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Abstract. The purpose of this study is to investigate a novel mapping for Suzuki-type contraction defined 
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1. Introductions 

Mathematical fixed point theory is a fascinating area of study. It has numerous 

applications in almost all branches of mathematical sciences.  

The simplest and most used tool in nonlinear analysis is the classical Banach contraction 

theorem (cf. Theorem 1.1) (1912) due to Polish mathematician Stefan Banach (1882-1945). 

There was a huge development on this line which has a tremendous impact on all branches of 

applicable mathematics and mathematical sciences (see, Agarwal et al. [1], Berinde [5], Geobel 

and Kirk [12], Rhoades [19] and references thereof).  

Definition 1.1. A map E on a metric space Z is a contraction if there exists c ∈ [0, 1) such that  

for every p, q ∈ Z, 

δ(Ep, Eq) ≤ cδ(p, q).          (1.1)  

Banach states the following theorem popularly known as Banach contraction theorem (Bct). 

Theorem 1.1. A contraction map on a complete metric space has a unique fixed point. 

There are numerous studies published in the last 70 years that demonstrate various 

generalizations of the Bct by weakening either the contractive features of the map or by 

extending the structure of the ambient space (see, for instance, [8], [13] and others). 

An expansion of the Banach contraction, Kannan [15] established a fixed point theorem for a 

map on metric spaces. He was the first, in fact, to put forth a fixed point theorem for a 

discontinuous map on a metric space.  

Definition 1.2. A map E on a metric space Z is said to be a kannan contraction if there exists  

some c ∈[0, ½) such that for every p, q ∈ Z, 
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δ(Ep, Eq) ≤ c[δ(p, Ep) + δ(q, Eq)].        (1.2)  

Theorem 1.2. A Kannan contraction map on a complete metric space has a unique fixed point.  

Definition 1.3. A map E on a metric space Z is said to be a generalized contraction if there exists  

c ∈ [0, 1) such that for every p, q ∈ Z, 

δ(Ep, Eq) ≤ c max  {δ(p, q), δ(p, Ep), δ(q, Eq), [δ(p, Eq) + δ(q, Ep)]/2}.  (1.3)  

Notice that the generalized contraction (1.3) is essentially due to Ciric [9] which is 

referred as (21´) in a thorough comparison of maps by Rhoades [19]. The Bct and Kannan's own 

fixed point theorem have both been extensively extended and generalized as a result of his 

theorem in many different contexts. One of the best generalizations, among contractions for 

single-valued maps is quasi-contraction given by Ciric [10]:  

Definition 1.4. A map E on a metric space Z is said to be a quasi-contraction if there exists  

c ∈ [0, 1) such that for every p, q ∈ Z, 

δ(Ep, Eq) ≤ c max{ δ(p, q), δ(p, Ep), δ(q, Eq), δ(p, Eq), δ(q, Ep)}.    (1.4)  

A result due to Ciric [10] popularly called quasi contraction theorem in metric fixed point theory 

is as follows:  

Theorem 1.3. A quasi contraction map on a complete metric space has a unique fixed point.  

Generalizing the classical Banach contraction principle, Khojasteh et al.[14] attained the 

aforementioned outcome. 

Theorem 1.4. Let E be a map on a complete metric space Z such that for every     ∈   ,  

 (     )  (
 (     )  (     )

 (     )  (     )  
)  (   )         

Then  

(i) there exists at least one  ∈              ( )   ;  

(ii) for any  , *  ( )+ converges to a fixed point; 

(iii) if  ( )     ( )     with     , then  (   )      . 

For an excellent comparison of various contractive conditions for one and two maps, 

refer to Rhoades [19]. One may consult Boyd and Wong [8], Jachymski [13], Rhoades [19] and 

references therein for a few basic generalizations of the condition (1.1) and their comparison. 

However in all these fixed point theorems, the contractive or contractive conditions are 

required to hold for all points  ,   of the domain. Therefore, it makes sense to anticipate the day 

when this stipulation is significantly eased without compromising a theorem's conclusions. 

Definition 1.5. Define a nonincreasing function θ : [0, 1) → ( 1 2 , 1] by  
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A map   on a metric space Z is said to be Suzuki contraction if there exists c ∈ [0, 1) such that 

for every     ∈   , 

θ(c)  ( ,   ) ≤  ( ,  ) implies  (  ,   ) ≤ c  ( ,  ).     (1.5)  

The following extraordinary generalization of the Bct was recently demonstrated by Suzuki in 

[23]. 

Theorem 1.5. A Suzuki contraction map on a complete metric space has a unique fixed point 

and the sequence of Picard iterates {  r } converges to the fixed point for any   ∈ Z.  

Definition 1.6. Define a nonincreasing function ψ : [0, 1) → ( 1 2 , 1] by  

ψ(c) =  {
           if          

 

√ 
 

 

   
    if  

 

√ 
    

 

A map   on a metric space Z is said to be Kikkawa Suzuki Kannan contraction if there exists c ∈ 

[0, 1/2) such that for every     ∈   , 

ψ(c)  ( ,    ) ≤  ( ,  ) implies  (  ,   ) ≤ c[ ( ,   ) +   ( ,   )].   (1.6)  

The following outcome is made possible by Kikkawa and Suzuki [16].  

Theorem 1.6. A map satisfying (1.6) has a unique fixed point on a complete metric space.  

For some extensions and generalizations of the above theorem, we may refer to [11], [17] 

and others. 

Forceful nature of the Suzuki contraction theorem has inspired many researchers to 

present some beautiful and interesting extensions and generalizations during a small span of five 

years (see, for instance, [2], [3], [11], [17], [18], [21], [22], [24] and others). 

This paper is devoted to the concepts of Suzuki contraction. By combining the idea of 

Suzuki contraction [23] and Khojasteh et al. contraction [14], we obtain a new type of fixed point 

theorem generalizing the results of Banach, Khojasteh et al. [14] and others. An illustrative 

example, highlighting the realizing improvements, is also discussed. We apply our key finding to 

find solutions to some functional equations that occur during dynamic programming under much 

weaker condition than those in [4], [6] and [7]. 

2. Main Results 

Theorem 2.1. Let (Z,  ) be a complete metric space and let  : Z→ Z with the condition that for 

every  ,   ∈ Z, 
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  ( ,   ) ≤  ( ,  )         (2.1) 

implies 

 (  ,   )≤ .
 (    )  (    )

 (    )  (    )  
/  ( ,  )       (2.2) 

Then 

(i)   has atleast one fixed point   ∈ Z. 

(ii) For all   ∈ Z,{  r  } converges to a fixed point. 

(iii) If      are fixed points of  , then  ( ,  ) ≥1/2. 

Proof : Let  0 ∈ Z and choose { r} such that  r+1 =   r, we have 

 

 
  ( r-1,   r-1) = 

 

 
  ( r-1,  r)  

  ≤  ( r,  r-1) 

So (2.1) holds, therefore from (2.2) 

 ( r+1,  r) =  (  r,   r-1) ≤ .
 (     )  (         )

 (       )  (       )  
/  (       ) 

        = .
 (         )

 (       )  (       )  
/  (       ) 

        ≤ .
 (       )  (       )

 (       )  (       )  
/  (       )    (2.3) 

Given 𝜔r = .
 (       )  (       )

 (       )  (       )  
/,          (2.4) 

we have  

 ( r+1,  r) ≤ 𝜔r (       ) 

Similarly,  ( r,  r-1) ≤ 𝜔r -1  (         ) 

So  ( r+1,  r) ≤ 𝜔r (       ) 

  ≤ 𝜔r 𝜔r -1  (         ) 

≤ 𝜔r 𝜔r -1……. 𝜔1  (     ).        (2.5) 

Keep in mind that 𝜔r is non-increasing and has positive terms, so 𝜔1 𝜔2…….. 𝜔r ≤ 𝜔1
r
 and 

𝜔1
r
→0. It follows that 

                    
 → 

(𝜔 𝜔     𝜔 )            (2.6) 

Thus, it is verified that 
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 → 

 (       )              (2.7) 

Now, for all r, s ∈N with r < s, we have 

 ( s,  r) ≤  ( r,  r+1) +  ( r+1,  r+2) +…………+  ( s-1,  s) 

 ≤ ,(𝜔 𝜔      𝜔 )  (𝜔   𝜔 𝜔      𝜔 )          (𝜔      𝜔 )- (     ) 

 = ∑ (𝜔  𝜔      𝜔 ) (     )
 

   
       (2.8) 

Suppose that ak = (𝜔  𝜔      𝜔 ). Since 

     
 → 

    

  
             (2.9) 

∑   
 
       It means that 

   ∑ (𝜔  𝜔      𝜔 ) →  
 

   
        (2.10) 

as s, r→∞. Thus, { r} converges to   ∈ Z. 

We assert that    ( ). 

Now 
 

 
  ( r,   r) = 

 

 
  ( r,  r+1) ≤ 

 

 
 [ ( r,  )+  ( ,   r+1)]  

    ≤ 
 

 
 [ ( r,  ) +  ( ,   r)] =  ( r,  ) 

So  (  r,   ) ≤ .
 (     )  (     )

 (    )  (      )  
/   ( r,  ) 

That is,  (  r,   ) ≤ .
 (     )  (      )

 (    )  (       )  
/  ( r,  ) 

Upon imposing a limit on both sides of the aforementioned equation, we have 

 ( ,   ) ≤ .
 (    )  (   )

 (    )  (   )  
/  ( ,  ) 

So,  ( ,   ) ≤ 0 

i.e.  ( ,   ) = 0 

Thus    =   . 

If      are fixed points of    then 

 

 
  ( ,   ) =0 ≤  ( ,  ), so from (2) 

 ( ,  ) =  (  ,   ) ≤ [ ( ,   )+  (  ,  )]  ( ,  ) = 2[ ( ,  )]
2
 

Therefore  ( , z
’
) ≤ 2[ ( ,  )]

2 
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i.e. 1≤ 2  ( ,  ) 

i.e.  ( ,  ) ≥ 1/2 and we find the desired result. 

Theorem 2.1's generality over Theorem 1.4 is demonstrated in the next example.  

Example 2.1. Let Z = {    
 

 
} and δ: Z × Z → R

+ 
defined as  

δ(0,0) = δ(1,1) = δ.
 

 
 
 

 
/   ,  

δ.  
 

 
/   . 

 

 
  /   (   )   (    )   , 

  .   
 

 
/    . 

 

 
  /   . 

Clearly, δ is a metric on Z. 

Define  : Z → Z by 

 (0) = 0,  . 
 

 
/  

 

 
   (1) = 0. 

Now, δ( 0,  1) = δ(0,0) = 0. 

 (    (
 

 
))   (  

 

 
)     

 (    (
 

 
))   (  

 

 
)     

and we have 

 (    (
 

 
))   (  

 

 
)    
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( ))
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 /)   
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/  .

 

 
  /

 (   )  (
 

 
 
 

 
)  
) .  

 

 
/=.

   

     
/×3=18, 

but 
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 /)   (

 
   

( ))

 (    )   (
 
   .
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=(
 .  

 

 
/  .

 

 
  /

 (   )  .
 

 
 
 

  
/  
) .  

 

 
/=.

   

     
/×1=1, 

Thus we note that  ( p,  q) ≤ .
 (    )  (    )

 (    )  (    )  
/   (p, q) if (p, q) ≠ .  

 

 
/,  

since at .  
 

 
/ 

 

 
   (1, T1)= 

 

 
   > 1 =  .  

 

 
/. 

Thus   satisfy Theorem 2.1 but not Theorem 1.4. 

3. Applications 

We take for granted that Y and Z are Banach spaces throughout this section and C ⊆ X and D ⊆ 

Y. Let R denote the field of reals,      →  and        →   
 
Viewing C and D  as the 

state and decision spaces respectively, dynamic programming's problem reduces functional 

equations problem: 

     
 ∈ 
* (   )   (     ( (   )))+    ∈                                                   (3.1) 

Some functional equations appear naturally during the multistage process (cf. Bellman 

[4] and Bellman and Lee [6]; see also Bhakta and Mitra [7] and others). In this part, we 

investigate whether the functional equation (3.1) that arises in dynamic programming has a 

solution. 

 Let B(C) denote the set of all bounded real-valued functions on C. For an arbitrary 

l∈B(C), define ‖ ‖     
 ∈ 
| ( )|  Then ( ( )  ‖ ‖)is a Banach space. Imagine that the following 

circumstances hold:  

(DP-1)   and   are bounded. 

(DP-2) For every (p, q) ∈ C × D, l, n ∈ B(C) and t ∈ C, 

 

 
| ( )    ( )|

 
≤ | ( )   ( )|  

implies 

| (     ( ))   (     ( ))| .
| ( )   ( )|  | ( )   ( )|

| ( )   ( )|  | ( )   ( )|  
/ | ( )   ( )|  

where   is defined as follows: 

  ( )     
 ∈ 
* (   )   .      ((   ))/+   ∈     ∈  ( )  
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Theorem 4.1. Assume (DP-1) and (DP-2) are true. Therefore, B(C) contains at least one solution 

to the functional equation (3.1). 

Proof : For any l, n ∈ B(C), let  (   )     *| ( )   ( )|  ∈  + 
 

Then (B(C),  ) is a 

complete metric space.  

Let   represent any random positive number and      ∈  ( )  Pick p ∈ C and 

choose      ∈  such that  

     (    )   .       (  )/                               (3.2) 

where    (    )                 (    )  

Further,  

                                 (    )   (       (  ))              (3.3) 

                                (    )   (       (  ))        (3.4) 

Consequently, the initial inequality in (DP-2) becomes  

 

 
|  ( )     ( )|

 
≤ |  ( )    ( )|        (3.5)

 
 

and more over this with (3.2) and (3.4) gives 

       <  (       ( ))   (       ( ))    

≤ | (       ( ))   (       ( ))|    

 .
|  ( )    ( )|  |  ( )    ( )|

|  ( )    ( )|  |  ( )    ( )|  
/ |  ( )    ( )|                              (3.6) 

Similarly, (3.2), (3.3) and (3.5) implies 

        .
|  ( )    ( )|  |  ( )    ( )|

|  ( )    ( )|  |  ( )    ( )|  
/ |  ( )    ( )|                   (3.7) 

So, from (3.6) and (3.7), we obtain 

|   ( )     ( )|  .
|  ( )    ( )|  |  ( )    ( )|

|  ( )    ( )|  |  ( )    ( )|  
/ |  ( )    ( )|            (3.8) 

Since     is arbitrary and this inequality is true for any p ∈ C, and on taking supremum, we 

conclude from (3.5) and (3.8) that 

 

 
 (      ) ≤  (     )              

implies 
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 (       )  .
|  ( )    ( )|  |  ( )    ( )|

|  ( )    ( )|  |  ( )    ( )|  
/ |  ( )    ( )|     

           

Theorem 2.1 is thus applicable, where A corresponds to the map E. So A has atleast one fixed 

point     that is,   ( )is solution of the functional equation (3.1). 
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