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Abstract: In recent years, Vision Transformer (ViT) has emerged as a groundbreaking 

model in the realm of image classification, leveraging self-attention mechanisms to process 

images effectively. This chapter presents a comprehensive investigation into the application 

of the Vision Transformer model in the domain of skin lesion classification. The initial 

section introduces the fundamental concept of attention mechanisms and their relevance 

to computer vision tasks. It then traces the evolution of transformers from their origins in 

natural language processing to their adaptation for image analysis. The main focus of this 

study is the Vision Transformer, which has redefined the landscape of image classification 

by directly processing images through self-attention mechanisms, surpassing traditional 

convolutional neural networks in performance. Through a detailed case study on skin lesion 

classification, we demonstrate the Vision Transformer's efficacy in medical image analysis, 

showcasing its potential for accurate and robust diagnosis. By exploring the key 

components and mechanisms driving the Vision Transformer's success, this chapter sheds 

light on its significance in image classification and its potential applications in other medical 

diagnostic tasks. 
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1. Introduction 

In the field of computer vision, image classification has been a pivotal research area with 

numerous applications, from object recognition to medical diagnostics. Traditional 

convolutional neural networks (CNNs) have long been the backbone of image classification 

tasks, exhibiting impressive performance across various domains. However, recent 

advancements in attention mechanisms and transformer-based models have sparked a 

paradigm shift in the way we approach visual recognition tasks. 

Attention mechanisms, originally introduced in the natural language processing (NLP) 

domain, enable models to focus on relevant parts of the input while downplaying irrelevant 



information [1]. Their ability to capture long-range dependencies and contextual 

information has proved highly effective in language-related tasks. With the success of 

attention mechanisms in NLP, researchers began exploring their application in computer 

vision, paving the way for novel approaches to image classification [2]. 

The transformer architecture, introduced in the seminal work "Attention Is All You 

Need," demonstrated how self-attention mechanisms could efficiently process sequential 

data without the need for recurrent or convolutional layers [1]. The transformer's success 

in NLP tasks triggered a cascade of research exploring its adaptation for computer vision 

problems. 

In this chapter, we present the evolution of the attention mechanisms to the state-of-

the-art Vision Transformer (ViT) and its application in image classification and specifically 

for skin lesion classification. The ViT represents a significant breakthrough, as it directly 

applies self-attention mechanisms to process images without relying on traditional 

convolutional layers. This innovative approach has opened new possibilities and challenged 

the dominance of CNNs in image classification tasks. 

The specific case study of skin lesion classification serves as an exemplary use case for 

the Vision Transformer's effectiveness in medical image analysis. Skin cancer is one of the 

most prevalent types of cancer globally, and early and accurate diagnosis is crucial for 

improving patient outcomes [3]. With the ever-growing availability of medical imaging data, 

there is a pressing need for advanced and reliable classification systems. 

In this chapter, we aim to provide a comprehensive understanding of the transition from 

attention mechanisms to the Vision Transformer, highlighting the key components and 

mechanisms that have driven this paradigm shift. Through a thorough analysis of the Vision 

Transformer's architecture and its application to skin lesion classification, we showcase its 

potential impact on medical diagnostics. 

As we delve into the world of Vision Transformers and their role in image classification, 

we hope to shed light on the future possibilities of attention-based models and their 

potential in revolutionizing medical imaging and beyond. 

In this research undertaking, our goal is to create a robust skin lesion classification model 

using the Vision Transformer (VIT) architecture. Our primary objective is to leverage the 

exceptional capabilities of VIT in unraveling complex image recognition tasks and achieve 

unparalleled accuracy in categorizing different types of skin lesions. We will work on two 



different datasets, one smaller and the other larger, to ensure the generalization capability 

of the developed models. 

The following objectives will guide our research: 

1. Develop and evaluate VIT-based models for skin lesion classification: We will create 

four models based on different aspects of VIT, including attention mechanisms, 

self-attention, transforms, and the full ViT model. These models will be trained and 

evaluated on the two datasets, aiming to achieve superior classification accuracy 

compared to traditional approaches. 

2. Compare the performance of VIT-based models with traditional approaches: We 

will conduct a comparative analysis to evaluate the classification accuracy of the 

VIT-based models against traditional approaches such as convolutional neural 

networks (CNNs). This analysis will provide insights into the advantages of utilizing 

VIT in skin lesion classification. 

3. Provide insights and recommendations for future research and practical 

implementation: Through our research, we aim to contribute valuable insights and 

recommendations for future advancements in the field of skin lesion classification. 

We will offer guidance for further research, practical implementation of VIT-based 

models in clinical settings, and potential challenges that need to be addressed. 

By accomplishing these objectives, we aspire to transform the landscape of skin lesion 

analysis, empowering dermatologists with accurate and efficient diagnostic tools and 

opening avenues for future breakthroughs at the intersection of technology and healthcare. 

2. From CNN to ViT for image classification 

In recent years, image recognition and classification have witnessed remarkable 

advancements due to the advent of deep learning techniques. Deep learning models, 

particularly Convolutional Neural Networks (CNNs), have demonstrated impressive 

performance in various computer vision tasks. However, the traditional approaches to 

image recognition have certain limitations that have sparked the exploration of alternative 

architectures. Inspired by the success of transformer models in Natural Language 

Processing (NLP), researchers have started exploring the application of transformers in 

computer vision tasks. This has led to the emergence of the Vision Transformer (VIT) 



model, which represents a groundbreaking approach to image recognition and 

classification. 

Image recognition and classification have relied on a variety of traditional handcrafted 

feature extraction methods [4]. These methods aim to extract distinctive features from 

images that can be used to identify and classify objects. Let’s explore some commonly used 

techniques: 

• Textural features [5]: The most known texture descriptors are the Gray Level Co-

Occurrence Matrix (GLCM), Gabor filter, Local Binary Pattern (LBP) and 

Histogram of Oriented Gradient (HOG). 

• Color features [4]: In order to calculate the color that the lesion contains, 

according to the literature the melanoma are described by the presence of six 

different colors that are, white, red, light brown, dark brown, blue-gray and black. 

• Shape features [6-7]: Shape can be one of the most useful features that can be 

used in image classification. Shape features can be similarity, perimeter, surface, 

skeletonization, … 

Deep learning has emerged as a dominant approach in the field of computer vision, 

revolutionizing image classification and achieving remarkable success across diverse 

domains. Deep learning, especially Convolutional Neural Networks (CNNs), offered a 

breakthrough by automatically learning hierarchical representations from raw pixel data, 

mitigating the need for manual feature engineering. The key components of deep learning 

models include convolutional layers, pooling layers, activation functions, and fully 

connected layers, which together create a powerful architecture capable of capturing 

intricate features and patterns. Deep learning models have demonstrated their prowess in 

large-scale image classification challenges, such as the ImageNet competition, surpassing 

human-level performance and achieving unprecedented accuracy rates [8]. The ability of 

deep learning to learn complex representations and hierarchical features has made it a 

cornerstone of modern computer vision systems and especially in medical images [9]. 

Skin lesion classification presents a critical challenge in the field of medical image 

analysis. Differentiating between benign and malignant skin lesions is vital for early 

diagnosis and appropriate treatment planning. Dermatologists rely on their expertise to 

assess skin lesions visually, but the sheer volume of cases and the potential for human error 



necessitate automated and reliable classification systems. Transfer learning is another 

significant advantage of deep learning in skin lesion classification. Pre-trained CNN models, 

such as VGG, ResNet, and Inception, trained on large-scale generic image datasets, can be 

fine-tuned on smaller medical image datasets to achieve impressive performance. This 

transfer of knowledge allows researchers and clinicians to work with limited data while 

benefiting from the knowledge captured by models trained on diverse image datasets [4, 6]. 

However, recent advancements in deep learning, particularly the introduction of Vision 

Transformer (ViT), have shown promising potential in medical image analysis. This 

literature review aims to explore the application of ViT in medical image classification, 

focusing on its advantages, challenges, and performance compared to traditional CNN-

based approaches. 

The seminal work by Dosovitskiy et al. introduced the Vision Transformer model, 

showcasing its success in natural image classification tasks [2]. Their approach utilized self-

attention mechanisms and transformer architecture, achieving state-of-the-art performance 

on standard image benchmarks such as ImageNet. While the initial application was on 

natural images, the potential of Vision Transformer in medical image classification was 

evident. In the paper [10], Chen et al. explored the application of Vision Transformer in 

classifying skin lesion images for melanoma detection. The authors compared the 

performance of ViT against traditional CNN models like ResNet and DenseNet. The 

results demonstrated that the Vision Transformer outperformed CNNs in terms of 

accuracy and robustness, even with a relatively smaller dataset. The self-attention 

mechanisms of ViT facilitated effective feature extraction from skin lesion images, leading 

to improved diagnostic capabilities. Gabriel et al. in [11] presented an application of ViT in 

classifying chest X-ray images for detecting common thoracic diseases. The authors 

proposed a modified ViT architecture to handle the unique challenges of medical images, 

such as high resolution and class imbalance. Their results revealed that the ViT-based model 

achieved higher sensitivity and specificity in comparison to traditional CNN-based models, 

making it a potential candidate for assisting radiologists in clinical diagnosis. 

3. Vision transformer (ViT) 

In this section, we set forth on an exploration of the revolutionary Vision Transformer 

(VIT) architecture. VIT has garnered considerable attention as a potent tool that harnesses 



transformer capabilities to revolutionize visual perception and automate tasks like skin 

lesion classification. By employing self-attention mechanisms and other essential 

components, VIT presents a promising avenue for enhancing accuracy and efficiency in 

dermatological practices. Throughout this segment, we will delve deep into the architecture 

and components of VIT, unveiling its distinctive attributes and advancements. We will 

closely examine how VIT adeptly analyzes and processes visual information, paving the way 

for significant advancements in medical image analysis and classification tasks. To 

underscore the real-world impact of VIT, we will explore its practical applications and 

notable achievements, highlighting the significant positive influence it has had on the field 

of dermatology. By showcasing the transformative outcomes and concrete results, we aim 

to emphasize the profound contribution of VIT in advancing medical image analysis and 

classification tasks in dermatological practice. 

3.1. Attention mechanism 

The attention mechanism is a fundamental component in many deep learning models, 

particularly in sequence-to-sequence tasks such as machine translation, text summarization, 

and image captioning. It allows the model to focus on specific parts of the input sequence 

or image while generating an output. At a high level, the attention mechanism measures the 

relevance or importance of different elements in the input sequence and assigns weights to 

them. These weights indicate the attention or focus that the model should give to each 

element when making predictions or generating outputs. By dynamically weighing the 

contribution of different parts of the input, the attention mechanism enables the model to 

selectively attend to the most relevant information. Imagine you have a group photo of 

your first school. Typically, the photo shows a group of children arranged in rows, with the 

teacher sitting somewhere among them. Now, if someone were to ask you, "How many 

people are there?", you would easily answer by counting the number of heads in the photo. 

You don’t need to consider any other details in the picture. However, if someone asked a 

different question, such as "Who is the teacher in the photo?", your brain instinctively 

knows what to do. It will focus on identifying the characteristics of an adult in the photo 

while disregarding the other features. This ability of our brain to selectively focus on specific 

elements is known as "Attention," and it is something our brain excels at. 

Equation (1) presents the calculation formula of the weights in the attention mechanism. 



 

(1) 

In the attention mechanism, the context vector, denoted as ci, as shown above, for the 

output word yi is generated by taking a weighted sum of the annotations. The annotations 

refer to the intermediate representations of the input sequence obtained from an encoder 

in a sequence-to-sequence model. And the weights ij are computed by a softmax function 

given by the following equation: 

 
(2) 

eij = a(si−1,hi) (3) 

The output score, eij, is obtained from a feedforward neural network function, denoted 

as "a" This network aims to capture the alignment between the input at position j and the 

output at position i. 

3.2. Self-attention 

Self-attention is a powerful mechanism for capturing relationships and dependencies 

between elements in a sequence, and in Vision Transformers, it plays a crucial role in 

modeling the spatial relationships between image patches to enable effective image 

understanding and recognition [1].  

Known as scaled dot-product attention, self-attention a mechanism used in deep 

learning models to capture dependencies between different elements in a sequence. It is a 

fundamental component of transformer-based architectures, which have been widely used 

in natural language processing and computer vision tasks [1]. In self-attention, each element 

in the input sequence (e.g., a patch in an image) interacts with all other elements to compute 

an attention score. These scores represent the importance or relevance of each element to 

the others in the sequence. The attention scores are then used to compute a weighted sum 

of the values of the elements, creating a context vector that contains information from the 

entire sequence. 

Given a query vector Q, a set of key vectors K, and a set of value vectors V, the attention 

score between the query Q and each key K is calculated using the dot product between Q 

and K. The dot products are then scaled by the square root of the dimension of the query 

(or key) vectors to avoid extremely large gradients during training. The resulting scaled 

attention scores are then used as weights to compute a weighted sum of the value vectors 

V, giving us the context vector. The scaled dot-product attention can be mathematically 

described as follows: 

O = Attention(Q,K,V ) = EV = softmax  
(4) 

where d is the dimension of K 



In the Vision Transformers (ViT), the attention mechanism is used to process image 

patches and model the relationships between different patches. In ViT, the input image is 

divided into non-overlapping fixed-size patches, and each patch is then linearly transformed 

into query, key, and value vectors. These vectors are used to perform self-attention, 

allowing the model to attend to relevant patches while processing each patch. The output 

context vectors are then used for further processing in the transformer layers to model 

global context information in the image and enable effective image recognition or other 

computer vision tasks. 

3.3. Vision Transformer (ViT) 

Vision Transformer (ViT) is a state-of-the-art deep learning architecture that applies the 

Transformer model, originally designed for natural language processing tasks, to computer 

vision tasks. It was introduced in the landmark paper "An Image is Worth 16x16 Words: 

Transformers for Image Recognition at Scale" by Dosovitskiy et al. in 2020 [2]. The primary 

idea behind Vision Transformers is to treat images as sequences of patches and process 

them using the Transformer's attention mechanism. 

The attention mechanism and, specifically, self-attention play a crucial role in the success 

of Vision Transformers. By capturing long-range dependencies and enabling efficient 

context modeling, self-attention allows Vision Transformers to achieve state-of-the-art 

performance in various computer vision tasks [1]. 

In the context of Vision Transformers, the self-attention mechanism is used to process 

the image patches. Instead of using traditional convolutional layers, the Vision Transformer 

breaks down the input image into smaller fixed-size non-overlapping patches and flattens 

them into a sequence. Each patch is then linearly embedded into a lower-dimensional 

representation. 

Figure 1 presents the architecture of ViT in case of skin lesion classification. The ViT 

uses as input a set of patches of the input image instead of the whole image. The patches 

are transformed into a two-dimensional to learn the relationship between each patch 

through multi-head self-attention. Considering the operation of ViT models in detail, the 

image X ∈ RH×W×C is reshaped into patches xp ∈ RN×(P2·C) and then mapped to D 

dimensions (image size: (H, W,C), patch size : . After these patches pass 



through a learnable linear projection, two-dimensional patch embeddings are derived as an 

output. The positional Epos ∈ R(N+1)×D is added to the patch embedding E, which 

concatenates the [cls] token cls, to preserve position information. The embeddings 

pass through layers composed of multi-head self-attention, an MLP block, and Layer 

Normalization (LN) by the number of blocks. Among the patch embeddings derived from 

the transformer encoder, only the [cls] token is used as an input to the MLP head to perform 

the image classification task [12]. 

 

Figure 1 – Architecture of original ViT. [12] 

4. Methodology 

In this chapter, we aim to explore the capabilities of the Vision Transformer (ViT) 

architecture by conducting experiments on two different datasets. We will evaluate the 

performance of ViT in image classification tasks and compare it to other models, including 

attention-based models, self-attention-based models, and transformer-based models. By 

examining the performance of ViT on these diverse datasets and comparing it to established 

models, we seek to gain insights into its effectiveness and potential advantages in different 

scenarios. 

4.1. Training data preparation 

In deep learning, training data preparation refers to the process of organizing and 

preprocessing the data that will be used to train a deep learning model. This stage is crucial 



for the success of the model as the quality and structure of the training data can greatly 

impact the model’s performance. 

Here are some common steps involved in training data preparation for deep learning: 

➢ Data Collection: Gathering relevant data for your deep learning task. This could 

involve web scraping, accessing existing datasets, or acquiring data through other 

means. 

➢ Data Cleaning: Removing or correcting any errors, inconsistencies, or outliers in 

the data. This may involve handling missing values, dealing with noise, or 

eliminating irrelevant data points. 

➢ Data Formatting: Ensuring that the data is in a suitable format for training the 

deep learning model. This could involve converting the data into a specific file 

format, such as CSV or JSON, or structuring the data in a particular way based 

on the input requirements of the model. 

➢ Data Splitting: Dividing the data into different sets for training, validation, and 

testing. Typically, the dataset is divided into training data (used to train the 

model), validation data (used to tune hyperparameters and evaluate performance 

during training), and testing data (used to assess the final model’s performance). 

➢ Data Preprocessing: Applying various transformations or preprocessing 

techniques to the data to make it more amenable for deep learning. This might 

include steps like normalization, feature scaling, one-hot encoding, or handling 

text data through tokenization and embedding. 

➢ Data Augmentation: Generating additional training examples by applying 

random transformations to the existing data, such as rotation, translation, scaling, 

or flipping. Data augmentation can help increase the model’s robustness and 

improve its generalization ability. 

➢ Batch Generation: Dividing the training data into smaller batches or mini batches 

to enable efficient computation during the training process. This helps in 

performing gradientbased optimization algorithms, such as stochastic gradient 

descent (SGD), on subsets of the data rather than the entire dataset at once. 

By following these steps, the training data can be appropriately prepared to ensure that 

the deep learning model receives clean, well-structured, and representative data to learn 



from. This, in turn, increases the chances of the model learning meaningful patterns and 

producing accurate predictions or classifications when applied to new, unseen data. 

4.2. Evaluation metrics 

In this work, the performance measures employed include Recall, Specificity, Precision, 

and Accuracy. These measures are commonly used in assessing the effectiveness and 

performance of classification models. 

• Recall: also known as Sensitivity or True Positive Rate, measures the proportion 

of true positive predictions out of all actual positive instances. It indicates the 

model’s ability to correctly identify positive cases. And we can calculate it using 

the following formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
True Positives

True Positives +  False Negatives
 (5) 

 

• Specificity: it measures the proportion of true negative predictions out of all 

actual negative instances. It represents the model’s capability to accurately 

identify negative cases: 

Specificity =  
True Negatives

True Negatives +  False Positives
 (6) 

• Precision: quantifies the accuracy of positive predictions by measuring the 

proportion of true positive predictions out of all positive predictions. It focuses 

on the correctness of positive classifications: 

Precision =  
True Positives

True Positives +  False Positives
 (7) 

• Accuracy: provides an overall measure of the model’s performance by calculating 

the proportion of correctly classified instances (both true positives and true 

negatives) out of the total number of instances. It gives an indication of the 

model’s overall effectiveness in making correct predictions: 

Accuracy =  
True Positives +  True Negatives

True Positives +  True Negatives +  False Positives +  False Negatives
 (8) 



4.3. Dataset 

In our work we train our model on two distinct datasets the first one is PH2 and the 

second is ISIC. Examples of Images from both datasets are presented in the following 

figure. 

 
Figure 1 – Example of melanoma and non-melanoma skin cancer from PH2 database and ISIC 2017 

challenge 

The PH2 dataset contains 200 images: 160 non-melanomas (80 common nevi, 80 

atypical nevi), and 40 melanomas skin cancer. These images are in RGB (red, green, blue) 

color system and have a resolution of 764*575 pixels. In Figure 3.1, the first row displays 

examples of the database. 

The ISIC2017 dataset contains 2000 images: 1626 non-melanomas (254 seborrheic 

keratoses, 1372 atypical nevi), and 374 melanomas skin cancer. These images are RGB (red, 

green, blue) color system and have a resolution of 767*1022 pixels. The second row of 

Figure. 3.1 illustrates examples of the database. 

The two databases are classified by experts and contain the segmentation ground-truth. 

As is customary and to evaluate our proposed approach, the dataset is randomly divided 

into training and test sets using k-fold cross-validation (5-folds in this study). That preserves 

the fairness of the performance of our proposed approach. 

5. Results and analysis 

In this section, we evaluate the performance of our custom-built ViT model on two 

datasets for skin lesion classification. Through rigorous testing and analysis, we assess the 

effectiveness and limitations of our architecture. We also conduct a comparative study to 

identify patterns and draw distinctions between different approaches. Finally, we discuss 

the results, interpret trends, and explore the implications of our findings for enhancing 



diagnostic capabilities in dermatology. This examination provides valuable insights into the 

potential of our ViT model in skin lesion classification. 

We undertake the performance evaluation of our implemented architectures using two 

distinct datasets: PH2 and ISIC2017. An extensive analysis was conducted to determine the 

effectiveness of the implemented architectures in tackling the difficulties associated with 

the classification of skin lesions in both datasets. Let’s discuss the outcomes of three distinct 

architectures: the self-attention model, the based-transformer model, and the Vision 

Transformer (ViT). 

We will use the training and test accuracies, the confusion matrices, and the Training and 

validation loss and accuracy curves to evaluate the proposed schemes. 

Table 1 presents the simulation results of the Attention mechanism, self-attention, and 

Vision transformer using the two datasets: PH2 and ISIC 2017. 

From the results presented in Table 1 we can conclude that the ViT model demonstrated 

superior performance in both datasets, surpassing the attention mechanism and self-

attention based- models in accuracy. These results highlight the ViT architecture’s potential 

in accurately classifying skin lesions. Further refinement and optimization may be needed 

for the self-attention and based-transformer models to improve their performance in this 

domain. 



Table 1: The simulation results of the Attention mechanism, self-attention, and Vision 

transformer for the datasets PH2 and ISIC 2017  
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While Vision Transformer (VIT) models have shown promising results in various 

computer vision tasks, including image classification. In skin lesion classification, VIT can 

be seen as a good solution in comparison with the well know deep learning architecture. 

However, when working with VIT models for skin lesion classification, there are several 

limitations and challenges encounter that’s needs to be treated to have a robust and 

powerful classification model. 

• Lack of Sufficient Data: Training deep learning models like VIT requires a large 

amount of labeled data. However, collecting a diverse and well-annotated dataset 

for skin lesions can be challenging due to the need for expert dermatologist 

annotations and the rarity of certain types of lesions. 

• Data Imbalance: Skin lesion datasets often suffer from class imbalance, where 

non-Melanoma class have significantly fewer samples than Melanoma. This can 

negatively impact the performance of VIT models, as they may struggle to learn 

and generalize well on underrepresented classes. 

• Fine-Grained Localization: VIT models, by design, are not explicitly designed for 

pixel level localization tasks. Skin lesion classification typically requires identifying 

the lesion region within an image that are indicative of a particular lesion type. 

Incorporating localization capabilities into VIT models or combining them with 

additional algorithms for lesion segmentation can be a challenge. 

• Interpretability: VIT models are generally regarded as "black boxes" due to their 

complex architectures and large number of parameters. Interpreting the decision-

making process of VIT models for skin lesion classification can be challenging, 

making it difficult to understand which features or characteristics the model is 

relying on for its predictions. 

• Generalization to Unseen Lesions: VIT models may struggle with generalizing to 

skin lesion types that are significantly different from the ones present in the 

training data. Skin lesions can vary in appearance, size, and texture, and it is 

important to ensure that the VIT model can handle novel lesions that were not 

seen during training. 

• Computation and Memory Requirements: VIT models are typically 

computationally intensive and require substantial memory resources, particularly 



when dealing with high-resolution medical images. Training and deploying VIT 

models may require specialized hardware or significant computational resources. 

Addressing these limitations and challenges often requires a combination of strategies, 

such as data augmentation techniques, transfer learning, architectural modifications, 

ensemble methods, and domain-specific knowledge to improve the performance and 

applicability of VIT models for skin lesion classification tasks. 

6. Conclusion 

In this research work, we explored the application of the Vision Transformer (ViT) 

model in the domain of image recognition and classification, specifically focusing on skin 

lesion analysis. 

Our contributions to the field of image recognition and classification are two-fold. 

Firstly, we demonstrated the effectiveness of the ViT model in handling complex visual 

tasks, such as distinguishing between melanoma and non-melanoma skin cancer. The ViT 

model’s ability to capture both local and global features through self-attention mechanisms 

proved to be advantageous in accurately classifying skin lesion images. Secondly, we shed 

light on the significance of hyperparameter tuning in deep learning models. By carefully 

selecting hyperparameter values, such as learning rate, patch size, and number of 

transformer layers, we achieved improved model performance and mitigated common 

issues like overfitting and underfitting. This research provides valuable insights and 

guidelines for practitioners in selecting appropriate hyperparameters for similar image 

classification tasks. The implications and practical applications of our findings are 

significant. Accurate and reliable skin lesion classification is crucial for early detection and 

diagnosis of skin cancer. By leveraging the ViT model, healthcare professionals and 

dermatologists can enhance their diagnostic capabilities, leading to timely interventions and 

improved patient outcomes. Additionally, our research made valuable contributions to the 

field of computer vision and deep learning by applying various architectural approaches 

alongside the ViT model. We explored and compared the performance of different 

architectures, including self-attention, based-attention, and based-transformer, on two 

distinct datasets. This comprehensive analysis demonstrated the efficacy and versatility of 

the ViT model in comparison to other architectures, highlighting its superior capabilities in 



image recognition and classification tasks. Our work showcases the power and potential of 

the ViT model in advancing the field of computer vision. 

In summary, our research elucidates the potential of the Vision Transformer model in 

the realm of image recognition and classification, particularly in the context of skin lesion 

analysis. By optimizing hyperparameters and harnessing self-attention mechanisms, we 

achieved promising outcomes in accurately classifying skin lesion images. The implications 

for healthcare and the broader field of computer vision are significant. Further research and 

exploration of the ViT model hold promising prospects for advancing image analysis and 

classification techniques across various domains. 
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