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1 Introduction

Mathematical modeling is a potent and essential instrument in ecology, offering a me-
thodical and quantitative approach to comprehend the intricacies of natural ecosys-
tems [1], [2]. The study of ecology involves investigating the interactions between
living organisms and their environment, which poses multiple challenges due to the
complex interconnections among species and the dynamic nature of ecological sys-
tems [3]. By employing mathematical models, researchers can effectively address
these intricacies and obtain valuable insights into the operations and conduct of eco-
logical communities[4], [5]. These models have undergone thorough investigation and
research following the influential theoretical contributions by Volterra [7] and [6].
However, to accurately capture the system’s dynamic behavior, it is crucial to con-
sider the influence of past history on the model’s dynamics. This necessitates the
incorporation of time delays into the models, leading to a more realistic depiction of
predator-prey interactions using delayed differential equations.

Lately, the notion of infinite delay has garnered significant attention within math-
ematical biology equations, serving as a method to integrate the cumulative impact of
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a system’s historical dynamics, a concept originally championed by Volterra. Numer-
ous scholars (refer to [[8], [9]] as examples) have extensively investigated the stability
and bifurcation characteristics of prey-predator systems. This research endeavor aims
to capture the intricate interplay between species by considering not only their cur-
rent interactions but also the enduring influence of their past states, allowing for a
more comprehensive understanding of the system’s behavior over time.

The predator-prey system with distributed delay was formulated by Chen et al.
[9],

dm

dt
= a1m

(
1− m

K

)
− γmn,

dn

dt
= a2n

(
1− n

K

)
+ δ

∫ t

−∞
K (t− s)m (s)n (s) ds− dn.

(1.1)

Here, m represent the density of and n is the predator density. a1 and a2 are
intrinsic growth rate of the prey and predator; K denotes the carrying capacity. The
parameter d denotes the death rate of the predator. γ is the rate of predation by the
predator, and δ represents the combined effect of the rate of predation and the rate of
converting prey into predators. It is assumed that all of the parameters are positive
constants. The kernel K : [0,∞) → [0,∞) is a L1 function, normalized such as∫ ∞

0

K (s) ds = 1.

In natural ecosystems, population systems are inescapably subjected to the pervasive
impact of environmental variability. This unpredictability often manifests as environ-
mental ”white noise,” encompassing a wide range of stochastic fluctuations that can
significantly affect population dynamics. Recognizing the imperative to mirror this
intricate interplay between biological entities and their unpredictable surroundings,
researchers have increasingly turned to stochastic differential equation (SDE) mod-
els. These models serve as indispensable tools in the study of population dynamics
due to their ability to encompass the inherent randomness and complexity present
in ecological systems. Unlike their deterministic equivalents, SDE models not only
acknowledge the deterministic forces governing populations but also incorporate the
essential role of chance events and environmental variability in shaping population
behaviors. Consequently, they offer a more comprehensive and nuanced perspective,
facilitating a deeper understanding of the intricate ecological processes that unfold
over time. Many researchers have explored the impacts of environmental random
fluctuations on population dynamics by introducing random perturbations into de-
terministic models (see, for example, [[10], [11]]). In this paper, we are inspired by
the works of Imhof and Walcher [[12]] and adopt their approach, assuming that the
environmental white noise is proportionally related to the variables m and n. This
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assumption leads us to derive the following stochastic model, corresponding to system
(1.1),

dm =
[
a1m

(
1− m

K

)
− γmn

]
dt+ β1mdQ1(t),

dn =

[
a2n

(
1− n

K

)
+ δ

∫ t

−∞
K (t− s)m(s)n(s)ds− dn

]
dt+ β2ndQ2(t).

(1.2)

where Qi(t) are standard Brownian motions that are mutually independent, Q stand
for the white noise intensities, and i = 1, 2.

For convenience’s sake, we focus on the weak kernel situation in this study, which
is K(t) = ηe−ηt with η > 0 and was first described by MacDonald [[13]]. Analogously,
the strong kernel case may be explored. Both the weak kernel and the strong kernel
have found extensive application in biological systems, including epidemiology [14]
and population systems [15].

Let

p(t) =

∫ t

−∞
ηe−η(t−s)m(s)n(s)ds

then, (1.2) is changed into the following comparable model using the linear chain
approach.

dm =
[
a1m

(
1− m

K

)
− γmn

]
dt+ β1mdQ1(t),

dn =
[
a2n

(
1− n

K

)
+ δp− dn

]
dt+ β2ndQ2(t),

dp = η (mn− p) dt.

(1.3)

This research paper primarily concentrates on establishing precise and adequate crite-
ria for the existence of a stationary distribution within the context of (1.3). Previous
studies have explored the steady distribution of stochastic predator-prey models incor-
porating time delay, exemplified by the stochastic delay cascade predator-prey model
[16] and the stochastic delay two-predator one-prey model [17]. However, these works
primarily focused on discrete delay, while our current paper addresses distributed
delay, showcasing its novelty and innovative aspect.

The subsequent lemma addresses the presence and uniqueness of global non negative
solutions for system (1.3). Due to its conventional nature, we omit the proof here.

Lemma 1. Given any initial value (m(0), n(0), p(0)) ∈ R3
+ for (1.1), ∃ a single,

unique solution (m(t), n(t), p(t)) for the system on the interval t ≥ 0 and with prob-
ability one, the solution (m(t), n(t), p(t)) will remain in the real numbers R3

+ for all
values of t > 0. In other words, the solution (m(t), n(t), p(t)) remains in R3

+ almost
surely for t ≥ 0.

3



2 Main Results

Here we will present the primary outcomes for system (1.3).

Let us examine the integral equation:

M(t) = M(t0) +

∫ t

t0

a(s,M(s))ds+
k∑

j=1

∫ t

t0

ηj (s,M(s)) dQ(s). (2.1)

Lemma 2. [18] Assume that the coefficients of (2.1) satisfy the prerequisites for som
e constant Q and are t-independent.

|a(s,m)− a(s, n)|+
k∑

j=1

|ηj(s,m)− ηj(s, n)| ≤ Q|m− n|, |a(s,m)|+
k∑

j=1

|ηj(s,m)|

≤ Q(1 + |m|)
(2.2)

in VR ⊂ Rd
+ ∀ R > 0 and ∃ a positive C2-function U(x) in Rd

+ ∋
WU(x) ≤ −1.

outside some compact set, the stationary distribution is the solution to (2.1).

Remark 1. Remark 5 of Xu [19] reveals that (2.2) mentioned in Lemma 2 is not
strictly necessary, it can be substituted with the requirement for the global existence of
solutions of (2.1).

Lemma 3. [20] The following inequality is true for any m > 0

m(1−m) + 2m ≤
√
m.

Theorem 4. Suppose that a1 >
β2
1

2
, a2 >

β2
2

2
and Rs

0 > 1 then solution (m(t), n(t), p(t))

of (1.3) is a stationary Markov process where Rs
0 =

δK
(
1− β21

(2a1)

)2

a2+
β22
2

.

Proof. According to Lemma 2, it suffices to establish the existence of a non negative
C-function U (m,n, p) and a closed set V ⊂ R3

+ such that,

WU (m,n, p) ≤ −1 for any (m,n, p) ∈ R3
+\V.

Define

U1 (m,n, p) = −x1ln n− x2ln p+

√
x1x2δηK
a1

(m
K

− 2ln m
)
+

2γ

√
δη2K

(
d+

β2
2

2

)
a1d

n

+

2γδ

√
δη2K

(
d+

β2
2

2

)
a1dη

p.
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where x1,x2 are non negative constants. Ito’s formula [21] applied to U1 results in,

WU1 = −x1δp

n
− x2ηmn

p
+ c1

(
d+

β2
2

2

)
+ x2η+√

x1x2δηK
[
m

K

(
1− m

K

)
− γ

a1K
mn− 2

(
1− m

K

)
+

2γ

a1
n+

β2
1

a1

]

− 2γ
√
x1x2δηK
a1

n+

2γδ

√
δη2K

(
d+

β2
2

2

)
a1d

mn

≤ −2
√

x1x2δη
√
m+ x1

(
d+

β2
2

2

)
+ x2η+√

x1x2δηK
[
m

K

(
1− m

K

)
+

2m

K
− 2

(
1− β2

1

a1

)
+

2γ

a1
n

]
− 2γ

√
x1x2δηK
a1

n+

2γδ

√
δη2K

(
d+

β2
2

2

)
a1d

mn

≤ −2
√

x1x2δη
√
m+ x1

(
d+

β2
2

2

)
+ x2n+

√
x1x2δηK

2
√
m

K

− 2
√

x1x2δηK
(
1− β2

1

2a1

)
+

2γδ

√
δη2K

(
d+

β2
2

2

)
a1d

mn

= x1

(
d+

β2
2

2

)
+ x2η − 2

√
x1x2δηK

(
1− β2

1

2a1

)
+

2γδ

√
δη2K

(
d+

β2
2

2

)
a1d

mn.

(2.3)

Consider x1 = η , x2 =
(
d+

β2
2

2

)
, then from (2.3), one may observe that,

WU1 ≤ 2

[
η

(
d+

β2
2

2

)
−

√
δη2K

(
d+

β2
2

2

)(
1− β2

1

2a1

)]
+

2γδ

√
δη2K

(
d+

β2
2

2

)
a1d

mn.

(2.4)

Rs
0 =

δK
(
1− β2

1

2a1

)
d+

β2
2

2

,Λ = 2η

(
d+

β2
2

2

)√
Rs

0 − 1 > 0.

Define

U2 (m,n, p) =
1

ν + 2

(
m+

γ

2δ
n+

γ

n
p
)ν+2

.
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where 0 < ν <
d−β22

2

d+
β22
2

is sufficiently small number. Applying Ito’s formula to U2 results

in

WU2 =

(
m+

γ

2δ
n+

γ

η
p

)ν+1 [
a1m

(
1− m

K

)
− γd

2δ
n− γ

2
p

]
+

ν + 1

2

(
m+

γ

2δ
n+

γ

n
p
)ν

(
β2
1m

2 +
γ2β2

2

4δ2
n2

)
≤ a1m

(
m+

γ

2δ
n+

γ

n
p
)ν+1

− a1
K
mν+3 − d

( γ

2δ

)ν+2

nnu+2 − γν+2

2ην+1
pν+2

+
γ + 1

2

(
m+

γ

2δ
n+

γ

n
p
)ν

(
β2
1m

2 ++
γ2β2

2

4δ2
n2

)
≤ − a1

2K
mν+3 − dν

( γ

2δ

)ν+2

− γν+2

4ην+1
pν+2 + A,

(2.5)

where

Q = sup(m,n,p)∈R3
+

{
− a1

2Km
ν+3 − d (1− ν)

(
γ
2δ

)ν+2
nν+2 − γν+2

4ην+1p
ν+2 + a1m

(
m+ γ

2δ
n+ γ

n
p
)ν+1

+γ+1
2

(
m+ γ

2δ
n+ γ

n
p
)ν (

β2
1m

2 +
γ2β2

2

4δ2
n2
) }

.

Let us define Lyapunov function as follows,

Ũ(m,n, p) = ζU1 (m,n, p) + U2 (m,n, p)− ln p.

where ζ > 0 is a constant that satisfies −ζλ+gv1 +gv2 +gv3 ≤ −2 and the functions
gi, i = 1, 2, 3 will be found later. Furthermore, Ũ(m,n, p) tends to +∞ as (m,n, p)
approaches the boundary of R3

+ and as || (m,n, p) || → ∞ where ||.|| represent the
euclidean norm of a point in R3

+. As a result, it must be lower bounded and reach
this lower bound at a point (m0, n0, p0) in R3

+ interior. Let us denote a positive
C2-function U : R3

+ → R+ ∪ {0} by

U (m,n, p) = Ũ(m,n, p)− Ũ(m0, n0, p0) = ζU1 + U2 + U3

where U3 = −ln p− Ũ(m0, n0, p0). Applying Itô’s formula to U3, we obtain

WU3 =
−ηmn

p
+ η. (2.6)

From (2.4), (2.5) and (2.6), we get

WU ≤− ζΛ +

2ζΛγδ

√
δη2K

(
d+

β2
2

2

)
a1d

mn− a1
2K

mν+3

− d

2

( γ

2δ

)ν+2

nν+2 − γν+2

4ην+1
pν+2 − η

p
mn+Q+ η

=g1(m) + g2(n) + g3(p)− ζΛ +

2ζΛγδ

√
δη2K

(
d+

β2
2

2

)
a1d

mn− η

p
mn,

(2.7)
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where g1(m) = −a1
2k
mν+3, g2(n) = −d

2

(
γ
2δ

)ν+2
nν+2, g3(p) = − γν+2

4ην+1p
ν+2 +Q+ η.

Represent,

F (m,n, p) = g1(m) + g2(n) + g3(p)−XΛ +

2XΛγδ

√
δη2K

(
d+

β2
2

2

)
a1d

mn− η

p
mn.

Then F (m,n, p) ≤



F (+∞, n, p) → −∞ as m → +∞,

F (m,+∞, p) → −∞ as n → +∞,

F (m,n,+∞) → −∞ as p → +∞,

gu1 + gu2 + gu3 − ζΛ ≤ −2, as m → 0+ or n → 0+,

F (m,n, 0) → −∞ as p → 0+.
Therefore, we can choose a sufficiently small positive value for ϵ > 0,

WU (m,n, p) ≤ −1 for any (m,n, p) ∈ R3
+/V,

where V =
[
ϵ, 1

ϵ

]
×

[
ϵ, 1

ϵ

]
×

[
ϵ3, 1

ϵ3

]
. Based on the findings in Lemma 2, it can be

concluded that the system (1.3) possesses a solution that exhibits the characteristics
of a stationary Markov process. This concludes the proof.

Theorem 5. Consider a solution (m(t), n(t), p(t)) of (1.3) with any initial conditions

(m(0), n(0), p(0)) ∈ R. Given a1 >
β2
1

2
, it follows that for almost υ ∈ Υ, the following

holds:

lim
t→∞

sup
1

t
ln

(
K
d
n(t) +

√
R0

η
p(t)

)
≤ κ.

where κ = min {d, η}
(√

R0 − 1
)
I√R0≤1 +max {d, η}

(√
R0 − 1

)
I√R0>1 + β1d

(
R0

2a1

) 1
2

and R0 =
kδ
d
.

When κ < 0, the predator population n is expected to undergo exponential decay
with a probability of one, implying that the population will inevitably diminish.

lim
t→∞

n(t) = 0.

Furthermore, the weak convergence of the distribution of m(t) occurs, leading to the
emergence of a measure characterized by the density:

ϖ (v) = Zβ−2
1 v

−2+
2a1
β21 w

−2+
2a1
Kβ21

v
, v ∈ (0,∞) ,

where Z =

[
β−2
1

(
Kβ2

1

2a1

) 2a1
β21

−1

Γ
(

2a1
β2
1

)]−1

is a constant that satisfies
∫∞
0

ϖ (v) dv = 1.
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Proof. Given an (m(0), n(0), p(0)) ∈ R3
+, the solution to system (1.3) remains posi-

tive. As a result, we obtain:

rm ≤ a1m
(
1− m

K

)
dt+ β1mrQ1(t).

Consider the 1-dimensional stochastic differential equation below.

rM = a1M

(
1− M

K

)
dt+ β1MrQ1(t). (2.8)

It can be easily shown that Equation (2.8) possesses a stationary solution denoted as
M̃(t), and this solution’s density is outlined in [22].

ϖ (v) = Zβ−2
1 v

−2+
2a1
β21 w

−2+
2a1
Kβ21

v
, v ∈ (0,∞) ,

where Z =

[
β−2
1

(
Kβ2

1

2a1

) 2a1
β21

−1

Γ
(

2a1
β2
1

)]−1

is a constant that satisfies
∫∞
0

ϖ (v) dv = 1.

Consider M(t) as the solution to the stochastic differential equation denoted by (2.7),
where the initial condition is M(0) = m(0) > 0. Utilizing the comparison theorem
for 1-D SDE [23], it can be deduced that m(t) remains less than or equal to M(t) for
all t ≥ 0, almost surely.

Furthermore, we possess

H1 :=

∫ ∞

0

vϖ(v)dv

=Zβ−2
1

∫ ∞

0

v
2a1
β21

−1
w

−2a1
Kβ21

v
dv

=Zβ−2
1

∫ ∞

0

(
Kβ2

1

2a1

) 2a1
β21

−1

t
2a1
β21

−1
w−tKβ2

1

2a1

=Zβ−2
1

(
Kβ2

1

2a1

) 2a1
β21

Γ

(
2a1
β2
1

)

=
Kβ2

1

2a1

Γ
(

2a1
β2
1

)
Γ
(

2a1
β2
1
− 1

)
=
Kβ2

1

2a1

(
2a1
β2
1

− 1

)

=
K
(
a1 − β2

1

2

)
a1

.
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and

H2 :=

∫ ∞

0

v2ϖ(v)dv

=Zβ−2
1

∫ ∞

0

v
2a1
β21

−1
w

−2a1
Kβ21

v
dv

=Zβ−2
1

∫ ∞

0

(
Kβ2

1

2a1

) 2a1
β21

−1

t
2a1
β21

−1
w−tKβ2

1

2a1

=Zβ−2
1

(
Kβ2

1

2a1

) 2a1
β21

+1

Γ

(
2a1
β2
1

+ 1

)

=

(
Kβ2

1

2a1

)2 Γ
(

2a1
β2
1
+ 1

)
Γ
(

2a1
β2
1
− 1

)
=

(
Kβ2

1

2a1

)2
2a1
β2
1

(
2a1
β2
1

− 1

)

=
K2

(
a1 − β2

1

2

)
a1

.

Thus, ∫ ∞

0

(v −K)2ϖ(v)dv =

∫ ∞

0

(
v2 − 2Kv +K2

)
ϖ(v)dv

=H2 − 2H1 +K2

=
K2

(
a1 − β2

1

2

)
a1

−
2K2

(
a1 − β2

1

2

)
a1

+K2

=
K2β2

1

2a1
.

(2.9)

Moreover, let √
R0 (υ1, υ2) = (υ1, υ2)X0.

where
√
R0 (υ1, υ2) =

(
K,

√
R0

)
and X0 =

(
0 δ

d

K 0

)
. Define a C2-function Ū : R2

+ →

R+ by
Ū (n, p) = µ1n+ µ2p.

where µ1 =
υ1
d
, µ2 =

υ1
η
.

Applying Itō’s formula for differentiating lnŪ results in:

d(lnŪ) = W (lnŪ)dt+
µ1β2n

Ū
dQ2(t). (2.10)
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where

W (lnŪ) =
µ1

Ū
[δp− dn] +

µ2

Ū
[ηmn− ηp]− µ2

1β
2
2n

2

2Ū2

≤µ1

Ū
[δp− dn] +

µ2

Ū
[ηmn− ηp]

=
µ2n

Ū
(ηm− ηK) +

1

Ū
{µ2 [ηKn− ηp] + µ1 [δp− dn]}

=
µ2ηn(m−K)

Ū
+

1

U

{
υ1
d
[δp− dn] +

υ2
η
[ηKn− ηp]

}
≤µ2ηn(M −K)

Ū
+

1

U

{
υ1
d
[δp− dn] +

υ2
η
[ηKn− ηp]

}
≤µ2η

µ1

|M −K|+ 1

Ū
(υ1, υ2)

(
M0(n, p)

T − (n, p)T
)

=
µ2η

µ1

|M −K|+ 1

Ū

(√
R0 − 1

)
(υ1n+ υ2p)

≤min {d, n}
(√

R0 − 1
)
I√R0≤1 +max {d, n}

(√
R0 − 1

)
I√R0>1 +

µ2η

µ1

|M −K| .

(2.11)

From (2.10), we obtain

d(lnŪ) ≤
[
min {d, n}

(√
R0 − 1

)
I√R0≤1 +max {d, n}

(√
R0 − 1

)
I√R0>1 +

µ2η

µ1

|M −K|
]

+
µ1β2n

Ū
dQ2(t).

(2.12)

Performing integration from 0 to t and subsequently dividing both sides of equation
(2.12) by t results in,

lnŪ(t)

t
≤ lnŪ(0)

t
+min {d, n}

(√
R0 − 1

)
I√R0≤1 +max {d, n}

(√
R0 − 1

)
I√R0>1

+
µ2η

µ1

∫ t

0

|M(s)−K| ds+ 1

t

∫ t

0

µ1β2n(s)

Ū(s)
dQ2(s)

=
lnŪ(0)

t
+min {d, n}

(√
R0 − 1

)
I√R0≤1 +max {d, n}

(√
R0 − 1

)
I√R0>1

+
µ2η

µ1

∫ t

0

|M(s)−K| ds+ X(t)

t
.

(2.13)

Here, letX(t) = µ1β2n(s)

Ū(s)
dQ2(s) represent a local martingale with a quadratic variation

of < X,X >t= β2
2

∫ t

0

(
µ1n(s)

Ū(s)

)2

ds ≤ β2
2t. Applying the strong law of large numbers to
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a local martingale [21] results in

lim
t→∞

X(t)

t
= 0. (2.14)

Given the ergodic nature of M(t) and
∫∞
0

vϖ(v)dv < ∞, we have

lim
t→∞

1

t

∫ t

0

|M(s)−K| ds =
∫ ∞

0

|v −K|ϖ(v)dv ≤
(∫ ∞

0

(v −K)2ϖ(v)dv

) 1
2

. (2.15)

Applying the upper limit to both sides of equation (2.13) and combining it with (2.14)
and (2.15) yields

lim
t→∞

sup
lnŪ(t)

t
≤min {d, n}

(√
R0 − 1

)
I√R0≤1 +max {d, n}

(√
R0 − 1

)
I√R0>1

+
µ2η

µ1

(
K2β2

1

2a1

) 1
2

=min {d, n}
(√

R0 − 1
)
I√R0≤1 +max {d, n}

(√
R0 − 1

)
I√R0>1

+ β1d
R0

2a1

1
2

=κ.
(2.16)

This stands as the necessary assertion. Additionally, in the case where κ < 0, it can
be readily deduced that limt→∞ sup lnn(t)

t
< 0

This implies limt→∞ y(t) = 0 a.s. In other words, the predator population n
exhibits exponential decay with a probability of one. This concludes the proof.

3 Conclusion

In this paper, we investigated a stochastic model that captures the interactions be-
tween predator and prey species, accounting for distributed delays. The study’s initial
focus was on establishing the existence of a stable pattern, known as a stationary dis-
tribution, for positive solutions within this model. This was achieved by employing
the stochastic Lyapunov function approach. Additionally, the research moved for-
ward to outline specific conditions that lead to the complete elimination of predator
populations. This extinction scenario points to the coexistence of a thriving prey pop-
ulation with the absence of predators. In summation, this study contributes to our
comprehension of ecological systems by offering insights into the intricate dynamics
between predator and prey populations under the influence of distributed delays.
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