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Abstract 

One of the key elements in predicting yield is the real-time detection of fruits and vegetables. 

Conventional detection techniques encounter constraints in precisely discerning distinct 

growth stages, primarily attributable to pronounced occlusion stemming from proximal foliage, 

substantial intermingling among adjacent fruits, dissimilarities in dimensions, pigmentation, 

aggregation density, and diverse developmental attributes. An improved YOLO-v3 model is 

suggested for recognising apples in orchards with varying light, complex backdrops, 

overlapping apples, branches, and leaves in order to detect the fruits at various development 

phases. Images of young, growing, and ripe apples are the first things that are gathered. 

Subsequently, rotation-based transformations, color equilibrium adjustments, luminance 

manipulations, and image blurring procedures are employed to augment the visual quality of 

these photographs. In recent fruit detection models, both Faster R-CNN with VGG16 net, and 

original YOLO-v3-dense are outperformed by an improved model YOLO-v3-dense. In a 

scenario including a complicated orchard, the Dense-YOLOv4 model has been used to identify 

several mango growth phases with a high degree of occultation. By concluding all above points, 

it is suggested that Dense-YOLOv4 model is one of most accurate model to detect the different 

types of fruits and vegetables. 

Introduction 

India is renowned for its diverse climatic conditions that facilitate the cultivation of a wide 

variety of fresh fruits and vegetables. In global fruit and vegetable production, India holds the 

second position, trailing only behind China. Notably, India contributes approximately 15% to 

the global fruit output [6,1]. The cultivation landscape spans 6.66 million hectares, yielding a 

substantial 102.08 million metric tonnes of fruits [3, 14]. Nevertheless, the agricultural sector 

grapples with the significant impact of plant diseases and pests, leading to ecological and yield-

related losses. Addressing these concerns, the early detection and prevention of diverse plant 



diseases have emerged as pivotal strategies within agricultural technology, particularly for 

viable farms and orchards [15]. Traditional methodologies, centered around manual visual 

inspections for disease identification, exhibit inefficiency and protracted timelines, 

subsequently inflating operational expenses. In recent times, the realm of precision agriculture 

has been revolutionized by cutting-edge advancements in computer vision [19,5]. This 

revolution has seamlessly integrated disease detection protocols into crop health monitoring 

practices, markedly enhancing the efficiency of disease identification and augmenting overall 

crop yield. The timely recognition and mitigation of plant diseases hold paramount significance 

in safeguarding crop health and optimizing harvests by curtailing growth irregularities [8]. 

Such interventions also curtail the need for extensive pesticide application, aligning with the 

aspiration for environmentally friendly crop production. In light of these imperatives, the 

deployment of automated plant disease detection, leveraging diverse machine learning 

algorithms, has emerged as an efficacious approach within the domain of precision agriculture. 

Figure 1: Fruits production in India and fruits export from India (Agriculture Export 

Policy 2020-21[2]). 

Challenges in Manual Detection 

Agricultural labor is inherently seasonal, confining workforce engagement to select months. 

This intermittency compels laborers to seek permanent roles in non-agricultural sectors, 

attributing to the burgeoning wage rates outside of agriculture [9]. Manual inspection methods 

are associated with prolonged time investments and escalated production expenses due to the 

substantial labor costs incurred. The identification of distinct fruit growth stages necessitates a 

skilled and experienced labor force. Inexperienced workers invariably introduce avoidable 

errors, thereby undermining productivity 



 

Figure 1: Challenges in manual detection of fruits 

Advantages of Machine Vision System Over Manual Detection 

Progressive strides in precision agriculture and information technology have catalyzed the 

fusion of robotics, crop imaging, computer vision, and object detection. These synergistic 

components facilitate accurate data acquisition, pivotal for assessing crop progress and 

monitoring overall health. The discernment of distinct agricultural growth stages is pivotal for 

prognosticating future yields, facilitating smart sprayer systems, and orchestrating self-

governing pesticide-dispensing robots across expansive farms and orchards [10]. However, the 

challenges of achieving precise target object detection persist due to factors like color and 

texture resemblances, intricate backgrounds, overlapping entities due to dense distribution, 

variable illumination across sprawling terrains, and sundry other variables. These complexities 

underscore the need for enhanced accuracy in target object detection, a domain where machine 

vision systems excel. Furthermore, this paradigm expedites operations compared to manual 

counterparts, concurrently ameliorating growth irregularities via prompt detection. Machine 

vision system can work on a variety of algorithms depending on the specific task they are 

designed for. Machine vision involves using cameras or other imaging sensors to acquire and 

process visual information in order to make automated decisions or perform specific tasks [4]. 

Algorithm 

The term "algorithm" denotes a systematic assemblage of rules and instructions employed for 

computational or problem-solving endeavors. It encapsulates a sequential delineation of steps 

that dictate the execution of tasks to achieve predetermined outcomes. 



 

Figure 2: Algorithm definition 

Characteristics of an Algorithm:  

• Precision and Clarity: An algorithm necessitates precision and clarity. Each step within it 

must be distinctly defined, leaving no room for ambiguity, and should lead to a singular 

interpretation.  

• Precise Input Specification: In the event that an algorithm involves taking inputs, these 

inputs must be precisely and unambiguously specified.  

• Explicit Output Specification: The algorithm must unequivocally outline the nature of its 

output, providing explicit details of what will be generated.  

• Finiteness: Crucially, the algorithm must be characterized by finiteness. It should steer clear 

of infinite loops or comparable scenarios that could lead to perpetual execution.  

• Practicality: An algorithm must exhibit practicality, simplicity, and universality. It should 

be feasible to execute with available resources, devoid of reliance on speculative technologies 

or future developments.  

• Language Neutrality: The algorithm's design must transcend language barriers. It ought to 

consist of plain, universally understandable instructions that can be implemented across 

languages, while still yielding consistent and anticipated outcomes. 

Different Algorithm used in fruits detection   

There are several ways to understand the description of recognition (detection and 

classification): 



(i) Identification of a fruit (distinguishing between a fruit and an item, such as a leaf from 

a backdrop).  

(ii) Classification of the fruit classes (e.g., orange and tangelo).  

(iii) Differentiating between a variety of fruit species 

 

Figure 4: Basic architecture for fruit detection 

To address the challenge of identifying suitable fruit species and types, it's essential to first 

understand the complexity of the task. The classification of fruits is complicated due to their 

vast variety, leading to prominent differences in shapes, colors, and textures. Moreover, 

compounded by limited image scope due to factors such as lighting, angles, and distances 

during image capture, the result is often unclear images [17]. Additionally, objects can be 

partially or entirely hidden, adding to the issue. These difficulties have hindered the practical 

adoption of multi-class automated fruit classification systems in real-world scenarios. 

Object detection algorithms are categorically divided into two groups depending on the 

number of instances an identical input image undergoes within a network. 

Single-shot object detection 

Single-shot object detection involves making predictions about object presence and locations in an 

image through a singular traversal of the input image. This approach exhibits computational 

efficiency by handling the entire image in a singular pass. However, compared to alternative 

techniques, the accuracy of single-shot object detection is generally lower, particularly concerning 

the detection of diminutive objects [21]. This methodology proves advantageous for real-time object 

detection in resource-constrained scenarios. YOLO, a representative of single-shot detectors, 



employs a fully convolutional neural network (CNN) to process images. The subsequent section will 

provide an in-depth exploration of the YOLO model. 

Two-shot object detection 

The dual-shot object detection technique involves employing two sequential scans of the input 

image to infer object presence and spatial positioning. The first pass is used to generating a 

series of proposals outlining potential object locations, followed by a subsequent pass aimed 

at refining these proposals and making final predictions. While offering heightened accuracy 

in comparison to single-shot object detection, this approach does entail greater computational 

demands. The selection between single-shot and two-shot object detection hinges upon the 

specific prerequisites and limitations of the application at hand [12]. Generally, real-time 

scenarios are better served by single-shot object detection, whereas instances prioritizing 

precision are better suited for the two-shot approach. 

 

Figure 3: One stage and two stage detector Algorithm 

The algorithms which are being used frequently for fruits detection are CNN and YOLO. 

Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNNs) constitute a variant of neural network architecture 

facilitating the acquisition of enhanced image feature representations. However, real-time 

object detection capabilities are not inherently intrinsic to CNNs. CNNs have emerged as a 

pivotal framework for scholarly exploration in domains encompassing object classification 

and image comprehension. The resilience of CNNs stems from their innate capacity to 

autonomously extract salient attributes from input images [7]. 



You Only Look Once (YOLO) 

YOLO is a neural network-based algorithm designed for instant object detection. It works by 

utilizing regression to predict both object classes and bounding boxes for the entire image in a 

single algorithm run [16]. Notably, this approach necessitates just one pass through a neural 

network to accomplish object detection. 

 

Figure 6: Timeline of evolution of YOLO algorithm 

Working Principle of Fruit detection Algorithm 

The following principles are used by the YOLO algorithm. 

➢ Bounding box regression 

➢ Intersection Over Union (IOU) 

❑ Bounding box regression 

A bounding box is a defined border that emphasizes an 

object within an image. 

• Each bounding box within the image includes the 

subsequent attributes: 

• Width (bw)  

• Height (bh)  

• Class (This is represented by the letter c). 

• Bounding box center (bx, by) 

❑ Intersection over Union (IOU) 

Intersection over Union (IOU) is a concept in object detection that explains the extent of 

overlap between boxes. YOLO employs IOU to generate an output box that accurately 

encloses the objects. 



This mechanism eliminates bounding boxes that are not equal to the real box. 

IOU = 
𝑆𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑆𝑢𝑛𝑖𝑜𝑛
 

Where, Soverlap is the area of intersection of the predicted bounding box and the actual bounding 

box, 

Sunion is the area of the union of the both bounding boxes. 

 

 Figure 5: Actual fruit frame and Detected fruit frame 

Different indices used in fruit detection algorithm 

In the realm of deep learning-driven object detection models, pivotal statistical measures are 

employed for assessment, encompassing matrices like intersection over union (IoU), precision 

(P), recall (R), F-1 score, average precision (AP), and mean average precision (mAP). Within 

YOLOv4, an evaluation metric termed IoU emerges as a standard tool to gauge the accuracy 

of object detection. IoU is invariant to scale and is utilized to quantify the model's performance 

efficiency. IoU operates by quantifying the ratio of the overlapping area between the bounding 

box prediction generated by the model and the actual bounding area of the object [11]. This 

comparison serves as a reflection of the model's efficacy and performance. The mathematical 

formulation of IoU is expressed as 

IOU = 
𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑢𝑛𝑖𝑜𝑛
 

where Aoverlap is described as the region where the true bounding box of the object and the 

model's predicted bounding box intersect. Aunion, on the other hand, is the union of the 

aforementioned bounding boxes. If IoU is larger than 0.5 for binary classification, the classified 



object class can be described as true positive (TP). IoU values below 0.5 can be classified as 

false positives (FP) for the appropriate class. Using the definitions of TP, FP, and FN, the 

performance variables P and R can be stated as follows  

Precision (P) = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100 % 

Where, TP = True positive 

 FP = False positive 

 FN = False Negative 

According to the above equation, higher P denotes models' enhanced ability to 

discriminate between negative datasets, and higher R denotes models' enhanced ability to 

detect positive datasets. Using the above Equation to determine test accuracy, the F1 score can 

be defined as follows: 

F1-score = 
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 × 100 % 

In order to balance the precision and recall of the model, the F1 score is evaluated as an 

indicator for integrating the mean of the precision and recall. In general, a model with a higher 

F1 score is more robust than one with a lower one. In a broader context, the average precision 

(AP) corresponds to the area under a precision-recall curve (PR-curve), and this can be 

formulated as follows 

Paverage = ∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑗) × 𝑟𝑒𝑐𝑎𝑙𝑙(𝑗) × 100%
𝑁 (𝑐𝑙𝑎𝑠𝑠)
𝑗=1  

When AP is higher, there is a larger area under the PR curve, which indicates that the object 

class can be predicted more accurately, whereas mAP is the average of all APs, which can be 

expressed as 

Mean Average Precision (mAP) = 
𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑁 (𝑐𝑙𝑎𝑠𝑠)
 

The confidence scores can be expressed as  

Confidence = pr(object) × IoUtruth pred ∨ pr(object) ∈ 0, 1 

 If the target class falls within the YOLO grid, pr(object) = 1 is prescribed; otherwise, pr(object) 

= 0. The IoU truth prediction describes the coincidence between the reference and the predicted 

bounding box. Here, IoU is the intersection over union. When the specified class is identified 

within the grid, the value of "pr(object)" signifies the precision of the bounding box prediction 

[13]. For the final bounding box, the best predictions from each of these scales are filtered 

using the non-maximum suppression (NMS) algorithm. 



 

Comparison of different algorithm used in fruit detection 

The study involves a comparative analysis of detection outcomes concerning the 

developmental stages of mangoes using YOLOv3, YOLOv4, and Dense-YOLOv4 algorithms. 

To enhance the precision of bounding box representations, the investigation focuses on four 

distinct growth phases: budding, early growth, intermediate growth, and full maturation. The 

bounding box classes align with these growth stages. Examination of the detection results 

reveals that the novel Dense-YOLOv4 algorithm consistently exhibits heightened accuracy in 

bounding box predictions across all identified growth phases, surpassing the performance of 

both YOLOv3 and YOLOv4 [20]. The initial budding phase presents a particular challenge 

due to the discrete yet densely clustered appearance of mangoes. The intricate textural 

resemblance among neighbouring buds complicates the individual object detection task. 

However, the outcomes of Dense-YOLOv4 exhibit a pronounced enhancement in detection 

precision and a reduction in the count of undetected objects, notably outperforming the 

conventional YOLOv3 and YOLOv4 approaches in this context. The comparison of different 

algorithm is given in Table-1. 

Table.1-Comparison of P, R, F1-Score, mAP, and detection speed (FPS) between Dense-

YOLOv4 and other state-of-art models 

Model P(%) R(%) F1-Score 

(%) 

mAP (%) Det. Time 

(ms) 

FPS 

Faster R-CNN 53.64 66.27 65.36 59.17 44.41 22.59 

YOLO-v4 83.51 82.77 83.14 91.47 20.81 49.82 

Dense-YOLO-v4 91.45 95.87 93.61 96.20 22.62 44.20 

YOLO-v3 75.78 85.57 80.38 89.19 23.25 43.13 

Mask R-CNN 69.27 74.58 71.82 73.40 33.71 29.67 

(Roy and Bhaduri 2022 [18]) 

Conclusions 

In essence, the YOLO (You Only Look Once) algorithm, which employs neural networks for 

instantaneous object detection, has exhibited notable progress in its domain. Specifically, the 

YOLO-v3-Dense iteration has showcased superior performance relative to its precursor, 

YOLO-v3. This advancement becomes especially evident when comparing it against the 



leading Faster R-CNN model featuring the VGG16 architecture; the Dense-YOLO-v3 model 

has established its supremacy in discerning fruits. Moreover, recent empirical analyses have 

brought to light the considerably heightened efficacy of the Dense-YOLO-v4 algorithm when 

compared with the original YOLO-v4 model, with a pronounced emphasis on fruit detection 

precision and overall accuracy. These collective findings highlight the continuous evolutionary 

trajectory of the YOLO framework, culminating in progressively refined versions that establish 

fresh benchmarks in real-time object detection, particularly in scenarios involving the 

meticulous identification of fruits. This conveys the algorithm's steady march towards 

achieving superior object detection outcomes in intricate, real-world contexts. 
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