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Abstract

Graph theory is a well-known branch of Mathematical sciences (Arithmetic). Mathematics gives the same name to
different things. But graph theory creates a graph labeling techniques in which different labeling are given to same graphi-
cal structures. Graph is a mathematical structure describing dots, curves, bars, or traces.In Graph labeling natural numbers
including zero are used to label the nodes or edges, or all , which fulfill some mathematical constraints. Graphs are used
to describe various mathematical models in Operations Research, control, and Engineering, in studies domains of lap-
top technological know-how which include statistics mining, photograph segmentation, clustering, photograph capturing,
networking that’s used in structural fashions, and so forth. Graph labeling has many applications in the social community,
verbal exchange (communication) community, circuit design, Database management, coding principle, radar, astronomy,
and X-ray crystallography. Depending on the trouble scenario a type of graph is used for representing the hassle (problem)
and by way of applying appropriate graph labeling techniques the hassle may be solved. Graph labeling is a flourishing
as well as application-oriented area of research in Mathematics.
In this chapter, we discuss the different graph labeling techniques related to different graphs.
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1 Introduction

Graph concept has been invented in 1735 with the Koinsberg Seven Bridge problem. The phrase graph is derived
from the Greek word ‘graphein’. A "graph" in this paper consists of "vertices" or"nodes" and lines called edges that
connect with vertices. Graph labeling have been introduced within the mid 1960’s by Alexander Rosa. Over the past
six decades,the research in graph labeling developed very fast. Graph labeling is a flourishing as well as an application-
oriented area of research in the theory of Graphs. To date, more than 200 types of graph labeling techniques had been
introduced. In this chapter we try to collect some important graph labeling techniques with suitable graphs. Here we
study mainly graph without loops and parallel edges, non-directed having countable number of edges and vertices. Here
we consider the terminology and symbols of graph from Harary’s ‘Graph Theory’.

1.1 Graph :
Definition: 1. A linear graph(simple graph) G = (N(G),L(G),F(G)),consisting of two non empty sets viz: N(G) =

{v1,v2,−−−−−−−−} whose elements are known as nodes or vertices , and a set of elements which are known as

lines or edges L(G) = {e1,e2,−−−−−} . The incidence function F(G) which maps every element of E i.e.e = xy to two
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elements x and y of N(G).

Order of a graph: The total count of elements i.e. vertex set N(G) is called order of a graph.
Graph Size: The total count of an elements in edge set L(G) is called graph size.
Vertex degree:The total number of lines occurring on a vertex is called a vertex degree .
Graph degree:The sum of all degrees of each node(vertex) in a given graph G is known as graph degree.

1.2 Graph Labeling :

Definition: 2. In a Graph, an allotment of positive integers including zero to the nodes or positive integers to the

lines(edges), or both, having some mathematical criterion is known as Graph labeling.
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1.3 Different Graph Labeling Techniques :

1.3.1 Graceful Labeling:

Definition: 3. A graceful labeling of a simple connected graph G = (N(G),L(G)) having p nodes and q lines is a partic-

ular graph labeling in which the nodes or vertices are labeled with a subset of distinct integers from 0 to q and the graph

lines or edges are labeled with the positive differences between vertex label values. The labeling for edges used are from

1 to q both must be included. The resultant graph is known a graceful.

Exa. Banana tree ,trees with vertices ≤ 35,Caterpillars,bananas etc. are always graceful.
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Examples of graph having Graceful Labeling.

• All symmetrical trees

• Trees with vertices ≤ 35.

• Caterpillars, banana trees etc.

Non-graceful graph: A simple graph G in which we can not make graceful labeling is said to be non-graceful.
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Result
In graceful graph with q (q is positive integer) edges and q+1 vertices the following holds:

• We can draw distinct graceful labeling for the same graph i.e. it is not unique.

• The vertices labeled with 0 and q are always in neighbouring.

• If the graph has q edges then each graceful labeling must contains vertex label as q.

• Graceful labeling graph may contains a triangle graph.

• The complementarity property for graceful labeling is satisfied. That is for a given graph with graceful labeling if
we swap every vertex label q with q− k, the resulting labeling is also graceful since the edge labels will not have
changed the extreme vertices of an edge. The new labeling for a and b now are q−a and q−b.

1.3.2 Harmonious labeling:

Graham and Sloane [33]

Definition: 4. In a graph G = (N(G),L(G)) with q lines, a function g is called as harmonious labeling of G if there

exists an injective function f from vertex/node set N(G) to L(G) and the induced function g∗ from N(G) to L(G) defined

by g∗(e = xy) = (g(x)+g(y))(modq) must be bijective.

A graph is called a harmonious graph if it has harmonious labeling .

Exa. K1,7
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Examples of graph having Harmonious Labeling.

• Cycle Cn(n ≥ 3) has harmonious labeling if n is an odd number and vice versa.

• Ladder graph Ln,n ̸== 2.

• Fn, Friendship graph excluding n is congruent to 2(mod4).

• The fan graph fn .
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• The graph gn for (n ≥ 2).

Result

• Harmonious labeling is non distinctive.

• h is harmonious labeling then xh(a)+ y also a harmonious labeling , here the inverse of an element x in q exist and
y is any arbitrary element in q. (i.e. Zq).

• We can label 0 to any vertex in a graph.

• All trees are harmonious. non-distinctive

• Complete graph Cn is harmonious iff n ≤ 4.

• The Peterson graph is Harmonious.

• Wheel graph Wn =Cn +K1 is harmonious.

• K(2)
p has harmonious labeling for p=4. K(2)

p has not harmonious labeling for n = 6 or an odd number. If p = 4, K(2)
p

is harmonious, if p = 6 it is not harmonious..

1.3.3 Cordial Labeling :

Cahit [9]

Definition: 5. Let G = (N(G),L(G)) be a connected, simple graph with p nodes/vertices q edges/lines.If in this graph , if

it is possible to label its vertices with 0′s and 1′s such that the number of vertices labeled with 0 and the number of vertices

labeled with 1 differ by at most 1 and similarly the number of edges labeled with 0 and the number of edges labeled 1
differ at most by 1.Then such a labeling is called cordial labeling Exa. Cordial labeling graph of Jelly Fish J5,5
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Examples of standard graph having Cordial Labeling.

• All trees.

• Complete graph Kn iff n is less than or equal to 3.

• Complete bipartite graph Kp,q where p and q are natural numbers.

• Friendship graph C(s)
3 iff s is not congruent to 2 modulo 4.

• All fan graph fn.

• mKn for particular values of m and n.
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• Skolem-graceful graph .

Types of Cordial Labeling.

• Difference cordial graph.

• Edge product cordial graph.

• Prime cordial graph.

• Planar grid cordial graph.

• Context of Duplication cordial graphs.

• Second order cordial labeling graph.

• SET cordial graph.

• Integer cordial graph.

• Signed product cordial graph.

• Mean cordial graph.

• Harmonic Mean cordial graph.

1.3.4 Magic labeling of a graph:

There is a well-known concept of magic squares in number theory , Sedlacek in 1963 use this concept to discover a new

labeling techniques known as magic labeling. [41]. a) Node magic labeling of a graph(VML):

Definition: 6. Let G = (N(G),L(G)) be a simple, connected graph having p nodes q lines.A graph G is said to be node

magic if there exists a bijective function M : N(G)
⋃

L(G → {1,2, ..., p+q}, such that for all nodes of G, the sum of label

on a node and the labels of its incident lines is constant such a bijection is called node magic labeling of G.

A graph that admits node magic labeling is called a node magic graph.

Exa.cycle C8 having VML with magic constant K=22.
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b) Line magic labeling of a graph

Definition: 7. Let G = (N(G),L(G)) be a simple, connected graph having p nodes q lines.A graph G is said to be node

magic if there exists a bijective function M : N(G)
⋃

L(G → {1,2, ..., p+q}, such that M(u)+M(v)+M(uv) is constant

for all edges uv.

A graph is a line magic graph if it has an line magic labeling .
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If the sum of all labels of lines incident on a node v is the same for all nodes v then such a connected graph is said to be

semi-magic .

cycle graph C6 with magic constant K=20.
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Examples of a graph having Magic Labeling.

• For p = 2 and p greater than or equal to 5, Kp .

• Kp,p for all p greater than or equal to 3.

• Fan graph fn iff n=odd and n greater than or equal to 3.

• The wheel graph on p vertices i.e. Wp for p ≥ 4.

• A connected (m,n) graph iff 5m/4 < n ≤ m(m−1)/2.

Types of Magic Labeling.

• Semi-Magic

• Super-Magic

• Anti-magic

• Prime-magic

• H-magic

• Sigma labeling/ Distance-magic labeling

1.3.5 Radio labeling:

Chartrand, Erwin, Zhang, and Harary [15]

Radio labeling of graph is used for synchronization of channel allotments to FM radio stations.

Definition: 8. Let G= (N(G),L(G)) be a simple, connected graph having p nodes q lines.A radio labeling of a connected

graph G is an injective function c from the node set N(G) to the set of natural numbers such that d(x,y)+ |c(x)− c(y)| ≥
1+diam(G) for every two distinct nodes x and y of G.

The radio number denoted by rn(c) is the greatest value alloted by radio labeling c to any node of G by radio labeling

c.

The smallest value of radio numbers rn(c) taken from radio labeling c of G is the radio number of G and is denoted by

rn(G) .
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Examples of Radio Labeling graph.

• The rn(G) of a sunflower graph SFn is equal to its order.

• The rn(G) of a Helm graph Hn is an odd no. i.e.2n+1.

• The rn(G) of a gear graph Gn is also an odd no. i.e.2n+1.

1.3.6 Mean labeling of graphs:

Somasundaram and Ponraj [40].

Definition: 9. Let G = (N(G),L(G)) be a simple, connected graph having p nodes q lines.A graph G is said to be a mean

graph if there is a one-onemapping M from the nodes of G to {0,1,2,−−−−−,q} such that when each edge (r,s) is

labeled with (M(r)+M(s))/2 if M(r)+M(s) is even and (M(r)+MF(s)+1)/2 if M(r)+M(s) is odd, the resultant line

labels are easily distinguishable.
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Examples of Mean Labeling graph.

• The graph Pn, Cn, the bipartite graph K2,n, triangular snakes, quadrilateral snakes etc. all are mean graphs..

• Kp iff p is less than 3.

• K1,r iff r is less than3.

• The friendship graph C(t)
3 iff t less than 2.

• Bistars Bp,q(p > q) iff p < q+2

Types of Mean Labeling graph.

• Vertex even and odd mean graph.

• Super graph.
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1.3.7 Irregular labeling of graph:

Ruiz, Chartrand, Saba, Lehel, Oellermann and Jacobson. [14]

Definition: 10. Let G = (N(G),L(G)) be a simple, connected graph having p nodes q lines.An irregular labeling of a

graph G without zero degree nodes is an allotment of natural numbers as weights to the lines of G in such a way that the

sums of all the weights of the lines incident at every node are disjoint.

The lowest of the greatest weight of lines over all irregular labeling of a particular graph is known as the irregularity

strength of G and is denoted by s(G). If no such weight exists for an irregular labeling then s(G) = ∞.
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An irregular 3-labeling of the wheel W3

1.3.8 Prime labeling of graph:

Tout, Dabboucy, and Howalla.[20]

Definition: 11. Let G = (N(G),L(G)) be a simple, connected graph having p nodes q lines.A graph G is said to posses

a prime labeling if there is an injective and surjective mapping P : (N(G)→ {1,2, ...,q} such that for each edge(r,s), gcd

(P(r),P(s)) = 1 i.e (P(r) and P(s) are relatively prime.
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Examples of Prime Labeling of graph.

• Caterpillar graph with maximum degree 5.

• Path graph, star graph, complete binary trees, spider graph.
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1.3.9 Power Mean Labeling of graph:

Mercy P.[37]

Definition: 12. Let G = (N(G),L(G)) be a simple, connected graph having p nodes q lines.A graph G is said to be a

Power Mean Graph if it is feasible to label the vertices r ∈ N(G) with distinct labels P from {1,2,3, ...,m+1}i.e. there is

an pone-one function P : N(G)→{1,2, ...,q}in such a way that when each edge e = rs is labeled with

P(e = rs) =(r)P(s) ∗P(s)P(r))
1

P(r)+P(s) ⌋
P(e = rs) =⌈(P(r)P(s) ∗P(s)P(r))

1
P(r)+P(s) ⌉ then the line labels are distinct and are from {1,2,3, ...,m} .

F in called Power mean labeling of G .
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Examples of Power Mean Labeling of a graph.

• Tadpoles T (n,k).

Result:

• When two cycles Cp and Cq are joined by a pathPq, the resultant graph is a Power mean graph

• T (Pm) for m ≥ 2 is a Power mean graph.

• Subdivision of any Pn for n ≥ 2 is a Power mean graph.

• Subdivision of any Cn for n greater than or equal to 3 is a Power mean graph.

1.3.10 Combination and Permutation labeling of graph:

Hegde and Shetty [20]

a)Combination labeling of graph:

Definition: 13. Let G = (N(G),L(G)) be a simple, connected graph having p nodes q lines.A function C : N(G)→
{1,2, ...,q} is called as combination labeling of graph G if every line (r,s) is labeled with

(C(r))!/[C(r)−C(s)]!(C(s))! where C(r)>C(s).

The resulting line labels are all well-defined.
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Examples of Combination Labeling of a graph.

• Kn if and only if n is less than or equal to 5.

• Cn, n greater than 3.

• Kn,n iff n is less equals to 2. .

b) Permutation Labeling of graph:

Definition: 14. Let G = (N(G),L(G)) be a simple, connected graph having p nodes q lines. A function P : N(G) →
{1,2, ...,m} is called as permutation labeling of graph G if every edge (r,s) is labeled with

(P(r))!/[P(r)−P(s)]! where P(r)> P(s).

The resulting line labels all are well-defined.

0

6 4

8

1

3

4

7

8

6

5

1

2

grap Examples of Permutation Labeling of a graph.

• Kp iff p is less equals 5.

Result:

• In a permutation graph G if we remove any edge from this graph then the resultant graph is again a permutation

graph.

• The graph k-wheel , for all integer n ≥ 2.

• The graph k-fan Fn,k.

• The gear graph G2n is also a permutation grph.

1.3.11 Triangular sum labeling of graph:

Hegade and Shankaran[36]

Definition: 15. Let G = (N(G),L(G)) be a simple, connected graph having p nodes and q lines. A labeling of the graph

with q lines is called a triangular sum labeling if the nodes can be determined with distinct not-negative integers in such

a way that, when an line whose end vertices are labeled with r and s is labeled with the value r+ s.

All vertex(node) and edge(line) labels are different.

0 64 91 23 156 101

P6

Examples of Triangular sum Labeling of graph.

• Star graph, Path graph, n-ary complete trees.

• Kp iff p = 1 or p = 2
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