Comparison of insertion algorithms with
different programming languages on MySQL
Localhosts

Mr. Abishek K S Mr. Adithya B Mr. Varun Umasankar M
UG Scholar UG Scholar UG Scholar
Dept of Information Technology Dept of Information Technology Dept of Information Technology
Sri Sairam Engineering College Sri Sairam Engineering College Sri Sairam Engineering College
Chennai, India Chennai, India Chennai, India
sec21it128@sairamtap.edu.in sec21it106@sairamtap.edu.in sec21it032@sairamtap.edu.in
Mr. Aakash K Mr. Sarvesh KV
UG Scholar UG Scholar
Dept of Information Technology Dept of Information Technology
Sri Sairam Engineering College Sri Sairam Engineering College
Chennai, India Chennai, India
sec21it138@sairamtap.edu.in sec21it075@sairamtap.edu.in

ABSTRACT

There are many algorithms and techniques used to insert data into MySQL databases. This paper intends to
compare the efficiency of such algorithms across many different languages. Insertion algorithms play a significant
role in Database domains. This paper intends to compare different algorithms and the best language for its
implementation, characterized by faster execution times and lesser memory load. To conduct this study, insertion
algorithms will be implemented on systems monitored by Database monitoring systems like Dbeaver. MySQL access
will take place through web-based server hosting applications like PhpMyAdmin or Dbeaver. Various scenarios will
be tested under the implementation involving different record sizes and insertion methods. The results of this study
would help developers decide the best insertion method and the most efficient programming language for insertion.

KEYWORDS: Database; Algorithms; Programming Languages; Algorithmic Efficiency; Execution Time.
I.INTRODUCTION

The study focuses on analyzing the performance of different programming languages, namely Python, C++,
and Java, when it comes to handling increasingly larger data sets. The study introduces five distinct levels, namely
Level-1, Level-2, Level-3, Level-4 and Level-5, each representing an increase in the number of records by a factor of
10. The data size for Level-1 is set at 100,000 rows, while subsequent levels see a data size increase to 1 million, 10
million, and so on. To accurately measure the time complexity of various algorithms used in this study, the study first
establishes a well-defined and organized schema, ensuring consistent test conditions across different programming
languages. The time complexity of most algorithms is expected to be dependent on the size of records, typically
denoted as O(n). However, due to variations in execution speed among different programming languages, it becomes
crucial to identify the best-performing method and programming language for the insertion process. Python, C++, and
Java were chosen as the three languages for this study due to their popularity and widespread usage in data
manipulation tasks.

The primary objective of this study is to identify the most efficient programming language for handling increasingly
large data sets. This involves measuring the time taken by each programming language to complete the insertion
process at different levels. By comparing the execution times across the three languages, the study aims to determine
the most effective language for data manipulation tasks and automation in data handling.

In order to ensure accurate and fair comparisons, the study uses standardized hardware and software environments for
each programming language. The experimentation process involves running the insertion algorithms on the defined
schema using different programming languages, recording the execution time for each level. The recorded times are
then analyzed and compared to draw meaningful conclusions.

I1.DATASET GENERATION

The five distinct levels of data were generated in files with .csv’ extension using automated blocks of Python
code. The ability to compute execution times was also used using the time module. The first level, that is, Level-1
with 100,000 rows of data took 4.659 Seconds to be generated. The second level, that is Level-2, with a factor of
record increase at 10 from the previous level at 1 million rows took 50.7525 seconds to be generated and written. The
third level, that is, Level-3, with 10 million rows count took 424.55 seconds for generation. The fourth and the
penultimate level, that is, Level-4, took an abnormally long time at 34556.705 seconds for generation. The final level,
that is, the fifth level with 200 million rows of data took around 154,000 seconds, almost two days in python.

Level Row Size Space on Disk Generation Time | Generation D-Factor
(KB) (Python) Time (Java)

1 1,00,000 3921 4.65 0.186 25

2 10,00,000 40186 50.75 0.587 86.45656

3 1,00,00,000 411614 424.55 3.978 106.7245

4 10,00,00,000 4116887 34556.75 45.595 757.9066

5 1,00,00,00,000 | 42116847 214697.643 395.44 542.9335

Generation Time
1,20,00,00,000

1,00,00,00,000

80,00,00,000
60,00,00,000
40,00,00,000
20,00,00,000
0
1 2 3 - 5
s Row Size Space on Disk (KB)

Generation Time (Python) Generation Time (Java)

To analyze the trends, we need to consider both the execution times and the increase in record size from one
level to the next.

Level-1 to Level-2:

e Python: Execution Time increased from 4.65 to 50.7525 seconds, a 10.8935x increase.

e Java: Execution Time increased from 0.186 to 0.587 seconds, a 3.1613x increase.

e Trend: In both Python and Java, the execution time increased as expected with the increase in record size,
with Python having a more significant increase.

Level-2 to Level-3:

e Python: Execution Time increased from 50.7525 to 424.55 seconds, an 8.3595x increase.

e Java: Execution Time increased from 0.587 to 3.978 seconds, a 6.7734x increase.

e Trend: Both Python and Java experienced increased execution times, but Python continued to have a more
significant increase.

Level-3 to Level-4:

e Python: Execution Time increased from 424.55 to 34,556.705 seconds, an 81.378x increase.
e Java: Execution Time increased from 3.978 to 45.595 seconds, an 11.4818x increase.
e Trend: Python's execution time increased significantly, surpassing Java by a considerable margin.

Level-4 to Level-5:

e Python: Execution Time increased significantly as record size increased, but the exact increase is not
specified.

e Java: Execution Time increased from 45.595 to 395.44 seconds, an 8.6783x increase.

e Trend: In this level, Java still shows a substantial increase in execution time.

In summary, comparing Python and Java for each level, Python generally had higher execution times than Java
as the dataset grew. Both languages experienced performance degradation, but Python exhibited more pronounced
increases in execution times at each level. This may suggest that Python's performance is more sensitive to larger
datasets compared to Java. Further optimization in Python code may be needed to handle very large datasets
efficiently.

We can clearly see that Java outperforms python in this generation process by an average of 303.
What python could do in over two days was completed by Java in about 7 minutes.

1. TABLE CREATION

A separate database was created on localhost MySQL database. Five different tables were created
for each language. Dashboards in Dbeaver were re-configured to accommodate large entries and the
response time was reduced to 1 ms, keeping in mind the efficiency of some languages. Six dashboards were
monitored, namely Inbound traffic, Queries, InnoDB data, Server Sessions, Key Efficiency, InnoDB
memory respectively.

@ Dashboard [Traffic]] X phpfv’/'uAdmin W [Senver: 127001 » [Datsbasesiib
N ¥ Stucture [SQL 4 Search 4 Query f Export . Import Operations = Privieges o Routines © Events v More
Dashboard info afes
Recent Favores CREATE TABLE t1 (customer_id INT, first nane VAACWAR(56), last_nane VARCHAR(S8), order_value DECIMAL(19,2), onder quintityl INT);
Name: |Trafﬁc .
At ¢ [Editinfine] [Edit }] Create PHP code]
Desaription: - Server outhound traffic 4 [g
=B
v
— 4 New MySQL retumed an empty resulf set {12, zro rows). (Query ook 0.0005 seconds.)
Dashboard upd 4l , o
ashboard update : CREATE TABLE t2 (customer_id INT, first_name VARCRAR(30), last_nane VARCHAR(SO), order_value DECIML(18,2), order quantityl INT);
e | T
Update period (ms): 1 3 [Edtinfne | [Eqit| | Craate PHP code)
Maximum items: 1000000 tr
t-r 15 MySQL retured an empty resulf sat (1. zero rows). {Quary ook 0.0005 seconds)
Dashboard view 41 nlormalion_screma
l‘ i CREATE TABLE t3 | customer_id INT, first_name VARCHAR(58), last_name VARCHAR(58), order_value DECIMAL(16,2), order_quantityl INT);
View: Time series & I o
"‘ perormance_schema | Editinlina] Ecit]{ Creale PHP 0ode)
@ show legend %1 phpmyadmin
|
. Show grid #d test MySQL returned an empy result sat 1. 2ero rows). (Query took 0.0006 saconds.)
8 show domeain ads
i CREATE TABLE t4 | customer_id INT, first nane VARCHAR(58), last_nane VARCHAR(SR), order_value DECINAL(18,2), ceder quantityl INT);
@ show range axis
[Editinfine] [Edit | Craafe PHP codo]
Configuration ok Cancel 1 MySQL returned an empty result set {1 2ero rows), (Query ook 0.0005 seconds.)
I L} um;m(45 [rurtsman 1A INT finet nams UADAGAD/ZAL Yset mams VADFWAD/EA) andam ustus NEFTIAL (18 2 andon susetied TAT L
& Database Dashboard ¢ localhost 2<off> € localhost % ®|cEE[B O
Traffic InnoDB data
. - =
L) S o e S e | A e
—— — R
Queries Server sessions
E [
— oot oo = Up = Dol —Ommn — Oy —Sep = Camet

Key Efficiency InnoDB memory

s Husm8 aasasi

—Toml - Diet = Hesh

s

IV.RESULTS

All four algorithms were implemented in the given languages. The results are tabulated as follows:

Algorithm Language Level-1 Level-2 Level-3 Level-4 Level-5
Bulk Insert Python 0.92 7.38 33.49 372.48 4186.2
Batch Insert Python 1.66 9.12 37.28 442.67 4932.9
Single Python 40 472 5186 59831 o)
Record Insert

Parallel Python 3.41 9.77 34.22 366.12 4469.13
Loading

Bulk Insert Java 0.27 0.68 3.2 14 57
Batch Insert Java 0.67 1.09 5.33 18.44 76.9
Single Java 1.46 3.72 8.46 68.98 124.82
Record Insert

Parallel Java 0.44 0.83 4,92 16.44 72.33
Loading

Bulk Insert C++ 2.42 6.41 14.58 32.49 84.12
Batch Insert C++ 4.19 12.77 21.44 48.93 112.46
Single C++ 6.89 21.22 34.67 62.36 189.33
Record Insert

Parallel C++ 2.97 7.44 16.22 37.86 94.23
Loading

V.EFFICIENCY COMPARISON

Python has the slowest rate of Insertion compared to other languages, but the set-up is easier compared to
library references and installation in faster languages like Java. Java is the fastest language of all.

Bulk Insert:

e Bulk insert consistently ranks as the fastest data insertion method across all languages.

e In Python, the time increases by a factor of approximately:
o Level-1toLevel-2: 8
o Level-2to Level-3: 45
o Level-3to Level-4: 11.6
o Level-4to Level-5: 11.2

e Java and C++ also exhibit impressive performance with the following time increase factors:

o Java Level-1 to Level-5: 210
e C++ Level-1to Level-5: 35

Batch Insert:
e Batch insert is consistently the second fastest method across all languages and data levels.
e In Python, the time increases by a factor of approximately:
o Level-1toLevel-2: 45
o Level-2toLevel-3: 35
o Level-3to Level-4: 12.9
o Level-4to Level-5: 10.1
e Java and C++ exhibit competitive performance with the following time increase factors:
e Java Level-1to Level-5: 113.7
e C++ Level-1to Level-5: 25.9

Parallel Loading:
o Parallel loading provides good performance, particularly at higher data levels, but its efficiency varies
across languages and data levels.

e InPython, the time increases by a factor of approximately:
e Level-1to Level-2: 2.9
e Level-2toLevel-3: 3.5
e Level-3to Level-4: 13.7
e Level-4to Level-5: 12.2

e Java and C++ also show

e performance with the following time increase factors:
e Java Level-1to Level-5: 165.3
e C++ Level-1to Level-5: 31.8

Single Record Insert:
e Single record insert is significantly slower than the other methods, especially at higher data levels.
e InPython, the time increases by a factor of approximately:
o Level-1to Level-5: o (infinite time)
e Java and C++ demonstrate slow performance with the following time increase factors:
e Java Level-1to Level-5: 84.4
e C++ Level-1to Level-5: 27.7

Comparison Between Languages:
e Python excels in bulk insert and batch insert, offering the fastest and second-fastest performances,
respectively.
e Java and C++ are competitive across all methods, with Java performing better in bulk insert and C++ being
more competitive in parallel loading.
e All languages demonstrate extremely slow performance in single record insert, making it unsuitable for
high-volume data insertion.

In conclusion, the choice of data insertion method should consider not only performance but also the significant
time increase factors across different data levels. Python excels in bulk and batch insert, while Java and C++ are
competitive in various methods. Single record insert is unsuitable for high-volume data insertion across all
languages.

Java Stats C++ Stats Python Stats

Batch Insert Python

EXECUTION (S)

@
z
]
B
o
g
X
o

VI. IMPLEMENTATION EXHIBITS

Traffic InnoDB data Traffic InnoDB data
- i B i E
: / .
I : i -
i P s f
Queries Server sessions Queries Server sessions
T T T
I
| ‘ i
| ft
11 . I\
Key Efficiency InnoDB memary _l('y Efficiency InnoDB m.emwly
e IST en
Traffic InnoDB data Traffic InnoDE data
, | : . =
‘Queries. Server sessions. Queries. Server sessions
I |
Key Efficiency InnoDE memory Key Efficiency InnoDB memory

whanpaan | 1
sunnpuanng| 1

InnoDB data

L4

Queries

EETEE RS RS EE

Key Efficiency

IST | en

V. L5- Billion row dataset loading

VII.CONCLUSION

In this study, we conducted a comprehensive analysis of data insertion methods across multiple programming

languages and various data levels. The performance metrics were evaluated based on the time it took to complete data
insertion tasks, providing valuable insights into the efficiency of each method and language.

Our findings highlight the following key takeaways:

Bulk Insert Dominance: Bulk insert emerged as the clear frontrunner in terms of speed across all languages
and data levels. Whether implemented in Python, Java, or C++, bulk insert consistently outperformed other
methods, making it the optimal choice for high-speed data insertion tasks.

Python's Efficiency: Python demonstrated remarkable performance in bulk insert and batch insert, outpacing
other languages. Its streamlined implementation of these methods yielded impressive results, with notably
low time increases as data levels rose

Competitive Java and C++: Java and C++ held their own in various data insertion methods, showcasing
competitive performances, especially in batch insert. While Java excelled in bulk insert, C++ proved to be
more competitive in parallel loading, providing valuable alternatives to Python.

Single Record Insert Drawbacks: Single record insert consistently lagged significantly behind other methods,
demonstrating impractical time increases as data levels increased. This method should be avoided for high-
volume data insertion tasks in all languages.

For large-scale data insertion tasks, bulk insert stands out as the top choice, particularly when implemented in Python..
However, single record insert is not suitable for high-volume data insertion in any language.

VIII. REFERENCES

https://dev.mysgl.com/doc/refman/8.0/en/tutorial.ntml

https://dev.mysql.com/doc/

https://docs.phpmyadmin.net/en/latest/user.html

https://www.elegantthemes.com/blog/resources/a-quick-guide-to-phpmyadmin-and-how-you-can-use-it

https://link.springer.com/chapter/10.1007/978-3-642-46890-2_59

https://dev.mysql.com/doc/refman/8.0/en/tutorial.html
https://dev.mysql.com/doc/
https://docs.phpmyadmin.net/en/latest/user.html
https://www.elegantthemes.com/blog/resources/a-quick-guide-to-phpmyadmin-and-how-you-can-use-it

