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Abstract: Taking into account several climate scenarios, 
this research proposes a stochastic methodology for 
assessing hurricane risk for residential structures in 
hurricane-prone areas. Three mitigation measures are 
assessed as part of the framework, which also assesses the 
impact of climate change variability on wind hazard and 
induced losses. According to the study, hurricane intensity 
and frequency variations cause uneven annual losses, and 
using the wrong probability density function could 
understate the damage caused by hurricanes. Economic 
losses and human mortality are anticipated to rise 
disproportionately in hurricane-prone locations as coastal 
populations rise as a result of migration and urbanization. 
Developing appropriate and effective risk mitigation 
techniques requires an accurate assessment of hurricane- 
induced damage.Index Terms—NPK Sensor, Soil 
Fertility, Mositure, Arduino, IoT 

 

I. INTRODUCTION 

A large rise in their induced risk is anticipated as a 

result of the changing climate. So it is essential to 

accurately quantify hurricane-related losses in a 

changing environment in order to help create the 

most effective prevention measures. In order to 

estimate the damages caused by hurricanes to 

residential buildings situated in hurricane-prone 

areas, a stochastic framework for hurricane risk 

assessment that accounts for various climate 

scenarios is created in this study. The simulations of 

the future climate models are based on two global 

climate models and relate to the worst-case scenario 

SSP5-8.5. The consequences of the wind danger and 

its induced losses are quantitatively assessed in 

relation to the variability of climate change models. 

By comparing the associated losses experienced under various 

climate change scenarios, three mitigation solutions are 

assessed, each with varying levels of structural mitigation. The 

anticipated annual losses with the consideration of various 

mitigation techniques are found to shift unevenly from one 

location to another due to the variance of hurricane intensity 

and frequency over the coastal areas. Additionally, if the wrong 

probability density function is chosen to estimate the wind 

distribution, the loss caused by hurricanes may be 

underestimated. This is mostly because the wrong probability 

density function will not be able to effectively capture the upper 

tail ends of the wind distribution. Both economic losses and 

human mortality are anticipated to rise disproportionately in 

hurricane-prone areas due to the growing coastal population 

brought on by coastward migration and urbanization, as well as 

potential climate change effects on storm severity and 

frequency.Because storm intensities, durations, and frequency 

are shifting, coastal areas will disproportionately bear the brunt 

of the damage and losses caused by hurricanes. In order to 

design appropriate and effective risk mitigation methods, it is 

crucial to estimate the hurricane-induced damage and loss in 

the impacted areas in light of the changing climate. 

Few studies have been dedicated to simulating climate 

change, although many have been proposed to assess the 

response/damage of light-frame wooden buildings subjected 

to wind loads in current climate. Studies have also examined 

the effects of climate change on hurricane dangers such wind, 

rain, and storm surge. Studies have also examined the effects 

of climate change on hurricane dangers such wind, rain, and 

storm surge. 

Based on a series of synthetic hurricanes that reflect the effects of 

climate change through SST, Wang and Rosowsky [] 
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assessed the regional loss in South Carolina. 

 

As can be inferred, the majority of research papers 

are exclusively concentrated on a certain hurricane- 

prone region and they primarily analyze the effects 

of climate change through SST, which may not be 

correct because other environmental characteristics, 

known to significantly affect the storm intensity, are 

not taken into account. 

 

In order to evaluate the losses of residential buildings 

situated in hurricane-prone areas, a stochastic 

hurricane risk framework is created in this study. 
 

The average yearly losses are calculated for each 

location, and the effects of the varying climate change 

models on the wind danger and its associated losses 

are quantitatively assessed.. 

 

II. HURRICANE RIK AND FRAME WORK 

A. Loosing Assessment for residual buildings 
 

By representing the intensity measures vector X = [xh1, 

xh2, …]T corresponding tohurricane-induced hazards 

H = [h1, h2…] with the joint distribution function 

(PDF) fX(xh1, xh2, …) of X, one can evaluate the 

hurricane- induced loss for a residential building in 

terms of the total residential average annual loss 

(AALr) as [ ]: AALr = V × ∫ ∫ ∫ … ∫ L(X) × fX(xh1, 

xh2,…)dxh1dxh2… (1) where L(X) correspondsto the 

loss function of the residential building. 
 

As a result, the intensity measure vector, X, is reduced 

to a scalar, v, which is the highest wind speed that can 

be computed using the discussed hurricane danger 

models and synthetic hurricane tracks. 
 

When a joint PDF distribution, which can be quickly 

and effectively produced from the suggested GKDE 

technique, is used, multivariate loss functions can also 

be included without harming the generality of the 

proposed framework. 
 

However, the Monte Carlo method is preferred in this 

framework since its extension to higher-dimensional 

integration, which is needed for multivariate loss 
function estimation, is straightforward and efficient. 

 

B. Synthesic hurricane track 

synthetic hurricane tracks in light of climate change In 

this work, synthetic storms are produced using the 

statistical-dynamical hurricane track model created by 

Snaiki and Wu [] under both the present and projected 

climates. 

The statistical-dynamical model combines the 

statistical (based on data) and dynamical (based on 

physics-based equations) approaches, in contrast to 

other frameworks that exclusively rely on data to construct 

purely statistical models (not necessarily suitable for the 

modeling of future climate scenarios). 

 

The hurricane genesis module, which gives the basic conditions 

(such as the location and storm parameters) of the storm, is 
where the development of the synthetic tracks begins. 

 
 

Following this process, synthetic hurricanes covering a period 
of 10,000 years were produced for both the "observed climate" 

and the "future climate." simulated using the Earth3P-HR and 

CMCC-CM2-VHR4 global climate models, respectively. [33]. 

 

 

 

Fig. 1. Hurricane Track Methodology 

 
 

C. Hurricane wind 

The hurricane boundary-layer wind field is simulated in this 

study using an analytical wind model []. 

The gradient wind and boundary-layer wind are the two terms 

that the analytical model in use breaks down the wind into. 

 

D. Probability distribution using GKDE 

 

Point estimates, such as moments, given by the estimated PDF 

are equal to the point estimates received from the data. This is 

achieved by using the Gaussian distribution, copulas, and gPC to 

fit a particular distribution or a family of distributions to the data. 

In this work, the PDF of the intensity measure was roughly 

estimated using a Gaussian kernel density estimation. 

f x 1 K(X — Xi), where n is the total number of samples in the 

dataset and Xi is the ith sample of the intensity measures, is the 

formula for a general kernel density estimation (KDE) of the PDF of 

a random vector X. Based on engineering judgment and due to the 

Gaussian kernel function's straightforward implementation and 

reliable performance, it was chosen for this study. 

 

Fig.2. Geographical location of the selected cities 



1. Case study 

 
1.1 Picking a location 

The suggested framework was tested on three homes in three 

coastal cities: Galveston, Texas (Fig. 2), Miami, Florida 

(25.79 latitude, 80.13 longitude), and Atlantic City, New 

Jersey (39.39 latitude, 74.49 longitude). Without losing the 

generality of the methods stated, it was assumed that the 

residence was worth $250,000. 
 

1.2 Tracks and intensity measurements for hurricanes 

CMCC-CM2-VHR4 (future climate 1) and EC-Earth3PHR 

(future climate 2) are two global climate models that were 

used to generate the current database of synthetic hurricane 

tracks, which is based on the Best Track Archive for Climate 

Stewardship (IBTrACS). 

Fig.3 displays the data obtained for Atlantic City in the 

form of histograms based on the three chosen climatic 

scenarios, including (a) the current climate, (b) future 

climate 1, and (c) future climate 2. 

The upper tail comparison leads to the conclusion that 

climate change will result in an increase in the 

frequency of strong winds. 

Fig.4.One could draw the conclusion that, in contrast to Miami, 

Galveston will suffer more frequent and powerful wind speeds 

under future climate scenario 1. 
 

 

Fig. 3. Histogram shows the yearly maximum wind speed at the Atlantic  

City site for the three future climates shown in (a), (b), and (c), as well as  

the zoomed data corresponding to the upper tails for (d), (e), and (f) future  

climates. 

 

 

Fig. 4.Miami (left) and Galveston (right) yearly maximum wind speed 

histograms for the three chosen climatic scenarios. 

1.3. Estimation of probabilitydistribution function 

This study uses the Gaussian kernel density 

function (KDE) to determine the PDF of the yearly 

maximum wind speed. For the best fit, a cross- 

validation analysis identified a smoothing 

parameter h of 2.1. Under the current climatic 

scenario, the normalized histogram is placed on 
model wind data for three cities: Atlantic City, 

Miami, and Galveston. Particularly at tail ends 

where data concentration is minimal, the Gaussian 

KDE effectively captures data variance. 

Loss estimate is considerably impacted since the 

KDE captures the upper tail ends of the 

distribution significantly better than the Weibull 

distribution. The Gaussian KDE captures higher 

order central moments more correctly than the 

Weibull distribution, according to the first four 

central moments estimated using model wind data, 

Weibull, and the Gaussian KDE. 

It can be seen that there is a significant reduction 
in error when the moments are computed using the 

Gaussian KDE by comparing the absolute error 

(%) between estimated moments derived using the 

fitted PDF and their corresponding values from the 

generated data.. 

 
 

Fig. 5. Using the current climate scenario, KDE samples are 

placed on model wind data (top) and their associated zoome 

(bottom) for the wind speed distribution in Atlantic City 

(left), Miami (center), and Galveston.. 

 

Fig. 6. Using the current climate scenario, Weibull samples 

were superimposed on model wind data (top) and their 

corresponding zoomed plot (bottom) for the wind speed 

distribution at Atlantic City, Miami, and Galveston. 



Through increased understanding, sophisticated 

modeling, and in-depth statistical analysis, inherent 

uncertainties, which are divided into aleatoric and 

epistemic categories, can be eliminated. Epistemic 

uncertainty in the factors governing wind dispersion 

can be incorporated into Monte Carlo simulation. 

However, the ability to anticipate is constrained by 

knowledge gaps and high computing costs. 

1.1 Residential loss assessment 

A one-story, single-family woodframe house falling 
under the first group is not protected by any 

mitigation measures. The home is assumed to have a 

gable roof with 6d roof sheathing nails and a toe- 

nailed roof to wall connection. The roof is better on 

the second type of buildings, which have some 

mitigation. This is accomplished by putting in wind 

resistance roof shingles, which are thought to be 

20% more resistant than the old house's standard 

shingles. Additionally, 8d nails are used, which now 

form a 6"/6" pattern connecting the roof to the deck. 

In the third case, a completely mitigated home has 
improved its roof as before and added a second layer 

of water resistance by employing a waterproof seal.. 

Fig.7. Estimated loss using the KDE distribution for three 
 

cities under the current, future climate 1, and future 

climate 2 scenarios, with various mitigation techniques  

Type 0 has no mitigation (a). type 1-intermediate 

mitigation and type 2-high-level mitigation, respectively.. 

 

 
 

Fig.8. KDE distribution was used to estimate loss 

reduction for three cities under the current, future climate 

1 and future climate 2 climatic scenarios. 

 
Examples of this include global warming scenarios, model 

resolution, and the different parameterizations that were 

selected. 

Due to the limited number of GCM simulations, it is 

unfortunately challenging to exactly quantify such 

uncertainties and determine the level of confidence in the 

forecast values. 
In order to evaluate how the employed PDF, which estimates 

the wind speed distribution, affects the losses, the results of 

the Weibull distribution are shown in Fig. 8. By contrasting 

Figs. 8 and 10, it is clear that the selected PDF considerably 

affects the simulation results. For instance, KDE's loss at the 

unadjusted building in Miami under the present 

circumstances is $3907 dollars. 
 

 
Fig. 8. Using the Weibull distribution and a variety of mitigating 

techniques, estimated loss for three cities under the current, future  

climate 1, and future climate 2 scenarios Type 0 has no mitigation  

(a). type 1-intermediate mitigation and type 2-high-level 

mitigation, respectively. 

 
 

I I I .CONCLUSION 

This research created an advanced stochastic hurricane 

risk framework to model the destruction of residential 

buildings as a result of hurricanes in hurricane-prone 

areas and systematized possible mitigating options under 

shifting climate scenarios. Two global climate models, 

CMCC-CM2-VHR4 and EC-Earth3P-HR, constitute the 

foundation of the future climate scenarios, which cover 
the years 2020–2050. The 1990–2020 period covered by 

the current climate scenario is based on the IBTrACS 

database. The worst-case emission scenario (SSP5-8.5) 

is considered in both future climate models. The 

constraints of the traditional parametric models are then 

removed by fusing the artificial tracks with a physics- 

based wind model. It was found that for three coastal 

cities—Atlantic City, Miami, and Galveston—the 

GKDE correctly predicted wind hazard probability. 

 

REFERENCES 

 
[1]. G. Garfin, G. Franco, H. Blanco, A. Comrie, P. Gonzalez, T. 

Piechota, R. Smyth, R. Waskom, Southwest: the third national climate  

assessment, in: Climate Change Impacts in the United States: the Third 

National Climate Assessment, US Global Change Research Program, 

2014, pp. 462–486 

[2]. T. Baheru, A.G. Chowdhury, J.P. Pinelli, Estimation of wind-driven 

rain intrusion through building envelope defects and breaches during  

tropical cyclones, Nat. Hazards Rev. 16 (2) (2015), 04014023 

[3]. D.V. Rosowsky, L. Mudd, C. Letchford, Assessing climate 

change impact on the joint wind-rain hurricane hazard for the 

northeastern US coastline, in: Risk Analysis of Natural Hazards,  

Springer, Cham, 2016, pp. 113–134. 

[4]. W. Cui, L. Caracoglia, Exploring hurricane wind speed along 

US Atlantic coast in warming climate and effects on predictions of  

structural damage and intervention costs, Eng. Struct. 122 (2016)  

209–225. 

[5]. E. Scoccimarro, A. Bellucci, D. Peano, CMCC CMCC-CM2- 

VHR4 Model Output Prepared for CMIP6 HighResMIP, 2017 ([Data  

set]) 
 

[6]. M.J. Roberts, J. Camp, J. Seddon, P.L. Vidale, K. Hodges, B. 

Vanni`ere, J. Mecking, R. Haarsma, A. Bellucci, E. Scoccimarro, L.P. 

Caron, Projected future changes 
in tropical cyclones  using the CMIP6 HighResMIP  multimodel 

ensemble, Geophys. Res. Lett. 47 (14) (2020) e2020GL088662 

[7]. S.S. Parida, K. Sett, P. Singla, Model-data fusion for spatial and 

statistical characterization of soil parameters from geophysical 

measurements, Soil Dynam. Earthq. Eng. 124 (2019) 35–57 

[8]. R. Snaiki, T. Wu, A.S. Whittaker, J.F. Atkinson, Hurricane wind and 

storm surge effects on coastal bridges under a changing climate, 

Transport. Res. Rec. 2674(6) (2020) 23–32. 

[9]. M. Barbato, F. Petrini, V.U. Unnikrishnan, M. Ciampoli, 

Performance-based hurricane engineering (PBHE) framework, Struct. 

http://refhub.elsevier.com/S2352-7102(23)00435-7/sref4
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref4
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref4
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref4
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref4
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref4
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref10
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref10
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref10
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref10
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref15
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref15
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref15
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref15
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref15
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref17
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref17
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref17
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref17
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref17
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref32
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref32
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref32
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref35
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref35
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref35
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref35
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref35
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref41
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref41
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref41
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref41
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref48
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref48
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref48
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref48
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref51
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref51


Saf. 45 (2013) 24–35. 

[10]. X. Fu, H.N. Li, G. Li, Z.Q. Dong, M. Zhao, Failure analysis of  

a transmission line considering the joint probability distribution of 

wind speed and rain intensity, Eng. Struct. 233 (2021), 111913. 

http://refhub.elsevier.com/S2352-7102(23)00435-7/sref51
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref55
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref55
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref55
http://refhub.elsevier.com/S2352-7102(23)00435-7/sref55

	Vimalesh J
	Kunal R
	Champa P.N.

