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Abstract

The main aim of this study is to present analysis of a generalized fractional Hirota−Satsuma

coupled KdV system. The fractional derivatives are described in terms of Caputo-Fabrizio sense.

Picard successive approximation technique and Banach’s fixed point theory have been used for ver-

ification of existence and stability criteria. The approximate solutions of the problem in the form

of rapidly convergent series are computed using iterative Laplace transform technique with easily

calculable components using Mathematica. Reliability of the proposed method and Caputo-Fabrizio

is given by comparison with other method in the literature. Further, we show graphical illustra-

tion for some values of the fractional order in order to show the effectiveness of the proposed method.
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1 Introduction

As is well known, researchers have recognized that the fractional calculus can provide
more flexible descriptions than the counterpart of integer-order for the real-world
phenomena arising in various fields of science and engineering. Differential equations
of fractional order are the center of attention of many studies due to their usefullness
in the areas of chaos theory [3], physics, material science, electrochemistry, acoustics,
viscoelasticity, mechanics, electromagnetic, signal and image processing, reaction pro-
cesses, [25, 24, 23, 20] biomathematics [4], financial models [35] . Due to the compli-
cated nature of fractional calculus, most of the fractional order differential equations
do not have the exact solutions, hence considerable focus is to get approximate so-
lutions of these equations. Some of the recent methods for approximate solutions
of these equations are the Adomian decomposition method [2, 7], Homotopy analy-
sis method [21, 18], Variational iteration method [13], Differential transform method
[27], Iterative Laplace transform method [28], Homotopy-perturbation method [14],
Fractional complex transform [31, 32], Finite-difference method [36], the (G’/G)-
expansion method [39]. Since fractional calculus was put forward in the seventeenth
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century, there have appeared several definitions of fractional derivatives: Riemann-
Liouville, Caputo, Hadamard, Grunwald-Letnikov etc [5]. To unify these fractional
derivatives, some generalized fractional operators such as Hilfer fractional operator
[15], Katugampola fractional operator [17], and Atangana-Baleanu fractional operator
[1, 9], Caputo-Fabrizio operator [29, 10, 33] etc. were presented.

In 1981, R. Hirota and J. Satsuma introduced a coupled Korteweg-de Vries (KdV)
equation known as the Hirota-Satsuma coupled KdV system to eaxmine an inter-
action of two long waves with diverse dispersion relations. In recent times, many
researchers have devoted considerable efforts by successfully implementing various
techniques to extract solitary wave solutions and other solutions of Hirota-Satsuma
coupled KdV systems. In [11] Fan obtained Soliton solution for a generalized Hirota-
Satsuma coupled KdV equation. Exact travelling wave solutions are presented in
[19] by Khater et. al. Solution of time- fractional generalized Hirota-Satsuma cou-
pled KdV equation is obtained in [22]. An Efficient Computational Technique for
Fractional Model of Generalized Hirota–Satsuma-Coupled Korteweg–de Vries and
Coupled Modified Korteweg–de Vries Equations is studied by Veersha et. al. in [37].
Solitary Wave Solutions for a Time-Fraction Generalized Hirota-Satsuma Coupled
KdV Equation by a New Analytical Technique investigated in [30]. In [38] Wu et. al.
introduced a 4×4 matrix spectral problem with three potential and derived new hier-
archy of nonlinear evolution equation which are a generalized Hirota−Satsuma KdV (
Korteweg-De Vries) equations, and several other studies about fractional generalized
Hirota-Satsuma coupled KdV system are investigated in [34, 26, 12, 16].

Motivated by above literauture study, in this work, we consider the time fractional
generalized Hirota-Satsuma coupled KdV system presented by a system of partial
differential equations with Caputo-Fabrizio operator to find approximate solution.
The time fractional generalized Hirota-Satsuma coupled KdV system is given as



CFDβ
t u = 1

2
uxxx − 3uux + 3(vw)x

CFDβ
t v = −vxxx + 3uvx t > 0, 0 < β ≤ 1

CFDβ
t w = −wxxx + 3uwx

(1.1)

with initial conditions [11] as follows

u(x, 0) =
γ − 2m2

3
+ 2m2tanh2(mx)

v(x, 0) = −4m2σ(γ +m2)

3τ 2
+

4m2(γ +m2)tanh(mx)

3τ

w(x, 0) = σ + τtanh(mx)

(1.2)

where m, σ, τ 6= 0, and γ are arbitrary constants.

The systems Eq.1.1 becomes classical given in [38] for β = 1.



3

The rest of this paper is sorted out as follows. In Section 2, preliminary results
and definitions related with fractional calculus are presented. In Section 3, iterative
Laplace transform method pertaining to novel Caputo-Fabrizio derivative operator
is discussed. In Section 4, we center around the verification of existence and sta-
bility criteria by utilizing Picard successive approximation technique and fixed point
theory due to Banach. In Section 5, the proposed technique is applied to fractional
Hirota−Satsuma KdV system and simulations are done with plots and tables. Finally,
the conclusions are given in Section 6.

2 Preliminaries

Definition 2.1 ([8]) Let u ∈ H1(0, b), b > 0, 0 < β < 1, then time fractional
Caputo-Fabrizio fractional differential operator is defined as

CFDβ
t u(t) =

(2− β)N(β)

2(1− β)

∫ t

0

exp
[
− β(t− s)

1− β

]
u′(τ)dτ, t ≥ 0, 0 < β < 1, (2.1)

where N(β) is a normalisation function depending on β such that N(0) = N(1) = 1.

Definition 2.2 ([6]) The Caputo-Fabrizio fractional integral operator of order 0 <
β < 1 is given by

CFJβt u(t) =
2(1− β)

(2− β)N(β)
u(t) +

2β

(2− β)N(β)

∫ t

0

u(τ)dτ, (2.2)

like usual Caputo derivative, this new operator gives CFDβ
t u(t) = 0, if u is a constant

function.

The main advantage of Caputo-Fabrizio operator over old operator of Caputo is that
there is no singularity for t = s in the new kernel.

Definition 2.3 ([8]) The Laplace transform for the Caputo-Fabrizio fractional oper-
ator of order 0 < β ≤ 1 and m ∈ N is given by

L
(CF

Dm+β
t u(t)

)
(s) =

1

1− β
L(u(m+1)(t))L

(
exp

(
− β

1− β
t

))
=
sm+1L(u(t))− smu(0)− sm−1u′(0)− · · · − u(m)(0)

s+ β(1− s)
. (2.3)

In particular, we have

L
(CF

Dβ
t u(t)

)
(s) =

sL(u(t))

s+ β(1− s)
, m = 0.

L
(CF

Dβ+1
t u(t)

)
(s) =

s2L(u(t))− su(0)− u′(0)

s+ β(1− s)
, m = 1.
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3 Iterative Laplace Transform Method

Consider the Hirota-Satsuma coupled KdV system Eq.1.1 having initial conditions
Eq.1.2 Applying the Laplace transform both side on system, we obtain,

sL(u(t))− u(0)

s+ β(1− s)
= L

(1

2
uxxx − 3uux + 3(vw)x

)
(3.1)

sL(v(t))− v(0)

s+ β(1− s)
= L(−vxxx + 3uvx) (3.2)

sL(w(t))− w(0)

s+ β(1− s)
= L(−wxxx + 3uwx) (3.3)

Rearranging, we get

L(u(t)) =
u(0)

s
+

(
s+ β(1− s)

s

)
L

(
1

2
uxxx − 3uux + 3(vw)x

)
(3.4)

L(v(t)) =
v(0)

s
+

(
s+ β(1− s)

s

)
L(−vxxx + 3uvx) (3.5)

L(w(t)) =
w(0)

s
+

(
s+ β(1− s)

s

)
L(−wxxx + 3uwx) (3.6)

Further the inverse Laplace transform on equation (3.4) to (3.6), yields

u(t) = u(0) + L−1

[(
s+ β(1− s)

s

)
L

(
1

2
uxxx − 3uux + 3(vw)x

)]
(3.7)

v(t) = v(0) + L−1

[(
s+ β(1− s)

s

)
L(−vxxx + 3uvx)

]
(3.8)

w(t) = w(0) + L−1

[(
s+ β(1− s)

s

)
L(−wxxx + 3uwx)

]
(3.9)

The infinite series solutions obtained by this method given as,

u =
∞∑
n=0

un, v =
∞∑
n=0

vn, w =
∞∑
n=0

wn. (3.10)

The nonlinearity uux, (vw)x, uvx and uwx can be written as

uux =
∞∑
n=0

Gn, (vw)x =
∞∑
n=0

Hn, uvx =
∞∑
n=0

In, uwx =
∞∑
n=0

Jn



5

where Gn, Hn, In and Jn are decomposed as follows

Gn =
n∑
i=0

ui

n∑
i=0

(ui)x −
n−1∑
i=0

ui

n−1∑
i=0

(ui)x

Hn =

( n∑
i=0

ui

n∑
i=0

wi

)
x

−
( n−1∑

i=0

ui

n−1∑
i=0

wi

)
x

In =
n∑
i=0

ui

n∑
i=0

(vi)x −
n−1∑
i=0

ui

n−1∑
i=0

(vi)x

jn =
n∑
i=0

ui

n∑
i=0

(wi)x −
n−1∑
i=0

ui

n−1∑
i=0

(wi)x

We next obtain the following recursive formula by using initial conditions

un+1(t) = u0 + L−1

[(
s+ β(1− s)

s

)
L

(
1

2
unxxx − 3ununx + 3(vnwn)x

)]
(3.11)

vn+1(t) = v0 + L−1

[(
s+ β(1− s)

s

)
L(−vnxxx + 3unvnx)

]
(3.12)

wn+1(t) = w0 + L−1

[(
s+ β(1− s)

s

)
L(−wnxxx + 3unwnx)

]
. (3.13)

4 Stability analysis of iteration method

Consider (B, ‖ · ‖) as a Banach space and define λ as self-map of B. Also ςn+1 =
ω(λ, ςn) denotes precise recurring process. Assume that, F (λ) denotes fixed-point
set on B. Also λ consist of minimum one element such that ςn converges to point
j ∈ F (λ). Let {xn ∈ B} and define pn = ‖xn+1 − ω(λ, xn)‖. If lim

n→∞
pn = 0 implies

that lim
n→∞

xn = j , then the iteration method ςn+1 = ω(λ, ςn) is known as λ-stable.

Comparably, we, in this manner, think about that, this sequence {xn} has an upper
bound. This iteration is known as Picard’s iteration and it is λ-stable, if all these
conditions are fulfilled for ςn+1 = λςn.

Theorem 4.1 Consider (B, ‖ · ‖) as a Banach space and define λ as self-map on B
satisfying

‖λx − λy‖ ≤ φ‖X − λx‖+ ψ‖x− y‖

for all x, y ∈ B where 0 ≤ φ, 0 ≤ ψ < 1. Assume that λ is Picard λ-stable. Consider
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the equations from (3.11) to (3.13) connected to Eq.1.1 .

un+1(t) = u0 + L−1

[(
s+ β(1− s)

s

)
L

(
1

2
unxxx − 3ununx + 3(vnwn)x

)]

vn+1(t) = v0 + L−1

[(
s+ β(1− s)

s

)
L(−vnxxx + 3unvnx)

]

wn+1(t) = w0 + L−1

[(
s+ β(1− s)

s

)
L(−wnxxx + 3unwnx)

]

where
s+ β(1− s)

s
is a fractional Lagrange multiplier

Theorem 4.2 Consider a self-map λ defined as

λ(un(t)) = un+1(t) = u0 + L−1

[(
s+ β(1− s)

s

)
L

(
1

2
unxxx − 3ununx + 3(vnwn)x

)]

λ(vn(t)) = vn+1(t) = v0 + L−1

[(
s+ β(1− s)

s

)
L(−vnxxx + 3unvnx)

]

λ(wn(t)) = wn+1(t) = w0 + L−1

[(
s+ β(1− s)

s

)
L(−wnxxx + 3unwnx)

]
is λ-stable in L1(a, b) if

{
1
2
%1%2%3χ1(β)− 3κ1τ1χ2(β)− 3κ4χ3(β) + 3κ5χ4(β)

+3κ3τ2χ5(β) + 3κ2τ3χ6(β) + 3κ6χ7(β)
}
< 1,

−(%4%5%6)ξ1(β) + 3κ1τ2ξ2(β) + 3κ7ξ3(β) < 1,
−(%7%8%9)π1(β) + 3κ1τ3π2(β) + 3κ8π3(β) < 1

(4.1)

Proof. Here, we will show that λ has a fixed point. Hence, for all (m,n) ∈ N × N
we evaluate the followings.

λ(un(t))− λ(um(t)) = L−1

[(
s+ β(1− s)

s

)
L

(
1

2
unxxx − 3ununx + 3(vnwn)x

)]

− L−1
[(

s+ β(1− s)
s

)
L

(
1

2
umxxx − 3umumx + 3(vmwm)x

)]
,

(4.2)

λ(vn(t))− λ(vm(t)) = L−1

[(
s+ β(1− s)

s

)
L(−vnxxx + 3unvnx)

]

− L−1
[(

s+ β(1− s)
s

)
L(−vmxxx + 3umvmx)

]
, (4.3)
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λ(wn(t))− λ(wm(t)) = L−1

[(
s+ β(1− s)

s

)
L(−wnxxx + 3unwnx)

]

− L−1
[(

s+ β(1− s)
s

)
L(−wmxxx + 3umwmx)

]
. (4.4)

By taking norm on both sides (4.2), and without loss of generality, we get

‖λ(un(t))− λ(um(t))‖ =

∥∥∥∥∥L−1
[(

s+ β(1− s)
s

)
L

(
1

2
unxxx − 3ununx + 3(vnwn)x

)]

− L−1
[(

s+ β(1− s)
s

)
L

(
1

2
umxxx − 3umumx + 3(vmwm)x

)]∥∥∥∥∥,
(4.5)

Using triangular inequality and further simplifying (4.5) yields

‖λ(un(t))− λ(um(t))‖ ≤ L−1

[(
s+ β(1− s)

s

)
L
[
‖1

2
(unxxx − umxxx)‖+ ‖ − 3um(unx − umx)‖

+ ‖ − 3unx(un − um)‖+ ‖3vmx(wn − wm)‖+ ‖3wn(vnx − vmx)‖

+ ‖3vm(wnx − wmx)‖+ ‖3wnx(vn − vm)‖
]]

(4.6)

As both the solutions play the similar part, we shall assume that

‖un(t)− um(t)‖ = ‖vn(t)− vm(t)‖
‖un(t)− um(t)‖ = ‖wn(t)− wm(t)‖
‖unx(t)− umx(t)‖ = τ1‖un(t)− um(t)‖
‖vnx(t)− vmx(t)‖ = τ2‖vn(t)− vm(t)‖
‖wnx(t)− wmx(t)‖ = τ3‖wn(t)− wm(t)‖

‖unxxx(t)− umxxx(t)‖ = %1%2%3‖un(t)− um(t)‖.

Replacing this in (4.6), we obtain the following relation

‖λ(un(t))− λ(um(t))‖ ≤ L−1

[(
s+ β(1− s)

s

)
L
[∥∥∥1

2
%1%2%3(un − um)

∥∥∥ (4.7)

+ ‖ − 3umτ1(un − um)‖+ ‖ − 3unx(un − um)‖
+ ‖3vmx(un − um)‖+ ‖3wnτ2(un − um)‖

+ ‖3vmτ3(un − um)‖+ ‖3wnx(un − um)‖
]]
. (4.8)
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Also um, vm, wn, unx , vmx and wnx are convergent sequence hence they are bounded.
Therefore, we can obtain different positive constants, κ1, κ2, κ3, κ4, κ5 and κ6 for
all t such as,

‖um‖ < κ1, ‖vm‖ < κ2, ‖wn‖ < κ3, ‖unx‖ < κ4,

‖vmx‖ < κ5, ‖wnx‖ < κ6, ‖vnx‖ < κ7, ‖wnx‖ < κ8. (m,n) ∈ N× N
(4.9)

Next consider equation (4.8) and (4.9), we get

‖λ(un(t))− λ(um(t))‖ ≤
{1

2
%1%2%3χ1(β)− 3κ1τ1χ2(β)− 3κ4χ3(β) + 3κ5χ4(β)

+ 3κ3τ2χ5(β) + 3κ2τ3χ6(β) + 3κ6χ7(β)
}
‖(un − um)‖.

(4.10)

where χ1, χ2, χ3, χ4, χ5, χ6 and χ7 are functions from L−1
[(s+ β(1− s)

s

)
L

]
.

In the same manner, we can get

‖λ(vn(t))− λ(vm(t))‖ ≤ −(%4%5%6)ξ1(β) + 3κ1τ2ξ2(β) + 3κ7ξ3(β)‖(vn − vm)‖
(4.11)

‖λ(wn(t))− λ(wm(t))‖ ≤ −(%7%8%9)π1(β) + 3κ1τ3π2(β) + 3κ8π3(β)‖(wn − wm)‖.
(4.12)

Therefore, from (4.1) nonlinear self mapping λ has a fixed point. Next we show that,
λ satisfies all the conditions in Theorem 4.1. Let (4.10) to (4.12) hold and therefore
using

ψ = (0, 0, 0), φ =



{
1
2
%1%2%3χ1(β)− 3κ1τ1χ2(β)− 3κ4χ3(β) + 3κ5χ4(β)

+3κ3τ2χ5(β) + 3κ2τ3χ6(β) + 3κ6χ7(β)
}
< 1,

−(%4%5%6)ξ1(β) + 3κ1τ2ξ2(β) + 3κ7ξ3(β) < 1,
−(%7%8%9)π1(β) + 3κ1τ3π2(β) + 3κ8π3(β) < 1,

Thus all the conditions in Theorem 4.2 are satisfied by λ. Therefore, λ is Picard λ−
stable.

5 Numerical Application

To illustrate the applicability of method discussed in section 3, we consider the gen-
eralized time fractional Hirota-Satsuma coupled KdV equation.
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5.1 Solution of the time fractional Hirota−Satsuma coupled
KdV equation

The exact solution of Eq.1.1 with initial condition Eq.1.2 when c = −γ and β = 1 is
given as

u(x, t) =
γ − 2k2

3
+ 2k2tanh2(k(x− ct))

v(x, t) = −4m2σ(γ +m2)

3c21
+

4m2(γ +m2)tanh(m(x− ct))
3τ

w(x, t) = σ + τtanh(m(x− ct))

(5.1)

Now taking series solution as u(x, T ) =
∑∞

i=0 ui(x, T ) , v(x, T ) =
∑∞

i=0 vi(x, T )
and w(x, T ) =

∑∞
i=0wi(x, T ) then employing recursive relation appropriately with

initial condition Eq.1.2 we get an approximate solution as

u0 =
1

3
(γ − 2m2) +

2m2(e2mx−1)
2

(e2mx+1)2

v0 =
4m2 (γ +m2) (e2mx − 1)

3τ (e2mx + 1)
− 4m2σ(γ+m2)

3τ2

w0 =
τ (e2mx − 1)

e2mx + 1
+ σ

(5.2)



u1 =
16γm3e2mx (e2mx − 1) (β(t− 1) + 1)

(e2mx + 1)3

v1 =
16γm3 (γ +m2) e2mx(β(t− 1) + 1)

3τ (e2mx + 1)2

w1 =
4γmτe2mx(β(t− 1) + 1)

(e2mx + 1)2

(5.3)

u2 =
1024β3γ2m5t3e7mx sinh(mx) (−γ + (5m2 − γ) cosh(2mx)− 13m2)

3 (e2mx + 1)7
− 1

3 (e2mx + 1)7

− 1

3 (e2mx + 1)7
64e7mxm4γ2

(
−24β2 cosh(mx) + 48β cosh(mx)− 24 cosh(mx)

)
+ · · ·
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v2 = − 1

3τ
(
e2mx + 1

)616e2mxe2mx − 1m4γ2γ +m2
(
2− 4β + 2e3mx

(
3
(
β2((t− 4)t+ 2)

+ 4β(t− 1) + 2
)

cosh(mx)
))

+ (2(β − 1)β + βt(β(t− 4) + 4) + 1) cosh(3mx)

+ 32m3(3 + β(9β + 6β(t− 3)t+ 9(t− 1) + .β2 +
(
(t− 3)2t− 3

)))
sinh(mx)

+ (1− 2β) sinh(3mx)
))

+ · · ·

w2 = − 1(
e2mx + 1

)64e2mxm
(
−8γm3 − β2γm

(
t2 − 4t+ 2

) (
γ + 4m2 − 1

)
− 2γ2m+ 2γm+ 1

)
.

β(−(t− 1))
(
16γm3 + 4(γ − 1)γm− 1

)
+ e8mx

(
8γm3 + β2γm

(
t2 − 4t+ 2

) (
γ + 4m2 − 1

))
+ · · · .

Successively applying the algorithm given in Eq.(3.11), initial few terms of u(x,
t), v(x, t) and w(x,t) can be obtained from software package Mathematica. The
approximate solution in series form is given as

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t)

v(x, t) = v0(x, t) + v1(x, t) + v2(x, t)

w(x, t) = w0(x, t) + w1(x, t) + w2(x, t)
(5.4)

Figure 1: Surface Plot of u(x, t) for m = 0.1, γ = 1.5 and various values of β =
0.6, 0.8, 1 with respect to t.

The numerical values in Tables 1, 2 and 3 shows the comparison between approx-
imate solutions of Eq.1.1 obtained by using the Caputo-Fabrizio derivative operator
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Figure 2: Surface Plot of v(x, t) for m = 0.1, γ = 1.5 and various values of β =
0.6, 0.8, 1 with respect to t.

Figure 3: Surface Plot of w(x, t) for m = 0.1, γ = 1.5 and various values of β =
0.6, 0.8, 1 with respect to t.

and Caputo operator for different values of β. We substitute β = 1, γ = 1.5, m = 0.1,
σ = 1.5 and τ = 0.1 in approximate solution and take three terms of all series. Also
numerical values of solution is evaluated for β = 0.6, and 0.8. From these results it has
been observed that the obtained approximate series solutions are in good agreement
with the exact solutions. It is also noted that Caputo-Fabrizio fractional derivative
demonstrates new nature compared with the Caputo fractional derivative.
Fig. 1 , 2 and 3 shows the surfaces of approximate solution of Eq.1.1 for u(x,t) which
is of bell shaped but kink−type for v(x,t) and w(x,t) when β = 1, γ = 1.5, m = 0.1,
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Caputo Fabrizio Caputo Operator Absolute
Operator error

t x β = 0.6 β = 0.8 β = 0.6 β = 0.8 |uexact − uappx|
for α = 1

0 0.493595 0.493459 0.493440 0.493390 2.63462× 10−8

0.2 0.493667 0.493515 0.493506 0.493490 2.46812× 10−8

0.25 0.4 0.493754 0.493585 0.493587 0.493506 2.27884× 10−9

0.6 0.493855 0.493671 0.493684 0.493587 2.06216× 10−8

0.8 0.493971 0.493772 0.493795 0.493684 1.81381× 10−8

1 0.494101 0.493887 0.493921 0.493887 1.52997× 10−8

0 0.493734 0.493585 0.493579 0.493504 4.20534× 10−7

0.2 0.493822 0.493663 0.493673 0.493585 4.04902× 10−7

0.50 0.4 0.493924 0.493756 0.493783 0.493681 3.86055× 10−7

0.6 0.494041 0.493864 0.493907 0.493792 3.63665× 10−7

0.8 0.494172 0.493986 0.494045 0.493918 3.37452× 10−7

1 0.494316 0.494198 0.494198 0.494057 3.07179× 10−7

0 0.493892 0.493747 0.493732 0.493661 2.12053× 10−6

0.2 0.493996 0.493847 0.493850 0.493768 2.05647× 10−6

0.75 0.4 0.494114 0.493962 0.493981 0.493890 1.97697× 10−6

0.6 0.494245 0.494090 0.494127 0.494027 1.88113× 10−6

0.8 0.494390 0.494232 0.494286 0.494177 1.76820× 10−6

1 0.494547 0.494387 0.494458 0.494440 1.63769× 10−6

Table 1: Table of comparison for approximate solution of u(x,t) between Caputo frac-
tional derivatives and Caputo-Fabrizio fractional derivative and also absolute errors
for difference between exact and approximate solution for β = 0.6, 0.8

σ = 1.5 and τ = 0.1 respectively. It is observed that all the curves of approximate
solution are exactly similar with the curves of exact solutions [11]. All Figures and
Tables 1 to 2 shows that there is a remarkable difference at various estimations of β
and this model depend continuously on the time fractional derivative.
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Caputo Fabrizio Caputo Operator Absolute
Operator error

t x β = 0.6 β = 0.8 β = 0.6 β = 0.8 |uexact − uappx|
for α = 1

0 -3.00339 -3.00792 -3.00529 -3.00930 3.53707× 10−6

0.2 -2.99942 -3.00392 -3.00129 -3.00529 3.52590× 10−6

0.25 0.4 -2.99547 -2.99994 -2.99731 -3.00129 3.50304× 10−6

0.6 -2.99154 -2.98810 -2.99334 -2.99731 3.46866× 10−6

0.8 -2.98763 -2.99203 -2.98939 -2.99334 3.42300× 10−6

1 -2.98375 -2.98810 -2.98547 -2.98940 3.36637× 10−6

0 -2.99886 -3.00188 -2.99770 -3.00138 2.82489× 10−5

0.2 -2.99492 -2.99791 -2.99373 -2.99739 2.81175× 10−5

0.50 0.4 -2.99101 -2.99396 -2.98979 -2.99343 2.78932× 10−5

0.6 -2.98711 -2.99003 -2.98586 -2.98948 2.75777× 10−5

0.8 -2.98324 -2.98612 -2.98197 -2.98556 2.27173× 10−5

1 -2.97940 -2.98224 -2.97810 -2.98224 2.66819× 10−5

0 -2.99433 -2.99584 -2.99156 -2.99424 9.50734× 10−5

0.2 -2.99043 -2.99191 -2.98762 -2.99029 9.44897× 10−5

0.75 0.4 -2.98655 -2.98800 -2.98372 -2.98636 9.35954× 10−5

0.6 -2.98269 -2.98411 -2.97984 -2.98246 9.23966× 10−5

0.8 -2.97887 -2.98025 -2.97599 -2.97859 9.09015× 10−5

1 -2.97507 -2.97643 -2.97217 -2.97476 8.91209× 10−5

Table 2: Table of comparison for approximate solution of v(x,t) between Caputo frac-
tional derivatives and Caputo-Fabrizio fractional derivative and also absolute errors
for difference between exact and approximate solution for β = 0.6, 0.8

6 Conclusions:

In this study, we have investigated Caputo-Fabrizio fractional order time fractional
generalized Hirota-Satsuma coupled KdV system by using iterative Laplace transform
method. Further, by applying Banach theorem, the existence and stability results for
steady solutions have been proved. The series solutions obtained by this powerful
approach demonstrate a decent consent. It is obvious that the effectiveness of this
technique can be drastically enhanced by reducing steps and computing more com-
ponents. Also Caputo-Fabrizio fractional operator and the methodology presented in
this work shall be appropriate for modeling other real world problems.
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Caputo Fabrizio Caputo Operator Absolute
Operator error

t x β = 0.6 β = 0.8 β = 0.6 β = 0.8 |uexact − uappx|
for α = 1

0 1.50275 1.50200 1.50731 1.50531 2.4980× 10−3

0.2 1.50474 1.50400 1.50929 1.50730 2.4950× 10−3

0.25 0.4 1.50673 1.50599 1.51127 1.50929 2.4900× 10−3

0.6 1.50871 1.50798 1.51324 1.51127 2.4830× 10−3

0.8 1.51069 1.50996 1.51320 1.51324 2.4740× 10−3

1 1.51265 1.51193 1.51715 1.51520 2.4640× 10−3

0 1.50350 1.50300 1.51108 1.50925 4.9850× 10−3

0.2 1.50549 1.50499 1.51305 1.51123 4.9750× 10−3

0.50 0.4 1.50747 1.50698 1.51501 1.51320 4.9610× 10−3

0.6 1.50945 1.50896 1.51696 1.51516 4.9440× 10−3

0.8 1.51142 1.51094 1.51889 1.51711 4.9220× 10−3

1 1.51338 1.51290 1.52081 1.51904 4.8970× 10−3

0 1.50425 1.50400 1.51413 1.51279 7.4520× 10−3

0.2 1.50623 1.50599 1.51608 1.51476 7.4319× 10−3

0.75 0.4 1.50821 1.50797 1.51802 1.51671 7.4052× 10−3

0.6 1.51018 1.50994 1.51995 1.51864 7.3727× 10−3

0.8 1.51214 1.51191 1.52186 1.52057 7.3340× 10−3

1 1.51410 1.51387 1.52376 1.52247 7.2914× 10−3

Table 3: Table of comparison for approximate solution of w(x,t) between Caputo frac-
tional derivatives and Caputo-Fabrizio fractional derivative and also absolute errors
for difference between exact and approximate solution for β = 0.6, 0.8
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