Two Classes of Three weight Linear Codes:

Srirekha.K (Assistant Professor) PG Department of Mathematics Vellalar College for Women, Erode, TamilNadu, India.
rekha@vcw.ac.in

Arthivasundhra.A.S
PG Department of Mathematics, Vellalar College for Women, Erode, TamilNadu, India
22pms107@vcw.ac.in

Pratheusha.P
PG Department of Mathematics,
Vellalar College for Women, Erode, TamilNadu, India
22pms127@vcw.ac.in

Abstract

In many communication systems, linear codes are employed to transmit and receive data with little error. Here, we provide a technique for converting two classes of two-weight linear codes into two classes of three-weight linear codes. We specifically offer a building method that keeps the linearity condition while adding a third weight to the original two-weight codes. The resulting three-weight codes are suited for use in applications that need higher dependability because it has been demonstrated that they have stronger error-correcting capabilities than the original two weight codes. Our work aims in the creation of stronger, more reliable linear codes to use in many communication and storage applications

I INTRODUCTION

Let u be a power of \wp and \wp be a prime. Let F_{u} stand for the u-element finite fields. A t-dimensional subspace of F_{\S}^{m} with a minimum Hamming distance E is a [$\mathrm{m}, \mathrm{t}, \mathrm{E}$] linear code C over F_{p}. If the parameters of a [m, t, E] linear code satisfy a bound on linear codes, the code is optimal; if [$\mathrm{m}, \mathrm{t}, \mathrm{E}+1$] satisfy the bound on linear codes, it is almost optimal. The number of codewords with Hamming weight i in a D code is indicated by the letter B_{j}. The D weight enumerator, which is defined as

$$
1+B_{1 y}+\ldots \ldots \ldots .+B_{n} Y^{n} .
$$

The weight distribution of the code C is the sequence $\left(1, B_{1}+\ldots \ldots \ldots+B_{n}\right)$.The weight distribution of a code can be used to determine a code's capacity for mistake correction and its likelihood of error detection. Suppose $\mathrm{F}=\left(E_{1}, E_{2} \ldots, E_{n}\right) \subseteq F_{u}$. The tracing function from F_{u} onto F_{\wp} is represented by T_{u}. The formula is used to define a \wp-ary linear code of length n.

$$
D_{F}=\left\{\left(\operatorname{Tu}\left(y E_{1}\right), \operatorname{Tu}\left(y E_{2}\right), \ldots \ldots \operatorname{Tu}\left(y E_{n}\right)\right): \mathrm{y} \in F_{u}\right\}
$$

F is the defining set of this code D_{F}.

In the field of coding theory, three weight linear codes hold a lot of attention. Strongly regular graphs and partial geometrics are two objects in several branches of mathematics that are closely related to three-weight linear codes.

II.PRELIMINARIES

In this research, we obtain two classes of three-weight binary or ternary linear codes, which can be generated using novel parameters. In this correspondence, we use the following notations.

```
 prime number,
s positive integer such that gcd (s,p)=1,
n positive integer which is no less than 2,
t the least integer such that pt \equiv-1(\operatorname{mod}n),
T
\mathcal{R}(y) real part of y
```

$Z_{\wp} \quad$ primitive $\wp-$ th root of complex unity,
$\gamma_{j}^{(M, r)} \quad$ Gauss periods of order M over F_{u}
$q=\wp^{2 t}$,
$\mathrm{u}=q^{s}$,
$\mathrm{E}=\frac{r-1}{n}$

We give a succinct overview of the main characters, Gaussian periods and Walsh transform
Given that u is a power of a prime \wp. Let F_{u} be a finite field with u elements. Let T_{u} be the tracing function from F_{u} to $F \wp$. and ζ_{p} be a $\wp-$ th primitive root of unity. The definition of F_{u} canonical additive character is

$$
\varphi: \mathrm{Fu} \rightarrow D^{*}
$$

$$
y \mapsto \zeta_{\wp}^{T r^{(y)}}
$$

Given by is the orthogonal property of additive characters.

$$
\sum_{y \in F_{u}} \varphi(a y)=\left\{\begin{array}{l}
0, \text { if } a \epsilon F_{u}^{*} \\
u, \text { if } a=0
\end{array}\right.
$$

Let $\mathrm{u}-1=M_{n}$ and $F_{u}^{*}=\langle\beta\rangle$ Define cyclotomic classes of order M of F_{u} by

$$
D_{i}^{(M, u)}=\beta^{j}\left\langle\beta^{m}\right\rangle, j=0,1, \ldots \ldots, M-1 .
$$

The Gauss periods of order M are defined by

$$
\gamma_{j}^{(M, u)}=\sum_{y \epsilon D_{j}(M, u)} \varphi(x)
$$

Where φ is the canonical additive characters of F_{u}. For $\mathrm{M}=2,3,4$, the semi primitive case, the index 2 case.
The function $f(y)$ should range from F_{u} to $F \wp$. You can specify the Walsh transform of $f(y)$ with

$$
\hat{f}(\mathrm{c})=\sum_{y \epsilon F_{u}} \zeta_{\wp}^{f(y)-T_{u}(c y)}, c \in F_{u}
$$

Where F \wp components are regarded as integers modulo \wp. The relationship between a class of linear code and
Boolean functions was established using the Walsh transform.

1.1 The First Construction

Let t be the least positive integer such that $\wp^{t} \equiv-1(\bmod n)$. With $\operatorname{gcd}(\wp, s)=1$, let $f(y)=T_{u}\left(y^{E}\right)$ be linear code a function from F_{u} to $\mathrm{F} \wp$ For $\mathrm{u}=q^{s}=p^{2 k m}$ and $\mathrm{E}=\frac{r-1}{n}$. Determine the location defining of the set of define a class of $\wp-$ ary

$$
D_{F}=\left\{\left(T_{u}\left(y_{E_{1}}\right), \ldots \ldots, T_{u}\left(y_{E_{s}}\right)\right): y \epsilon F_{u}\right\},
$$

Where the defining set is

$$
\mathrm{F}=\left\{e_{1} \ldots \ldots \ldots \ldots e_{n}\right\}=\left\{y \in F_{u}^{*}: f(y)=0\right\}
$$

We start computing $\hat{f}(0)$ to the length of D_{F}. Since $\mathrm{E} \mid(\mathrm{u}-1)$, we get

$$
\begin{aligned}
\hat{f}(0) \quad & =1+\sum_{y \varepsilon F_{u}^{*}} \zeta_{\wp}^{H_{r}\left(b^{d}\right)} \\
& =1+E \sum_{y \in H_{0}^{(E, u)}} \zeta_{\wp}^{T_{u}(y)} \\
& =1+E \gamma_{0}^{(E, U)}
\end{aligned}
$$

We get where $y_{0}^{(E, u)}$ is an ordered E Gauss period. The method to find the values of $\gamma_{0}^{(E, u)}$ for a particular special number n is provided in the sections that follow.

1.1.1 Lemma

Let $\wp, \mathrm{u}, \mathrm{E}, \mathrm{t}$ be $y_{0}^{(E, u)}$ are listed for several cases in table 1.1.1.1
Proof
The trace function from F_{u} to F_{\S} and from F_{u} to F_{q} are denoted by T_{q} and $T_{r \backslash q}$ respectively, and we than have

$$
\begin{aligned}
T_{u}(y) & =T_{q}\left(T_{u \backslash q}(\mathrm{y})\right) \text { for } y \in F_{u} \\
y_{0}^{(E, u)} & =\sum_{y \in D_{0}^{(E, u)}} \zeta_{\S}^{T_{u}(y)} \\
& =\sum_{y \varepsilon D_{0}^{\left(\frac{q-1}{h}, q\right)}} \zeta_{\S}^{s T_{q}(y)}
\end{aligned}
$$

We only provide the proof in the following for the the of following for the value of $\wp=2, n=3$. In other situations, we can provide the value for $y_{0}^{(E, u)}$

Let $\wp=2, t=3$, then $\mathrm{z}=1$ and $\mathrm{q}=4$. The smallest polynomial of a $3^{\text {rd }}$ element is ξ_{3} over F_{2}

$$
\xi_{3}=x^{2}+x+1
$$

This suggests that $T_{4}\left(\xi^{3}\right)=-1$. S is unusual because $\operatorname{gcd}(\mathrm{S}, 2)=1$

$$
y_{0}^{\left(\frac{4^{m}-1}{3}, 4^{m}\right)=\Sigma_{y \varepsilon D_{0}^{(1,4)}(-1)^{s T_{4}(y)}=1-1-1}=-1}
$$

Table 1.1.1.1 Values of $\boldsymbol{\gamma}_{0}^{(E, u)}$

\wp	n	u	$\gamma_{0}^{(E, u)}$
2	3	$2^{2 s}$	-1
2	5	$2^{4 s}$	-3
2	9	$2^{6 s}$	5
2	11	$2^{10 s}$	-9
3	4	$3^{2 s}$	1
3	5	$3^{4 s}$	$\xi_{3}^{s}+4 \xi_{3}^{2 s}$
3	7	$3^{6 s}$	$1+6 \xi_{3}^{2 s}$
3	14	$3^{6 s}$	$1+6 \xi_{3}^{s}+7 \xi_{3}^{2 s}$

Case $\wp=2$

For the sections when $\wp=2, D_{F}$ is defined as $D_{F}=\left\{\left(T_{u}\left(y_{E_{1}}\right), \ldots \ldots \ldots, T_{u}\left(y_{E_{s}}\right)\right): y \in F_{u}\right\}$, and its weight distribution is given.

$$
\begin{aligned}
& \text { Let } \gamma_{0}=\left|\left\{y \in F_{u}: f(y)=0\right\}\right| \text {. } \\
& \gamma_{0}=\frac{1}{2} \sum_{y_{1} \epsilon F_{u}} \sum_{y_{2} \epsilon F_{2}} \sum_{y_{3} \epsilon F_{2}}(-1)^{y_{2} f\left(y_{1}\right)}(-1)^{y_{3} f\left(y_{1}\right)} \\
& =\frac{u}{2}+\frac{u}{2}+\frac{1}{2} \sum_{y \in F_{u}}(-1)^{f(y)} \\
& =\frac{u}{2}+\frac{u}{2}+\frac{1}{2} \hat{f}(0) \\
& =\frac{2 u}{2}+\frac{1}{2}\left(1+E \gamma_{0}^{(E, u)}\right) \\
& =u+\frac{1}{2}\left(1+E \gamma_{0}^{(E, u)}\right)
\end{aligned}
$$

The length $\mathrm{m}=m_{0}-1$. Hence, from lemma 1.1.1, we obtain the length of the linear code D_{F} in the following.

1.1.2 Lemma

For $\wp=2$, the length the linear code D_{F} equals to

$$
m=u-\frac{1}{2}+\frac{u-1}{2 n} \gamma_{0}^{(E, u)}
$$

In particular, for $n=3,5,9,11$ obtained below:
When $\mathrm{n}=3$

$$
\begin{aligned}
m & =u-\frac{1}{2}+\frac{u-1}{2 n} \gamma_{0}^{(E, u)} \\
& =u-\frac{1}{2}+\frac{1}{6}(u-1)(-1) \\
& =u-\frac{1}{2}+\frac{1}{6}(-u+1)
\end{aligned}
$$

$$
\begin{aligned}
& =u-\left(\frac{1}{2}-\frac{1}{6}\right)(u-1) \\
& =u-\left(\frac{3+1}{6}\right)(u-1) \\
& =u-\frac{2}{3}(u-1) \\
& =u-\frac{2 u}{3}+\frac{2}{3} \\
& =\frac{3 u-2 u}{3}+\frac{2}{3} \\
& =\frac{u}{3}+\frac{2}{3} \\
& =\frac{u+2}{3}
\end{aligned}
$$

when $\mathrm{n}=5$

$$
\begin{aligned}
m & =u-\frac{1}{2}+\frac{u-1}{2 n} \gamma_{0}^{(E, u)} \\
& =u-\frac{1}{2}+\frac{1}{10}(u-1)(-3) \\
& =u-\frac{1}{2}+\frac{1}{10}(-3 u+3) \\
& =u-\left(\frac{1}{2}-\frac{1}{10}\right)(u-3) \\
& =u-\left(\frac{5+1}{10}\right)(3 \mathrm{u}-3) \\
& =u-\frac{3}{5}(3 u-3) \\
& =u-\frac{9 u}{5}+\frac{9}{5} \\
& =\frac{5 u-9 u}{5}+\frac{9}{5} \\
& =\frac{-4 u}{5}+\frac{9}{5} \\
& =\frac{-4 u+9}{5}
\end{aligned}
$$

when $\mathrm{n}=9$

$$
\begin{aligned}
m & =u-\frac{1}{2}+\frac{u-1}{2 n} \gamma_{0}^{(E, u)} \\
& =u-\frac{1}{2}+\frac{1}{18}(u-1)(5) \\
& =u-\frac{1}{2}+\frac{1}{18}(-5 u+5) \\
& =u-\left(\frac{9-1}{18}\right)(5 u-5) \\
& =u-\frac{4}{9}(5 u-5) \\
& =u-\frac{20 u}{9}+\frac{20}{9} \\
& =\frac{9 u-20 u}{9}+\frac{20}{9} \\
& =\frac{-11 u}{9}+\frac{20}{9} \\
& =\frac{-11 u+20}{9}
\end{aligned}
$$

when $\mathrm{n}=11$

$$
\begin{aligned}
m & =u-\frac{1}{2}+\frac{u-1}{2 n} \gamma_{0}^{(E, u)} \\
& =u-\frac{1}{2}+\frac{1}{22}(u-1)(-9) \\
& =u-\frac{1}{2}+\frac{1}{22}(-9 u+9) \\
& =u-\left(\frac{1}{2}-\frac{1}{22}\right)(9 u+9) \\
& =u-\left(\frac{11+1}{22}\right)(9 \mathrm{u}-9) \\
& =u-\frac{6}{11}(9 u-9) \\
& =u-\frac{54 u}{11}+\frac{54}{11} \\
& =\frac{11 u-54 u}{11}+\frac{54}{11} \\
& =\frac{-43 u}{11}+\frac{54}{11} \\
& =\frac{-43 u+54}{11}
\end{aligned}
$$

Table 1.1.2.1 Values of m

\wp	n	u	m
2	3	$2^{2 s}$	$\frac{u+2}{3}$
2	5	$2^{4 s}$	$\frac{-4 u+9}{5}$
2	9	$2^{6 s}$	$\frac{-11 u+20}{9}$
2	11	$2^{10 s}$	$\frac{-43 u+54}{11}$

Case $\wp=3$

Consider the case $\wp=3$ and determine the weight distribution of this ternary code.

$$
\text { Let } \begin{aligned}
& \gamma_{0}=\left|\left\{y \varepsilon F_{u}: T_{u}\left(y^{E}\right)=0\right\}\right| . \\
& \begin{aligned}
\gamma_{0} & =\frac{1}{3} \sum_{y_{1} \epsilon F_{u}} \sum_{y_{2} \epsilon F_{3}} \sum_{y_{3} \epsilon F_{3}} \zeta_{3}^{y_{2} T_{u}\left(y_{1}^{E}\right)} \zeta_{3}^{y_{3} T_{u}\left(y_{1}^{E}\right)} \\
& =\frac{u}{3}+\frac{u}{3}+\frac{1}{3} \sum_{y \varepsilon F_{u}} \zeta_{3}^{T_{u}\left(y^{E)}\right.}+\frac{1}{3} \sum_{y \varepsilon F_{u}} \zeta_{3}^{-T_{u}\left(y^{E)}\right.} \\
& =\frac{u}{3}+\frac{u}{3}+\frac{1}{3} \hat{f}(0)+\frac{1}{3} \hat{f(0)} \\
& =\frac{2 u}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3} E \gamma_{0}^{(E, u)}+\frac{1}{3} E \gamma_{0}^{(E, u)} \\
& =\frac{2 u+2}{3}+\frac{2 E}{3} \mathcal{R}\left(\gamma_{0}^{(E, u)}\right)
\end{aligned}
\end{aligned}
$$

Where the symbol denotes the complex conjugate and the symbol $\mathcal{R}(y)$ represents the real part of y. The length $\mathrm{m}=m_{0}-1$. By Lemma 1.1.5 we have the following result.

1.1.3 Lemma

For $\wp=3$, the length of the ternary linear code D_{F} equals to

$$
m=\frac{u-1}{3}+\frac{2(u-1) \mathcal{R}\left(\gamma_{0}^{(E, u)}\right)}{3 n}
$$

In particular, when $n=4,5,7,14$ are derived as same as in section (1.1.3)

1.2 The Second Construction

Let t be the least positive integer such that $p^{t} \equiv-1(\bmod t)$. For $\mathrm{u}=q^{s}=q^{2 t s}$ and $E=\frac{r-1}{n}$ with $\operatorname{gcd}(\wp, s)=1$, let $\mathrm{f}(\mathrm{y})=T_{u}\left(x^{E}\right)$ be a function from F_{u} to f_{\wp}. Define a class of $\wp-$ ary linear code by

$$
D_{F}=\left\{\left(T_{u}\left(y_{E_{1}}\right), \ldots \ldots \ldots, T_{u}\left(y_{E_{S}}\right)\right): y \epsilon F_{u}\right\},
$$

In which the defining set is

$$
\mathrm{F}=\left\{E_{1} \ldots \ldots \ldots E_{n}\right\}=\left\{y \epsilon F_{u}: T_{u}\left(y^{E}\right)=1\right\},
$$

Case $\wp=2$
The binary linear code D_{F} has a length of

$$
\begin{aligned}
m & =\left|\left\{y \in F_{u}: T_{u}\left(y^{E}\right)=1\right\}\right| \\
& =\frac{1}{2} \sum_{y_{1} \in F_{u}} \sum_{y_{2} \in F_{2}} \sum_{y_{3} \in F_{2}}(-1)^{y_{2}\left(T_{u}\left(y^{d}\right)-1\right)}(-1)^{y_{3}\left(T_{u}\left(y^{E}\right)-1\right)} \\
& =\frac{u}{2}+\frac{u}{2}-\frac{1}{2} \sum_{y \epsilon f_{u}}(-1)^{T_{r}\left(y^{E}\right)} \\
& =\frac{u}{2}+\frac{u}{2}-\frac{1}{2} \hat{f}(0) \\
& =\frac{2 u}{2}-\frac{1}{2} \hat{f}(0) \\
& =u-\frac{1}{2}-\frac{1}{2} E \gamma_{0}^{(E, u)} \\
& =u-\frac{1}{2}-\frac{u-1}{2 n} \gamma_{0}^{(E, u)}
\end{aligned}
$$

Specially when $\mathrm{n}=3,5,9,11$ are derived below
Where $\mathrm{n}=3$

$$
\begin{aligned}
m & =u-\frac{1}{2}-\frac{u-1}{2 n} \gamma_{0}^{(E, u)} \\
& =u-\frac{1}{2}-\frac{1}{6}(u-1)(-1) \\
& =u-\frac{1}{2}-\frac{1}{6}(-u+1) \\
& =u-\frac{1}{2}-\frac{1}{6}(u-1) \\
& =u-1\left(\frac{3-1}{6}\right)(u-1) \\
& =u-\frac{1}{3}(u-1) \\
& =u-\frac{u}{3}+\frac{1}{3} \\
& =\frac{3 u-u}{3}+\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 u}{3}+\frac{1}{3} \\
m & =\frac{2 u+1}{3}
\end{aligned}
$$

Where $\mathrm{n}=5$

$$
\begin{aligned}
m & =u-\frac{1}{2}-\frac{u-1}{2 n} \gamma_{0}^{(E, u)} \\
& =u-\frac{1}{2}-\frac{1}{10}(u-1)(-3) \\
& =u-\frac{1}{2}-\frac{1}{10}(-3 u+3) \\
& =u-\frac{1}{2}-\frac{1}{10}(3 u-3) \\
& =u-\frac{1}{2}\left(\frac{5-1}{10}\right)(3 u-3) \\
& =u-\frac{2}{5}(3 u-3) \\
& =u-\frac{6 u}{5}+\frac{6}{5} \\
& =\frac{5 u-6 u}{5}+\frac{6}{5} \\
& =\frac{-u}{5}+\frac{6}{5} \\
m & =\frac{-u+6}{5}
\end{aligned}
$$

Where $\mathrm{n}=9$

$$
\begin{aligned}
m & =u-\frac{1}{2}+\frac{u-1}{2 n} \gamma_{0}^{(E, u)} \\
& =u-\frac{1}{2}-\frac{1}{18}(u-1)(5) \\
& =u-\frac{1}{2}+\frac{1}{18}(-5 u+5) \\
& =u-\left(\frac{9+1}{18}\right)(5 u-5) \\
& =u-\frac{5}{9}(5 u-5) \\
& =u-\frac{25 u}{9}+\frac{25}{9} \\
& =\frac{9 u-25 u}{9}+\frac{25}{9} \\
& =\frac{-16 u}{9}+\frac{25}{9}
\end{aligned}
$$

$$
m=\frac{-16 u+25}{9}
$$

Where $\mathrm{n}=11$

$$
\begin{aligned}
m= & u-\frac{1}{2}-\frac{u-1}{2 n} \gamma_{0}^{(E, u)} \\
= & u-\frac{1}{2}-\frac{1}{22}(u-1)(-9) \\
= & u-\frac{1}{2}+\frac{1}{22}(-9 u+9) \\
= & u-\left(\frac{1}{2}-\frac{1}{22}\right)(9 u-9) \\
& =u-\left(\frac{11-1}{22}\right)(9 \mathrm{u}-9) \\
& =u-\frac{5}{11}(9 u-9) \\
= & \frac{11 u-45 u}{11}+\frac{45}{11} \\
& =\frac{-34 u}{11}+\frac{45}{11} \\
m= & \frac{-34 u+45}{11}
\end{aligned}
$$

Table 1.2.1.1 values of m of D_{F} for $\wp=2$

\wp	n	u	m
2	3	$2^{2 s}$	$\frac{2 u+1}{3}$
2	5	$2^{4 s}$	$\frac{-u+6}{5}$
2	9	$2^{6 s}$	$\frac{-16 u+25}{9}$
2	11	$2^{10 s}$	$\frac{-34 u+45}{11}$

CONCLUSION

It is possible to build secret sharing systems using any linear code over $\mathrm{F} \wp$. We would like to have linear codes D such the we could obtain secret sharing schemes with intriguing access structures.

$$
\frac{W_{\min }}{W_{\max }}>\frac{\wp-1}{\wp}
$$

Where $W_{\min }$ and $W_{\max }$ stands for the linear codes minimum and maximum nonzero weights, respectively. The codes that have been changed might be useful in fields like cryptography and data storage. Overall, our findings illustrate the possibility for additional search in this field and emphasize the significance and adaptability of linear codes in coding theory.

REFERENCES

1. A.R. Calderbank, J.M. Kantor, The geometry of two-weight codes,Bull.Lond.

Math. Soc. 18 (1986)99-122.
2. F. De Clerk, M. Delanote, Two-weight codes, partial geometries and Steiner systems,Des. Codes Cryptogr. 21 (2000) 87-98.
3. K. Ding, C. Ding, Binary linear codes with three weights,IEEE

Commun. Lett. 18 (11) (2014) 1879-1882.
4. Z. Heng, Q. Yue, A class of binary linear codes with at most three weights, IEEE

Commun. Lett. 19 (9) (2015) 1488-1491.
5. C. Li, Q. Yue, F. Li, Hamming weights of the duals of cyclic codes with two zeros,IEEE Trans. Inf. Theory 56 (6) (2014) 25682570.
6. C. Li, Q. Yue, The Walsh transform of a class of monomial functions and cyclic codes, Cryptogr. Commun. 7 (2015) 217-228
7. J. Yuan, C. Ding, Secret sharing schemes from three classes of linear codes,IEEE Trans. Inf. Theory 52 (1) (January 2006) 206-212.
8. Z. Zhou, C. Ding A class of three-weight cyclic codesFinite Fields Appl., 25 (2014),pp. 79-93.
9. X. Zeng, L. Hu, W. Jiang, Q. Yue, X. Cao, The weight distribution of a class of p-arycyclic codes, Finite Fields Appl. 16 (1) (January 2010) 5673.

