: 

a. Genotyping: The genome of a large population of plants or animals is analyzed using high-throughput genotyping 

technologies to detect markers associated with the desired traits. 

b. Phenotyping: The same individuals are phenotyped to measure their actual performance for the target traits. 

c. Training the model: A statistical model is developed to establish the relationship between the markers and the phenotypic 

data of the individuals in the population. 

d. Selection: The model is then used to predict the breeding value of untested individuals, allowing breeders to select 

candidates with the highest potential for desired traits. 

Genomic Selection significantly accelerates the breeding process by allowing breeders to identify superior candidates 

at an early stage without the need for lengthy and resource-intensive field trials. This results in more efficient and precise breeding 

programs that can rapidly introduce desirable traits into new varieties and breeds. Numerous studies have been conducted to 

determine how well genomic selection (GS) may be used to enhance crops since the theory and conceptual underpinning for GS 

were first developed. However, marker-assisted selection has demonstrated its potential for improving qualitative characteristics 

with huge impacts regulated by one to few genes. Its contribution to the improvement of quantitative characteristics regulated 

by a number of small-effect genes is modest. In this context, GS, which selects candidates for the upcoming breeding cycle using 

genomic-estimated breeding values of individuals generated from genome-wide markers, is an effective method for enhancing 

quantitative characteristics. Because of its ability to maximise genetic gains, decrease phenotyping, shorten cycle times, and 

improve selection accuracy, GS has been enthusiastically embraced in animal breeding programmes across the world during the 

past 20 years. Prospects of integrating GS in breeding crops are also being investigated in light of the encouraging preliminary 

assessment results of GS for the enhancement of yield, biotic and abiotic stress tolerance, and quality in cereal crops including 

wheat, maize, and rice. The success of GS-enabled breeding programmes depends on improved statistical models that use genetic 

data to boost prediction accuracy. The creation of production markers that can greatly speed up the generation of crop varieties 



that are stress-resistant through GS is aided by research on genetic architecture under heat and drought stress. The figure below 

shows the major steps involved in genomic selection (Fig.4) 

 

 
Figure 4:- General Steps of Genomic Selection 

 A significant cost reduction in repetitive phenotyping is one of the benefits of GS, which uses genome-wide DNA 

marker data to predict the phenotype [63]. Through genomic estimated breeding values (GEBVs), GS has a high predictive accuracy 

in elite genetic materials, especially in the first generations, and allows breeding cycles to be shortened [64]. The GS models are 

excellent for forecasting crop performance of hybrids. For instance, Werner et al. estimated general combining ability (GCA) and 

specific combining ability (SCA) based on RR-BLUP and Bayesian models to predict hybrid performance in oilseed rape [65].  

Model for Genomic Selection Using Statistics 

A basic linear model, often known as least-squares regression or ordinary least-squares regression (OLS), is the first step in 

the GS process of choosing the appropriate candidates: 

Y=1nµ+Xβ+ε 

Where, X = design matrix of order n×p (where each row represents the genotype/individuals/lines (n) and each column corresponds to 

the marker (p)),  Y=n×1 vectors of observations, is the mean, β=p×1 vectors of marker effects,ε=n×1 vectors of random residual effects, 

and ε∼N(0,σ2e). 

 The number of markers (p) surpasses the number of observations (n), i.e., genotype/individuals/lines, causing the problem of 

over-parameterization (big "p" and small "n" problem (p >> n)). This is the main issue with linear models utilizing thousands of 

genome-wide markers. The big "p" and small "n" problem can be solved alternatively by using a subset of significant markers. For 

GS, Meuwissen et al. modified the least-squares regression [63]. Each marker was subjected to a separate least-squares regression 

analysis using the following model: 

Y=Xjβj+ε,  

where Xj is the jth column of the marker design matrix and βj  is the genetic impact of the jth marker. The log likelihood of 

this model is used to choose markers having substantial effects, and those are then utilized for estimation of breeding values. However, 

it has to be noted that some key information may be lost by selection based on the subset of markers [66]. 

 



 

Table 1 : List of genome sequenced agriculturally important plants 

Scientific name Common name Economic 

importance 

Haploid chromosome 

number 

Estimated genome 

size (Mb) 

Assembly size 

(Mb) 

Number of 

gene 

predictions 

Repeat (%) Reference 

Azadirachta indica Neem Pesticides, 

medicine 

12 364.00 – 20,000 13.03 [14] 

Beta vulgaris Sugar beet Sugar production 9 714.00–758.00 567.00 27,421 63.00 [15] 

Brassica napus Rapeseed Oil, animal feed, 

biodiesel 

19 1130.00 892.70 1,01,040 34.80 [16] 

Brassica oleracea 

var. capitata 

Cabbage Food (vegetable) 9 630.00 535.50 45,758 38.80 [17] 

Brassica rapa Chinese cabbage Food (vegetable) 10 529.00 283.80 4l,174 39.50 [18] 

Cajanus cajan Pigeon pea Food 11 833.07 605.78 48,680 51.67 [19] 

Cametina sativa Camelina Oil, animal feed, 

biodiesel 

20 785.00 641.45 89,418 28.00 [20] 

Carica papaya Papaya Food (fruit, 

vegetable) 

9 372.00 271.00 24,746 52.00 [21] 

Cannabis sativa Marijuana Drug 10 ∼820.00 534.70 30,000 – [22] 

Hemp Fibre, oil 
  

220.80 – – 
 

Capsicum annum Hot pepper Spice 12 3,480.00 3,060.00 34,903 76.40 [23] 

Cicer arietinum Chickpea Food 8 ∼738.00 532.29 28,269 49.41 [24] 

Citrullus lanatus Water melon Food (fruit) 11 ∼425.00 353.50 23,440 45.20 [25] 

Citrus clementina Clementine 

mandarin 

Food (fruit) 9 367.00 301.40 24,533 45.00 [26] 

Citrus sinensis Sweet orange Food (fruit) 9 367.00 320.50 29,445 20.50 [27] 

Coffea canephora Robusta coffee Food 11 710.00 568.60 25,574 50.00 [28] 

Cucumis melo Melon Food (fruit) 12 450.00 375.00 27,427 19.70 [29] 

Cucumis sativus Cucumber Food (vegetable) 7 367.00 243.50 26,682 24.00 [30] 

Elaeis guineensis Oil palm Edible oil 16 1,800.00 1,535.00 34,802 57.00 [31] 

Eragrostis tef Tef Food 20 772.00 672.00 – 14.00 [32] 

Eucalyptus, grandis Eucalyptus Wood, biofuel, 

medicine 

11 640.00 605.00 36,796 50.00 [33] 

Fragaria vesca Strawberry Food (fruit) 7 240.00 209.8 34,809 16.00 [34] 

Glycine max Soybean Food 20 1,115.00 950.00 46.430 57.00 [35] 

Musa acuminata Banana Food (fruit) 11 523.00 472.20 36,542 43.72 [36] 

Nicotiana tabacum Tobacco Smoking 12 4,500.00 3,700.00 90,000 72.00–78.00 [37] 

Oryza sativa- spp 

indica 

Rice Food 12 430.00 466.00 46,022–

55,615 

42.20 [38] 

Oryza sativa-spp 

japonica 

   
420.00 389.80 37,544 35.00 [39] 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807965/#b47-tlsr-27-1-93
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807965/#b47-tlsr-27-1-93
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Phaseolus vulgaris Common bean Food 11 587.00 473.00 27,197 45.37 [40] 

Phoenix dactylifera Date palm Food (fruit) 18 671.00 605.40 41,660 21.99 [41, 42] 

Phyllostachys 

heterocycla 

Moso bamboo Building material, 

furniture, pa per 

24 2,075.00 2,050.00 31,987 59.00 [43] 

Populus 

trichocarpa 

Poplar Wood, paper 19 485.00 410.00 45.555 44.00 [44] 

Prunus mume Chinese 

plum/Mei 

Food (fruit) 8 280.00 237.00 31,390 45.00 [45] 

Pyruss 

bretschneideri 

Pear Food (fruit) 8 265.00 226.60 27,852 29.60 [46] 

Pyruss 

bretschneideri 

Pear Food (fruit) 17 527.00 512.00 42,812 53.10 [47] 

Ricinus communis Castor bean Oilseed 10 320.00 350.00 31,237 50.33 [48] 

Setaria italica Foxtail millet Food. fodder, 

biofuel 

9 490.00 423.00 38,801 46.00 [49, 50] 

Solanum 

lycopersicum 

Tomato Food (vegetable) 12 900.00 760.00 34,727 63.28 [51] 

Solanum 

melongena 

Eggplant Food (vegetable) 12 1126.00 833.10 85,446 70.40 [52] 

Solanum tuberosum Potato Food 12 844.00 727.00 39,031 62.20 [53] 

Sorghum bicolor Sorghum Food, beverage 10 ∼730.00 698.00 27,640 62.00 [54] 

Theobroma cacao Cocoa Food 10 430.00 326.90 28,798 25.70 [55] 

Triticum aestivum Bread wheat Food 21 17,000.00 3,800.33 94,000–

90,000 

80.00 [56] 

Vaccinium 

macrocarpon 

Cranberry Food (fruit) 12 470.00 420.00 36,364 5.60 [57] 

Vigna radiata Mungbean Food 11 579.00 431.00 22,427 43.00 [58] 

Vitis vinifera Grape Food (fruit), 

beverage 

19 475.00 487.00 30,434 41.40 [59] 

Zea mays Maize Food 10 2,300.00 2,048.00 32,540 85.00 [60] 

Ziziphus jujuba Jujube Dry fruit, 

medicine 

12 444.00 437.65 32,808 49.49 [61] 
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B. Marker-Assisted Breeding (MAB): 

Marker-Assisted Breeding is an earlier version of genomic selection that employs markers associated with specific traits but 

doesn't involve complex prediction models. Instead, it directly targets specific genes or genomic regions known to influence desirable 

traits. MAB is particularly useful for traits controlled by major genes, which have a significant impact on the phenotype. The process 

of Marker-Assisted Breeding involves the following steps: 

a. Marker identification: Researchers identify markers that are closely linked to genes responsible for the target trait through 

genetic mapping and association studies. 

b. Marker-assisted selection: Breeders use these markers as a tool to select individuals that carry the desired genes during the 

breeding process. 

c. Phenotypic evaluation: The selected individuals are then subjected to rigorous phenotypic evaluation to validate their 

performance for the targeted trait. 

 

While Marker-Assisted Breeding lacks the predictive power and efficiency of Genomic Selection, it remains a valuable 

technique for traits with known genetic markers. Additionally, it can be more cost-effective, especially in cases where genomic data 

for the entire genome is not necessary.  In conclusion, both Genomic Selection and Marker-Assisted Breeding play crucial roles in 

breeding for resilience. They empower breeders with the knowledge of an organism's genetic makeup and aid in the selection of 

individuals with desired traits, ultimately leading to the development of more robust and resilient crops and animal breeds. As these 

technologies continue to advance, they will undoubtedly contribute significantly to food security and sustainable agriculture in the face 

of evolving challenges. The phenology of several agricultural species has been impacted by climate change, which has a negative 

impact on productivity and output. Stresses like heat, cold, drought, and flood are examples of how the climate is changing. Traditional 

breeding has been effective in achieving phenotypic selection-based genetic improvement of crops. However, recent advances in 

genomics have revealed a number of underlying genes and quantitative trait loci (QTLs) that confer tolerance to these particular 

environments and have been applied in marker-assisted selection (MAS). In an indirect selection procedure known as MAS, individuals 

are chosen based on the known markers associated with a certain characteristic of interest [67]. This technique has been successfully 

employed in the past to boost individual selection efficiency in plant breeding. When compared to the conventional phenotype-based 

selection approach, this strategy has been successfully employed in the past for the selection of individuals in plant breeding to boost 

selection accuracy [68]. 

C. Implications of Genomic Selection for crop improvement 

i. GS in Cereals 

Cereals make up around 50% of the overall dietary energy supply, making them a significant component of our daily diet. The 

principal cereal crops farmed on arable land worldwide are wheat, rice, maize, and barley. Disasters brought on by a change in the 

climate pose a threat to the production of these crops [69], and on top of that, it is made more difficult by the rising demand brought on 

by an expanding population [70]. The production system must be effective, sustainable, and put less strain on the environment in order 

to fulfill the difficulties. Crop types with high yields and low resource requirements are essential to such production systems that can 

handle the difficulties. The creation of such varieties, however, is a laborious process because the majority of agricultural productivity 

attributes are governed by a complex genetic system (most genes have little or no influence), which is complicated by poor heritability 

and a high degree of epitasis [71]. Although traditional selection techniques have produced a lot of varieties, the genetic gain per unit 

of time is not as rewarding as GS, but they do offer a chance to speed up the selection cycle [72]. The ability of GS to rapidly select 

individuals with high breeding value from early-generation populations without the need for significant phenotyping can be used to 

evaluate the viability of the method. The first candidate crops where the efficiency of GS has been investigated are wheat, rice, maize, 

and barley. 

a) Improvements in Grain Yield and Related Characteristics 

An important attribute that is directly or indirectly influenced by other traits such as thousand grain weight, the number of 

tillers bearing panicles, the number of grains per panicle, the number of filled grains per panicle, etc. is grain yield. The effectiveness 

of genomic prediction for these variables using various training populations and model types has been assessed. The heritability of the 

trait, training population, and models employed have all been linked to variances in the accuracy of genomic prediction. For a very 

intricate and physiological trait-like distribution of weight to each individual grain in the panicle in rice [73], the genomic prediction 

accuracy ranged from 0.28 to 0.78. For grain yield in maize [74], it ranged from 0.28 to 0.78. 

b) Tolerance to Biotic Stress 

Global reports of the emergence/resurgence of novel disease races and insect biotypes are being made as a result of changing 

weather patterns [75]. Therefore, finding resistance genes in the germplasm and incorporating them into the breeding program are 

necessary to create cultivars that can withstand biotic stress. While MAS has shown to be beneficial when breeding for qualitative 

resistance, it has not been as successful when breeding for quantitative resistance, which is controlled by multiple genes with smaller 

effects. Even though it has only been used in a very small number of cereals, GS has demonstrated its value in increasing tolerance to 

biotic stressors in cereals that are quantitatively controlled. Most of the studies on the utility of GS for biotic stress tolerance have been 



reported from wheat, for a wide array of diseases including three types of rusts, Fusarium head blight, Septoria tritici blotch, powdery 

mildew, tan spot, and Stagonospora nodorum blotch. In rice, GS has been utilized to identify blast-tolerant lines [76]. In maize, GS 

has been successfully utilized to select lines from natural populations for tolerance to Stenocarpella maydis causing ear rot [77] and 

from biparental populations for superior yield under heavy infestation of Striga [78]. 

c) Tolerance to Abiotic Stress 

Climate change has increased the likelihood of drought, high-temperature stress during agricultural growth phases, flood, etc., 

which results in large crop losses [79]. According to Liu et al., a yield drop of up to 6.4% in wheat has been predicted with a 1°C 

increase in global temperature [80]. Changing cropping patterns or creating varieties that are resistant to abiotic stress are the 

sustainable and affordable choices in such circumstances to make up for the losses. Traditional breeding techniques for abiotic stressors 

have accuracy and repeatability issues. Although Beyene et al. [81] reported a gain of 0.176 t/ha for grain yield after three cycles of 

selection using the rapid cycling GS strategy in eight biparental populations of maize under drought conditions, molecular markers 

have been used to identify and transfer yield QTLs under abiotic stress conditions [82]. In comparison to the usual breeding plan, 

where phenotypic selection needed a selection time that was three times higher, this resulted in an increase in genetic gain. 

d) Quality Improvement 

Quality attributes have different genetic structures, some of which are oligogenically controlled, such grain color, while others, 

like grain size and protein content, are polygenic in nature [83]. When prediction accuracies in biparental and multi-family populations 

were compared, it was found that the multi-family populations had higher prediction accuracies for quality-related traits, such as 

milling and flour quality [84]. Due to physiological compensation, protein content is known to be adversely linked with yield [85]. 

Grain length and breadth are crucial quality indicators for rice, and 110 Japanese rice cultivars using different GS models were able to 

predict these traits with an accuracy of 0.35 to 0.45 and 0.5 to 0.7, respectively [86]. 

ii. GS in oilseeds 

Small-scale farmers in developing nations in Asia and Africa rely on oilseeds as a source of income. By bridging the yield gap 

through increasing resistance to biotic and abiotic stressors and improving quality, the yield potential can still be reached [87]. The 

report of GS is limited in such potential crops due to the qualitative nature of majority of the features associated to biotic and abiotic 

stresses. The environment and GxE interactions have an impact on oil quality and yield attributes[88]. Therefore, it is crucial to utilize 

the proper GS models to take the GxE effects into account for precise selection. Beche et al. revealed that the yield-related alleles were 

associated with the cultivated elite line, while the protein content alleles were from the wild progenitor, from a hybrid between 

domesticated and wild progenitors of soybean (G. max X G. sojae) [89]. Their predictive power is more affected by the variation in 

the distribution of trait-contributing alleles in such crosses. Hu et al. used GS to predict the capacity of soybean embryogenesis and 

reported a satisfactory prediction accuracy (0.78) [90]. 

iii. GS in Pulses 

In the case of lentil, Haile et al. demonstrated that single-trait GS (STGS) is appropriate in the absence of large-effect QTLs, 

whereas multi-trait-based Bayes B is the optimum GS model if large-effect QTLs are present in the population [91]. They also claimed 

that MTGS increases prediction for low heritable traits with GxE interactions. In order to screen rapid culinary genotypes, Diaz et al. 

examined GS utilizing several populations (RIL, MAGIC, Andean, and Mesoamerican breeding lines) while taking into account quality 

attributes in Phaseolus, such as cooking time [92]. The variable was strongly heritable (0.64-0.89), and MAGIC population genomic 

prediction accuracy for cooking time was promising and high (0.55) compared to Mesoamerican genotypes' (0.22) accuracy.  

iv. Horticultural Crops GS 

In order to achieve nutritional security, fruit and vegetables are essential. However, the issue with their breeding, particularly 

with fruits, has its own drawbacks, namely a protracted juvenile phase and a highly heterozygous character. In an analysis of 537 

genotypes of apples for fruit texture attributes using GS, Roth et al. reported an accuracy of up to 0.81 [93]. Using a factorial mating 

strategy, Kumar et al. demonstrated high prediction accuracy in apples for various quality parameters (0.70-0.90) [94]. 

D. Statistical Tools for Implementing Genomic Selection 

Several tools and packages have been developed for the evaluation of genomic prediction and implementation of GS, some of 

which are listed in table 3 

S.No. Tool Description Based Availability  Access Website 

1.  GMStool 

 

Genome-wide association 

study (GWAS)-based tool 

for genomic prediction 

using genome-wide marker 

data, identifies SNP markers 

with the lowest p-values 

R-based freely 

available 

(http://cassavabase.org/solgs) 



(e.g., top 100 markers) in the 

GWAS 

2.  solGS 

 

Designed to store a large 

amount of genotypic, 

phenotypic, and 

experimental data. 

Based on 

the Linux 

operating 

system. 

open-source 

tool 

 https://github.com/austin-

putz/GenSel. 

3.  rrBLUP 

 

Most widely used packages 

for genomic prediction in 

animal and plant breeding. 

This package estimates the 

marker effects from training 

datasets 

R package 

based on 

BLUP, 

which is a 

mixed 

linear 

model 

framework 

open-source 

tool 

https://CRAN.R-

project.org/package=rrBLUP. 

4.  BWGS 

 

It is an integrated pipeline 

based on R 

Wide 

choice of 

totally 15 

parametric 

and non-

parametric 

statistical 

models for 

estimation 

of GEBV 

for 

selection 

candidates. 

freely 

available 

  https://CRAN.R-

project.org/package=BWGS. 

5.  BGLR 

 

 

Extension of the BLR 

package 

used to 

implement 

several 

Bayesian 

models and 

also 

provides 

flexibility 

in terms of 

prior 

density 

distribution 

freely 

available 

https://CRAN.R-

project.org/package=BGLR. 

6.  GenSel 

developed and 

implemented 

under the BIGS 

(Bioinformatics 

to Implement 

Genomic 

Selection) 

project  

Used for estimation of 

molecular marker–based 

breeding values of animals 

for the trait of interes 

Uses the 

Bayesian 

approach in 

the 

background 

freely 

available 

user-

friendly tool 

 https://github.com/austin-

putz/GenSel. 

7.  GSelection Comprises of a set of 

functions to select the 

important markers and 

estimates the GEBV of 

selection candidates using 

an integrated model 

framework 

R-based 

package 

freely 

available 

 https://CRAN.R-

project.org/package=GSelection  

8.  lme4GS 

 

Extension of the lme4 R 

package and can also be 

considered an extension of 

the rrBLUP used for fitting 

mixed models with 

covariance structures 

R-based 

package 

freely 

available 

https://github.com/perpdgo/lme4GS 

9.  STGS 

 

Developed for genomic 

predictions by estimating 

marker effects, and the same 

is further used for 

Performs 

genomic 

selection 

only for a 

freely 

available 

https://CRAN.R-

project.org/package=STGS. 



calculation of genotypic 

merit of individuals, i.e., 

GEBV 

single trait, 

hence 

named 

STGS 

10.  MTGS MTGS performs genomic 

selection using multi-trait 

information comprehensive 

package which gives a 

single-step solution for 

genomic selection using 

various MTGS-based 

methods (MRCE, MLASSO, 

i.e., multivariate LASSO 

R-based 

package, 

performs 

genomic 

selection 

only for a 

multiple 

trait 

freely 

available 

https://CRAN.R-

project.org/package=MTGS 

 

E. Next Generation Sequencing (NGS): The Secret to GS's Success 

The most comprehensive method for studying polymorphism in any crop is to sequence or resequence the full genome (or a 

portion of it) of a large number of accessions. This was not conceivable prior to the development of the NGS platform, which has 

fundamentally changed the way genomic approaches to biology are carried out. The platform has dramatically increased the speed at 

which DNA sequence can be collected while sharply lowering the costs by several orders of magnitude. According to many scientists, 

NGS technologies have been extensively used for transcriptome and epigenetic analysis, whole genome sequencing (WGS), whole 

genome resequencing (WGRS), de novo sequencing, and GBS.  

Third generation sequencing (TGS) technologies were created in recent years and are now being used to enhance NGS tactics. 

In less time and for less money each instrument run, these technologies yield longer sequence reads. NGS has grown to be a potent 

tool for genomic-estimated breeding (GAB) because of its ability to quickly detect a large number of DNA sequence polymorphism-

based markers. Using NGS platforms, several targeted marker finding methods have been created. In GWAS and GS investigations, 

RAD-seq (or its variations) and GBS were often employed. These NGS technologies have already been demonstrated to be successful 

for GAB (Table 2). 

Table 2 :- Genomic selection (GS) efforts performed for various traits in different crops using different statistical models, 

software packages, and next-generation sequencing (NGS) marker genotyping platforms. 

S.no

. 

Species NGS 

marker 

platfor

m 

Trait Populatio

n size 

Total 

SNP 

marker

s 

Predictio

n 

accuracy 

Model Software 

packages 

Referenc

e 

1 Rice GBS Grain yield, 

flowering 

time 

363 73,147 0.31–0.63 RR-

BLUP 

R package 

rrBLUP 

[95] 

2 Rice DArTseq Grain yield, 

plant height 

343 8,336 0.54 G-BLUP, 

RR-

BLUP 

BGLR and 

ASReml R 

packages 

[96] 

3 Wheat GBS Stem rust 

resistance 

365 4,040 0.61 G-BLUP 

B 

R package 

GAPIT 

[97] 

4 Wheat GBS Grain yield, 

plant 

height, 

heading 

date and 

pre-harvest 

sprouting 

365 38,412 0.54 BLUP R package 

rrBLUP 

[98] 

5 Wheat GBS Grain yield 254 41,371 0.28–0.45 BLUP ASReml 3.0 [99] 

6 Wheat GBS Yield and 

yield 

related 

traits, 

protein 

content 

1127 38,893 0.20–0.59 BLUP rrBLUP 

version 4.2 

[100] 

7 Wheat GBS Fusarium 

head blight 

resistance 

273 19,992 0.4–0.90 RR-

BLUP 

R package 

GAPIT 

[101] 

8 Wheat GBS Grain yield, 

protein 

659 – 0.19–0.51 RR-

BLUP 

R package 

rrBLUP 

[102] 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B32
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B61
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B35
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B54
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B37
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B50


content and 

protein 

yield 

9 Wheat GBS Grain yield 1477 81,999 0.50 G-BLUP R package 

rrBLUP 

[103] 

10 Wheat DArTseq Grain yield 803 – 0.27–0.36 G-BLUP BGLR and 

ASReml R 

packages 

[104] 

11 Wheat GBS Grain yield, 

Fusarium 

head blight 

resistance, 

softness 

equivalence 

and flour 

yield 

470 4858 0.35–0.62 BLUP BGLR R-

package 

[105] 

12 Wheat GBS Heat and 

drought 

stress 

10819 40000 0.18–0.65 G-BLUP BGLR R-

package 

[106] 

13 Maize GBS Drought 

stress 

3273 58 731 0.40–0.50 G-BLUP BGLR R-

package 

[107] 

14 Maize GBS Grain yield, 

anthesis 

date, 

anthesis-

silkimg 

interval 

504 158,281 0.51–0.59 PGBLUP

, PRKHS 

R Software [108] 

15 Maize GBS Grain yield, 

anthesis 

date, 

anthesis-

silkimg 

interval 

296 235,265 0.62 PGBLUP

, PRKHS 

R software [108] 

16 Maize DArTseq Ear rot 

disease 

resistance 

238 23.154 

Dart-seq 

markers 

0.25–0.59 RR-

BLUP 

R package 

rrBLUP 

[77] 

17 Soybean GBS Yield and 

other 

agronomic 

traits 

301 52,349 0.43–0.64 G-BLUP MissForest R 

package, 

TASSEL 5.0 

[109] 

18 Canola DArTseq Flowering 

time 

182 18, 804 0.64 RR-

BLUP 

R package 

GAPIT 

[110] 

19 Alfalfa GBS Biomass 

yield 

190 10,000 0.66 BLUP R package, 

TAASEL 

software 

[111] 

20 Alfalfa GBS Biomass 

yield 

278 10,000 0.50 SVR R package 

rrBLUP, R 

package 

BGLR, R 

package 

‘RandomFores

t 

[112] 

21 Miscanthus RADseq Phenology, 

biomass, 

cell wall 

compositio

n traits 

138 20,000 0.57 BLUP R package 

rrBLUP 

[113] 

22 Switchgrass GBS Biomass 

yield 

540 16,669 0.52 BLUP glmnet R 

package, R 

package 

rrBLUP 

[114] 

23 Grapevine GBS Yield and 

related 

traits 

800 90,000 0.50 RR-

BLUP 

R package 

BLR, R 

package 

rrBLUP 

[115] 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B42
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B53
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B36
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B75
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B14
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B14
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B40
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B56
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B43
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B63
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B44
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B26


24 Intermediat

e 

wheatgrass 

GBS Yield and 

other 

agronomic 

traits 

1126 3883 0.67 RR-

BLUP 

R package 

rrBLUP, 

BGLR R-

package 

[116] 

25 Perennial 

ryegrass 

GBS Plant 

herbage dry 

weight and 

days-to-

heading 

211 10,885 0.16–0.56 RR-

BLUP 

R software [117] 

 

IV. BIOTECHNOLOGICAL APPLICATIONS IN CROP IMPROVEMENT 

Model species like the human, yeast, Caenorhabditis elegans, Arabidopsis thaliana and rice have all had their whole genomes 

sequenced over the past ten years. Whole genome sequencing is likely to be done on a number of other plant species, including Zea 

mays, Sorghum bicolor, Medicago sativa, and Musa spp. The ability to control the features that lead to high agricultural yield will be 

revolutionized by systematic whole genome sequencing, which will provide crucial knowledge on the organization and function of 

genes and genomes [118]. Through conventional breeding, it takes five to six generations to transfer a trait from a species into high-

yielding, regionally adapted cultivars, and selecting the plants with the right mix of features requires planting a lot of offspring. Before 

the farmers could choose a variety for cultivation, the enhanced lines had to pass a series of multi-location testing. This process takes 

at least 7 to 10 years. The ability to vary the degree of gene expression as well as the spatial and temporal pattern of gene expression is 

made possible through genetic transformation, which also gives access to genes from other species that can be used to create transgenic 

crops. The development of cultivars with stable gene expression requires five to six years after the transfer of the desired genes into the 

target crops or cultivars (Figure 5). 

 

Figure 5 :- A schematic outline of biotechnological approaches in crop improvement. Lines derived through genetic 

transformation can be released as varieties or used as a donor parent in the conventional breeding. The lines derived from wide crossing 

can take many generations (BCFn) to obtain homozygous and stable lines, and such material can either be used as improved lines or as 

a donor parent in conventional breeding or marker-assisted selection. 

Resistance against pests, diseases, and herbicides 

In 1987, the first transgenic plants containing genes from Bacillus thuringiensis (Bt) were created. While the majority of insect-

resistant transgenic plants have been created using Bt d-endotoxin genes, numerous experiments are currently being conducted to use 

non-Bt genes that disrupt the nutritional needs of the insects. These genes include lectins, chitinases, secondary plant metabolites, and 

protease inhibitor. Several transgenic plants have now been approved for field testing or on-farm production. Transgenic cotton has 

been used to successfully control cotton bollworms. The Bt genes have also been successfully expressed in tomato, potato, brinjal, 

groundnut, and chickpea against the lepidopterous pests. The Bt, trypsin inhibitor, and lectin genes for resistance to these insects are 

currently being inserted into sorghum, pigeonpea, and chickpea. Under containment glasshouse conditions, transgenic sorghum and 

pigeonpea plants with Bt and trypsin inhibitor genes are now being evaluated. Additionally, research is being done to create groundnut 

plants that are resistant to fungi and viruses. The use of transgenic plants with integrated pest management (IPM) techniques will have 

a significant positive impact on the ecosystem. The creation and use of transgenic plants with insecticidal genes will result in a reduction 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B76
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5186759/#B23


in insecticide applications, an increase in the activity of natural enemies, and Integrated Pest Management (IPM) of secondary pests 

[118]. 

Abiotic stress tolerance 

The creation of crops with the ability to endure abiotic stressors would aid in crop output stabilization and considerably improve 

food security in underdeveloped nations. Barley late embryogenesis (LEA) gene-transformed rice plants have reportedly shown 

improved performance [48]. Acid soil tolerance for aluminum is provided by plants with the capacity to create more citric acid in their 

roots [49]. The introduction of a gene producing a plant farnesyltransferase [51] and inhibitors of this enzyme when produced in plants, 

boost drought tolerance, postpone senescence, and alter the growth habit, which together give tolerance to salinity [50]. 

Metabolism of starches and sugars 

Sucrose phosphate synthase (SPS) is a crucial enzyme in controlling the metabolism of sucrose. Transgenic plants that are 

regulated by a promoter from the tobacco small subunit to express the maize SPS. When grown with CO 2 enrichment, Rubisco has 

demonstrated enhanced foliar sucrose/starch ratios in leaves and lower quantities of foliar carbohydrates. This has created fascinating 

opportunities for modifying the chemical make-up of food grains to satisfy particular needs. 

Enhanced yield and photosynthetic effectiveness 

Introducing the C4 type of photosynthesis into C3 plants like Arabidopsis [63] and potatoes [64] is an attractive experimental strategy 

for dramatically increasing crop yield. Due to the oxygenase reaction of ribulose 1, 5-biophosphate carboxylase/oxygenase (Rubisco) 

and the accompanying loss of CO 2 from photorespiration, C3 photosynthesis is hampered by O 2 inhibition. The activity of 

phosphoenolpyruvate carboxylase (PEPC), an enzyme that fixes ambient CO2 in the cytoplasm of mesophyll cells, is a crucial 

component of this mechanism. The entire maize PEPC has recently been inserted into the C 3 plants via an Agrobacterium-mediated 

transformation method. The type I chlorophyll a/b binding protein of light harvesting complex II can be reduced down to degree oilseed 

rape that has undergone sublethal freezing during seed development  

 

Vaccines and Pharmaceuticals 

Plants can produce a variety of vaccinations. Bananas and potatoes have been used to generate vaccines against infectious 

disorders of the gastrointestinal system. Plants with a gene originating from human infections have been created via biotechnology.Anti-

cancer antibodies found in wheat and rice may be helpful in the diagnosis and treatment of this condition. Through the use of transgenic 

technology, there is also a tremendous potential to boost the yield of medications generated from plants (such as salicylic acid). 

Nutritional factor 

Several quality traits can be targeted to improve the nutritional status of crop produce. These include carbohydrates, proteins, 

oils, vitamins, iron, and amino acids. The selection of target traits is influenced by the end users, producers, and agro-based industry. 

transgenic rice with elevated levels of iron has been produced using genes involved in the production of an iron binding protein that 

facilitates iron availability in human diet. Decreasing the amounts of oligosaccharides (such as raffinose and stachyose) improves 

digestibility, and decreases the degree of flatu lence during digestion. Transgenic technology can also be used to remove anti-nutritional 

factors [118]. 

 

V. FUTURE CHALLENGES 

 

As we move into the future, the field of genomics holds immense promise for revolutionizing crop improvement and 

agricultural practices. Genomics, the study of an organism's complete set of DNA, offers valuable insights into the genetic makeup 

of crops, enabling scientists and researchers to understand the underlying genetic mechanisms responsible for specific traits. This 

knowledge opens up exciting possibilities for developing improved crop varieties with enhanced productivity, resilience, and 

nutritional content. Here are some of the future directions, innovations, and prospects in genomics for crop improvement: 

Precision Breeding: Genomics allows for precise identification and selection of desirable genetic traits in crops. With advancements 

in genome sequencing technologies and data analytics, breeders can now identify specific genes or gene variants associated with 

traits such as drought resistance, disease tolerance, or increased yield. This targeted approach enables the development of crops 

tailored to specific environmental conditions and consumer demands. 

Gene Editing Techniques: The emergence of gene editing techniques, particularly CRISPR-Cas9, has revolutionized crop 

improvement. CRISPR-Cas9 allows precise modifications of specific genes, enabling the development of crops with desired traits 

without introducing foreign DNA. This technology has the potential to accelerate the breeding process significantly and overcome 

some of the challenges associated with conventional breeding methods. 

Omics Integration: Genomics is just one aspect of the larger "omics" family, which includes transcriptomics, proteomics, and 

metabolomics. Integrating these different layers of biological information provides a more comprehensive understanding of crop 

biology and how genes interact with various cellular processes. This integrated approach can uncover novel targets for crop 

improvement and reveal previously unknown relationships between genes and traits. The vast amounts of genomic data generated 

from various sources require sophisticated data analysis tools. Artificial intelligence (AI) and machine learning algorithms play a 

crucial role in analyzing these datasets efficiently. AI can identify patterns and correlations in genomic data, predict crop 

performance under different conditions, and optimize breeding strategies for faster and more effective crop improvement. 

Resilience to Climate Change: Climate change poses significant challenges to global agriculture. Genomics can aid in the 

identification of genetic traits that confer resilience to extreme weather events, temperature fluctuations, and water scarcity. 



Developing climate-resilient crop varieties is crucial for ensuring food security in the face of a changing climate. As genomics 

advances, it is vital to ensure its inclusive and ethical application in crop improvement. Balancing the benefits of genetic technologies 

with concerns related to biodiversity, intellectual property rights, and ethical considerations is essential to fostering public acceptance 

and sustainable agricultural practices. 

 

VI. Conclusion 

In underdeveloped nations, where the need to enhance food production is most pressing, access to knowledge and 

experience will be a crucial element in the application of biotechnology for long-term food security. The Rockefeller Foundation, 

UNESCO, the International Cooperation Program of the European Union, the International Service for the Acquisition of 

Agrobiotech Applications (ISAAA), and the International Service for National Agricultural Research (ISNAR) are among the 

organizations attempting to play a significant role in the technology transfer from public and private sector institutions in the 

developed to the developing world. To address the needs of end-users in developing nations, particularly in Africa, international 

support for these efforts as well as the creation of several others will be required. The creation of appropriate regulations and a legal 

framework for the application of biotechnology in the production of sustainable food requires assistance and encouragement from 

the national governments. Crop production and food security will face significant challenges due to the projected increase in global 

population as well as the expected effects of climate change, especially in developing nations. Transgenic plants and marker-assisted 

selection combined with conventional breeding have the potential to significantly boost food production. However, understanding 

plant physiology and biochemistry will be crucial for creating new and more effective paradigms for plant breeding as well as for 

interpreting the data from molecular markers. Utilizing the massive and largely untapped pool of advantageous alleles found in 

crops' wild relatives will allow for the use of DNA marker technologies, opening up a vast new source of genetic variety that will 

power the subsequent stage of crop improvement. The transfer of genes crucial for crop quality and crop protection will yield the 

greatest benefits. However, a thorough understanding of how genes interact with their genomic context and the environment in 

which their given phenotype must interact will be necessary for the quick and cost-effective development and adoption of 

biotechnology-derived products. 

In conclusion, the future of genomics in crop improvement is incredibly promising. As we gain a deeper understanding of 

crop genetics and harness the potential of gene editing and omics technologies, we can develop crops that are more resilient,  

nutritious, and sustainable. Leveraging big data and AI, along with advances in synthetic biology, will further accelerate progress 

in this field. Ultimately, the responsible and equitable application of genomics in agriculture will play a critical role in meeting the 

challenges of feeding a growing global population while safeguarding the environment. 
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