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ABSTRACT 

Code smells are indicators of software defects that increase the cost of software maintenance 

and difficult to update the software.  A framework for optimizing the refactoring sequence 

using Sandpiper Optimization Algorithm (SOA) is designed and implemented. The objective 

is to detect code smells in the software and fix them effectively. The goals are met by using 

metric-based detection rules from earlier research and refactoring the code with sequences 

chosen from Fowler's refactoring catalog using SOA. The fitness function, which is 

determined, based on priority, severity, risk, and importance of classes, is used to evaluate the 

optimized refactoring solutions. The priority score assigned to code smell is focused on the 

expert's preferences. The severity score is derived from the infusion tool that shows the degree 

of severity of code smells. A risk score is generated from the SonarQube tool based on 

continuous observation of code quality. An importance score gives the history of changes in 

the code extracted from the Github. Open-source software used for experimentation includes 

GanttProject and Xerces-J. The proposed work achieved refactoring precision values of 78 

percent and 68 percent for GanttProject and Xerces-J respectively. 

 

Keywords—Software maintenance, Code Smells, Refactoring, Sandpiper Optimization 

Algorithm. 

I. INTRODUCTION  

 

Software maintenance and evolution of systems is the vital activity that requires 90% 

of the total software production costs [1]. However, the fact remains true that a large percentage 

of software costs is spent on software maintenance. Software maintenance is more than simply 

fixing bugs; it also includes making code changes by adding functionalities and repairing the 

code to improve its performance. Constantly evolving systems increases the complexity by 

introducing design flaws and code smells [2]-[4].Code smells can negatively affect quality 

characteristics like flexibility and maintainability because they are signs of a more serious 

problem with the system [5]. Refactoring must be used to restructure the code and address these 

code smells. Fowler [4] presents 22 code smells and 72 refactoring that have been extensively 

outlined in the literature [6]-[8]. 

Refactoring software without altering its observable behaviour can make it simpler to 

understand and less expensive to modify [4]. The software continues to have the same 

functionality as before. It is a systematic approach of code cleaning that reduces the possibility 

of introducing bugs. In essence, refactoring enhances the structure of code after it has been 

created. Kent Beck [4] described two types of qualities in the software program, “the value of 

today and the value of tomorrow”. Programmers frequently concentrate on immediate goals. 

They increase the value of today’s software program by fixing a bug or adding a feature, but 

they are not quite sure about tomorrow. A choice based on yesterday's assumption can be 



changed today. Similarly, the understanding that the programmers have today may seem 

foolish tomorrow that too may be modified. Refactoring can be used to address code smells 

caused by all these frequent changes. 

Refactoring is accomplished in two primary steps namely, the detection of code smells 

and suggested refactoring operations to restructure the code. The first step is achieved through 

a variety of techniques and methods described in the literature [9]-[13]. Code smells differ in 

their effects and importance; they must be classified based on their severity and risk [14]-[15]. 

The second step includes manual and semi-automated refactoring techniques to fix specific 

code smells without considering their impact and risk [16]. 

This paper proposes a framework by suggesting refactoring solutions to eliminate code 

smells in which the code smells with the higher risk are given importance.  The objective is to 

find the optimal sequence of refactoring solutions from the list of Fowler’s refactoring catalog 

(http://www.refactoring.com/catalog/). The SOA [17] is a nature-inspired meta-heuristic 

algorithm that competes with GA [18], PSO [19], CRO [20] and SPEA [21] in suggesting 

refactoring solutions. Proposed by Kaur et al., SOA mimics the two natural behaviors of 

sandpipers namely migrating and attacking, and attempts to travel in the direction of the best-

fittest sandpiper. The SOA is used to select the appropriate refactoring solutions by maximizing 

the quantity of corrected code smells based on risk, severity and importance of code fragments.  

 

The remainder of the paper is organized as follows: Section 2 presents the related works 

in the literature. Section 3 presents an outline of the background materials and methods. Section 

4 provides description of the proposed work. Section 5 presents the empirical design and 

definition.  Section 6 presents the results and evaluation. The challenges to the work's validity 

are addressed in Section 7. Conclusion and scope for future work are provided in Section 8. 

Appendix 1 presents the abbreviations used in this work in alphabetical order. 

 

II. RELATED WORKS  

 

Ouni et al. [13] have presented an approach that employs two algorithms GP and 

NSGA-II to detect defects and correct them. The detection step generates detection rules from 

the defects examples and software metrics using GP. The correction step applies the detection 

rules and recommends a set of refactoring solutions using NSGA-II. The approach has been 

experimented on QuickUML, Xerces-J, GanttProject, ArgoUML, Log4J and Azureus. The 

effectiveness of the approach shows that 75% of the detected defects have been fixed using the 

suggested refactoring. 

Saranya et al. [21] have presented an approach using the SPEA that prioritizes the list 

of refactoring solutions, while maintaining consistency with the previous refactoring in the 

processing of fixing the code smells. Six code smells namely Blob, Functional Decomposition, 

Data Class, Schizopheric Class, Shotgun Surgery and Swiss Army Knife have been detected 

from JHotdraw and Xerces-J software. Following the detection of code smells, the changes in 

each class are tracked using Git Hub repositories, and the change frequency has been 

calculated.  The context similarity has been tracked using structural and semantic similarity.  

The SPEA generates an optimal set of refactoring suggestions using the aforementioned inputs. 

SPEA fixes 94% of code smells, compared to 90% for CRO and 75% for NSGA II, 

respectively. 

Ouni et al. [22] have presented a multi-objective optimization approach for determining 

the best refactoring solutions by reducing the quantity of code smells while maintaining the 

construct semantics. The approach has considered the source code, a list of refactoring, code 

smell detection rules, semantic measures, a history of code changes as input and generated an 

optimal set of refactoring operations. The approach has been experimented on Xerces-J, 



JFreechart, GanttProject, Artofillusion and JHotdraw. The effectiveness of the approach 

produces 86% of suggested refactoring which is consistent with the change history and fixes 

85% of code smells are fixed. 

Dea et al. [23] have presented D-EA that uses two GA with different fitness function, 

solution representation, and operators to fix code smells by producing best refactoring 

solutions. The first GA algorithm evaluates the refactoring solutions based on the amount of 

detected code smells and the second GA algorithm evaluates solutions by reducing the 

similarity between the reference code and code containing code smells. The similarity is based 

on the use of global and local alignment techniques. Local alignment identifies similarities 

between parts of the reference code and faulty code. Global alignment is the end-to-end 

matching between the reference code and the faulty code. The best solutions from both 

algorithms are then selected to fix the code smells. The work has been experimented on Xerces-

J, GanttProject, ArgoUML, Ant-Apache and Azureus. The effectiveness of the approach shows 

that 86% of the code smells were corrected using suggested refactoring. 

Malhotra et al. [24] have presented a framework to find the probable classes that need 

quick refactoring based on code smells and design attributes. The work computes QDIR for 

each class to identify classes that are severely affected and require immediate refactoring 

operation. The work has been experimented on Java Project ORDrumbox. Based on the QDIR 

value, priority has been assigned to 10% of the total classes, and the appropriate refactoring 

method has been suggested. The results show that by providing refactoring operations to the 

most critically affected classes which constitute 10% of the total classes, an overall 47% 

improvement in software quality has been achieved. 

Kebir et al. [25] have presented detection rules and refactoring catalog  for architectural 

bad smells.  These bad smells are software designs that emerge from the reverse engineering 

and re-engineering process. Automated refactoring of design smells has been implemented 

using the genetic algorithm. Architectural smells namely, connector envy, ambiguous interface, 

component concern overload, scattered parasitic functionality and overused interface have been 

detected based on detection rules comprising software metrics. To correct the above-mentioned 

bad smells, refactoring solutions namely, pull interface, extract component, push component 

and extract interface have been used. Experiments have been conducted with open-source 

Eclipse MAT. The result shows that the design smells have been fixed with an acceptable 

efficiency of 53% (4.41/8.27). 

Vidal et al. [26] have presented a tool to rank code smells based on changes in the 

component, modifications of software scenarios and importance of code smell. Moose 

framework for software analysis has been used to build the tool named spIRIT. The system has 

been loaded with MSE, a generic file format similar to XML to evaluate it in spIRIT. Ten code 

smells have been detected by spIRIT. Each smell has been represented as a rule comprising of 

metrics and predetermined thresholds. The smells have been ranked according to their 

importance. The ranking has been calculated by aggregating SRC, RCS and RMS values. 

Experiments have been carried out on beef-cattle farm simulator and subscriberDB application 

to rank code smells. The ranking by the spirit tool has been compared with an expert.  The 

outcome reveals a strong correlation between the ranking suggested by the expert and the one 

suggested by spIRIT with a probability between 0 and 0.5. 

Ghannem et al. [27] have presented a multi-objective approach for correcting defects 

within a model by producing a meaningful sequence of refactoring. The first objective is to 

increase structural and textual similarities between a particular model and a group of badly 

designed models and the second objective is to reduce the structural similarity between the 

given model and well-designed models. The candidate solution with the highest structural and 

textual similarities between a given model and well-designed models provides the best 

sequence of refactoring.  The experimental results on eight Java projects namely Ant, 



GanttProject, JabRef, JHotDraw, JRDF, JGraphx, Xerces and Xom yield an average 

correctness of 80% respectively.  

The following conclusions are drawn from a review of numerous studies in the 

literature. To begin, semantic and structural similarity between original code and the infected 

code are used as the criteria for refactoring operations. Second code smells are ranked using 

SRC, RCS and RMS values. This work uses priority, severity, risk, and importance of classes 

as the fitness function for SOA to select the best refactoring sequences. 

 

III. MATERIALS AND METHODS 

 

This section outlines code smell detection rules, prioritization measures and the 

algorithm used for selecting refactoring operations. 

 

A. Code Smell Detection Rules 

Software metrics are measurable features used to assess software performance through 

the detection of code smells. Code smells exhibit few symptoms that can be identified using 

detection rules. These detection rules are extracted from previous research work [28]-[29]. 

Detection rules for detecting code smells considered in this work namely, blob, functional 

decomposition, feature envy, data class and spaghetti code are given in Table 1. 

 

Table 1: Detection Rules for Code Smells 

 

Code Smell Detection Rule 

Blob (NLOCC>=1500 and NLOCM>=129) or NM>=100 

Functional 

Decomposition 

NOA > 2 and NIM ≤ 30 and CBO > 4 

Feature Envy ATFD(method)>4 and NOA ≤ 16 

Data Class NOAM > 2 and WMC ≤ 21 and NIM ≤ 30 

Spaghetti Code LOC(method)≥80 and CYCLO ≥ 8 and CBO > 8 and 

RFC>245 

 

B. Refactoring Catalog 

Refactoring is a method of improving the design of an existing code. It consists 

essentially of a series of minor behavioral changes. These changes must be carried out in small 

steps to reduce the risk of errors. Performing refactoring for a long period in small steps can 

help to maintain the system avoiding breakdown. The refactoring catalog at 

http://www.refactoring.com/catalog/ contains a large number of potential refactoring from 

which the proposed approach can select the best sequence. 

A software having one blob, two DC, and two FD code smells are considered for 

experimentation. Assume that there are two solutions S1 and S2 to fix these code smells. The 

solution S1 fixes both DC and FD with the correction score CCR (S1) = 4/5 = 0.8, while the 

solution S2 fixes the blob, 1 DC, and 2 FD with the correction score CCR (S2) = 4/5 = 0.8. 

Although S1 and S2 both produce the same correction score, the blob class is more severe and 

it may have a significant impact on the overall system design. From this perspective, solution 

S2 is considered better than S1. 

Consider a Student Registration System as shown in Figure 1 in which student gets 

enrolled in a semester. The semester class is made of one or more courses. Each course has a 

title and course Code. The student can register, drop, withdraw the course and can view the 

results in the semester. Also a semester may be freezed or attended. There are two kinds of 



students namely Undergraduate Students and Postgraduate Students. Each type of students 

enrolls in different ways. 

 

 

Figure 1: Student Registration System 

 

When a defect occurs, classes must be restructured using refactoring operations. When 

two classes have association relationship, a unique field in one class should be referenced by 

another class. If the referencing of the class is missing, then there occurs a defect.  As a result, 

classes need to be restructured. When restructuring classes, new classes may be added and 

functionality may be moved between classes. Move field refactoring allows moving a field 

from one class to another.  The simplest way is to copy the field from the source class to the 

destination class. As presented in Figure 2, the Student class is associated to the Semester class, 

so the Student class should have a foreign key reference to the Semester Class. The 

MoveField(Semester, Student, id) operation is used to correct the defect by moving the id field 

from the source class Semester to the target class Student. Here semid is the foreign key in the 

Student class that refers to the primary key id in the Semester class. 

 

 

Figure 2: (a) Before refactoring (b) After move field refactoring operation 

 

Class inheritance, hierarchy, and extraction are all aspects of abstraction. Abstraction 

is to reduce duplication in software programming. The pull-up/push-down refactoring is an 

illustration of abstraction. The pull up removes redundancy by pulling up code into a super 



class. Methods and fields from a super class are pushed down into subclasses using push down. 

Pull up field refactoring allows moving the same field from subclasses to the superclass. The 

simplest way is to copy the field from two subclasses to the superclass. 

 

 

Figure 3: (a) Before refactoring (b) After pull up field refactoring operation 

 

As presented in Figure 3, the class Under Graduate and Post Graduate are all subclasses 

of Student which are disjoint and complete. The source class Under Graduate and Post 

Graduate has a spaghetti code smell that must be corrected by using PullupField(). The 

PullupField(UnderGraduate, PostGraduate , Student, id, name) is used to correct the spaghetti 

code smell by moving the id and name fields from the source classes UnderGraduate and 

PostGraduate to the target class Student. 

 

C. Prioritization Measures 

This section provides an outline of four prioritization measures namely priority, 

severity, risk and importance score that are used as the fitness function to select the suggested 

refactoring sequences. 

 

 Severity Score 



Not all code smells have the same effect [16]. Each code smell has a severity score that 

allows developers to identify and fix the most critical instances. Concretely, multiple code 

fragments may contain the same type of code smell, but they may have varying impact scores. 

This score reflects the overall negative impact and associated code-smell severity. A blob code 

smell may be detected in two instances with 27 and 36 methods, but each has a different impact 

score on the system quality. The severity of code smells is measured using the infusion tool 

based on design characteristics, namely encapsulation, complexity, coupling, hierarchy and 

cohesion. Moreover, these design characteristics are effective in existing code smell detection 

methods [10]-[11],[13]. 

 

 Risk Score 

The risk score is an important score that measures how risky the code smell is [12]. So, 

during the correction phase, it is important to give priority to the riskiest code smells. An open-

source platform called SonarQube is used for continuous code quality checks. A risk score is 

given to each detected code smell that deviates from well-designed code. 

 

 Priority Score 

Some code smell types are usually prioritized by developers because they can have 

varying effects on the system's quality. Developers can prioritize different types of detected 

code smell on their preferences. Based on the literature on software refactoring and code smell 

correction [16], [30] , a priority score of 5 has been assigned to the blob code smell, 4 to 

functional decomposition, 3 to spaghetti code, 2 to feature envy, and 1 to the data class. 

 

 Importance Score 

Developers must understand which classes and packages in the code fragments are 

critical to the overall software system. Critical code fragments are those that change frequently 

during the maintenance process to add new functionalities and to accommodate new changes. 

Moreover, as reported in the literature [15], [31]-[32], classes having code smells are more 

likely to be changed. As a result, code smells associated with frequently changing classes 

should be given importance during the correction process. 

 

D. Sandpiper Optimization Algorithm(SOA) 

SOA is a bio-inspired meta-heuristic algorithm introduced by Kaur et al. that attempts 

to simulate the migration and attacking behavior of sandpipers. Sandpipers are sea birds that 

can be found all over the world. They eat insects, fish, reptiles, earthworms and are omnivorous. 

Sandpipers are intelligent birds that flock together. They can make rain-like sounds with their 

feet while searching for earthworms. Moreover, sandpipers have a unique pair of glands located 

just over their eyes that helps to remove excess salt from their body. The representation of a 

sandpiper depends on the problem and it can express a feasible solution. A sandpiper has two 

kinds of behavior namely, migrating and attacking. The migration behavior must meet three 

conditions namely, collision avoidance, convergence in the direction of best neighbor and 

updating position considering the best fittest. The attacking behavior generates spiral shape 

movement in the air which hits the prey. The exploration phase is a global search that 

investigates various promising solutions in the search space, whereas the exploitation phase is 

a local search that searches for optimal solutions among those promising solutions. 

 

 Mathematical model for SOA 

To apply SOA, the following elements have to be defined, how to encode solutions 

(sandpipers) in the search process, how to create a population of solutions (a group of 

sandpipers), how to measure the competency of candidate solutions using an evaluation 



function, how to select solutions and how to create/modify new solutions using behavioral 

operations namely collision avoidance, convergence and updating position. The parameter 

setting of the sandpiper optimization algorithm was presented in Table 2. The steps of SOA are 

given in Algorithm 1. 

 

Table 2: Parameter setting of SOA 

 

Parameter Value 

Initial number of 

sandpiper 

50 

Parameter CA [2,0] 

Parameter CB 0.05 

Max. no. of iterations 100 

 

 

 

 

 

 

 

 

Algorithm 1: Sandpiper Optimization Algorithm 

Input: Initial population 𝑃𝑠𝑝  

Process:  

Step 1: Initialize the population of N sandpipers (solutions) at random. The length of each 

solution is n, where n is the number of refactoring operations. Figure 4 shows the initial 

population. 

 
Figure 4: Population Generation and Solution Representation 

 

Step 2: Calculate the fitness value of each sandpiper using fitness function for the solution 

‘w’ as given in Eq.(1). 

Fitness (w)= ∑ (xi*(α *severity(ci)+ β*priority(ci)+γn-1
i=0                                                               

(1) 

where  

xi = {
0    𝑖𝑓 𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑠 𝑐𝑜𝑑𝑒 𝑠𝑚𝑒𝑙𝑙 𝑏𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑢𝑙𝑒𝑠
1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                           

 



α+β+γ+δ = 1 ; Each having a weighted value = 0.25 

 

Step 3: Sort the sandpipers in the descending order according to the fitness value and find 

the best fittest sandpiper 𝑃𝑏𝑠𝑡    

Step 4: Each sandpiper updates its position and generates a new set of sandpipers 

(solutions) computed using Eq. (2). 

𝑃′𝑠𝑝 = 𝐷𝑠𝑝 × ( 𝑥′ + 𝑦′ + 𝑧′) × 𝑃𝑏𝑠𝑡                                                                                            

(2) 

where 𝑃′𝑠𝑝 denotes updated position of sandpiper, 𝐷𝑠𝑝 denotes the distance between the 

sandpiper and the best fittest sandpiper, 𝑃𝑏𝑠𝑡 denotes the best fittest sandpiper. 

 

𝑥′ = 𝑅𝑎𝑑𝑖𝑢𝑠 × 𝑆𝑖𝑛(𝑖) 

𝑦′ = 𝑅𝑎𝑑𝑖𝑢𝑠 × 𝐶𝑜𝑠(𝑖) 

𝑧′ = 𝑅𝑎𝑑𝑖𝑢𝑠 × 𝑖 

𝑅𝑎𝑑𝑖𝑢𝑠 = 𝑢 × 𝑒𝑘𝑣 

where  𝑢 and 𝑣 are constants to define spiral shape and assigned a value of 1, 𝑒 is the base 

of the natural logarithm, 𝑖 lies in the range 0 ≤ 𝑘 ≤ 2𝜋, 𝑅𝑎𝑑𝑖𝑢𝑠 is the radius of each 

spiral turn. 

 

Step 5: Migration behavior directs the sandpiper to move from one position to another 

and can also change their speed and the angle of attack continuously. This movement 

triggers a discrete change in the position of sandpiper, which promotes higher exploration 

rather than the sandpiper becoming stuck around the same position. An additional variable 

𝐶𝐴 is employed for computing new position by avoiding collision between their 

neighbouring sandpipers computed using Eq.(3). After collision avoidance the sandpiper 

converge towards the direction of the best neighbor and is computed using Eq.(4). 

𝐶𝑠𝑝 = 𝐶𝐴 × 𝑃𝑠𝑝                                                                                                

 (3) 

where 𝐶𝑠𝑝 denotes the new position which does not collide, 𝑃𝑠𝑝 denotes current position 

of the sandpiper, 𝐶𝐴 is responsible for movement of sandpiper in a search space and 

assigned a value of  2. 

 𝑀𝑠𝑝 = 𝐶𝐵 × (𝑃𝑏𝑠𝑡 − 𝑃𝑠𝑝)                                                                          

(4) 

where 𝑀𝑠𝑝 denotes new position after converge, 𝐶𝐵 = 0.5 × 𝑅𝑎𝑛𝑑 ,where 𝑅𝑎𝑛𝑑 = [0,1]. 

 

Step 6: Find the fitness value of newly generated sandpipers. 

Step 7: Update 𝑃𝑏𝑠𝑡 , if there is a better solution than the previous optimal solution. 

Step 8: Repeat steps 2 to 7 for a maximum of 100 iterations. The number of iterations is 

constrained to 100 because this will mean that the saturation will be reached. The solution 

with the maximum fitness value is considered the optimal refactoring subset, which is 

stored as the suggested refactoring. 

Output: Suggested Refactoring Sequence 

IV. PROPOSED WORK 

 

The framework is composed of code smell detection, mapping code smells with 

refactoring and refactoring sequence selection subsystems as shown in Figure 5. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Proposed framework 

 

A. Code Smell Detection Subsytem 

Code smells identify the structural problems of a system. Each smell affects several 

components namely packages, classes and methods. This work considers code smells namely 

Blob, functional decomposition, feature envy, data class and spaghetti code. To help developers 

to identify code smells in the software, several detection rules are available in the literature. A 
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total of 65 and 161 instances of the five code smells have been found by examining Xerces-J 

and GanttProject, as shown in Table 3. 

 

Table 3: Code smells in GanttProject and Xerces-J 

 

Software Code smells Instance

s 

GanttProje

ct 

Blob 7 

Functional 

Decomposition 

18 

Feature Envy 11 

Data Class 16 

Spaghetti Code 13 

Total 65 

Xerces-J 

Blob 31 

Functional 

Decomposition 

16 

Feature Envy 72 

Data Class 29 

Spaghetti Code 13 

 Total 161 

 

B. Mapping Code Smells with Refactoring 

After detecting the five code smells they need to be mapped with the corresponding 

refactoring operation. Fowler proposed a catalog of 22 code smells and group of 70 refactoring 

for all the code smells [5]. The refactoring operations for the five code smells are extracted 

from the refactoring catalog and mapped with the corresponding code smells using the 

JDeodorant an eclipse plugin.  Table 4 presents an outline of the five code smells and few of 

their associated refactoring operations. 

 

Table 4: Code smells and their associated refactoring 

 

Code Smell Refactoring Operation 

Blob 

Extract class 

Extract subclass 

Extract interface 

Move method 

Move field 

Functional 

Decomposition 

Move method 

Move field 

Feature Envy 

Move method 

Extract method 

Inline class 

Push down method 

Push down field 

Spaghetti Code 

Extract subclass 

Extract super class 

Extract class 



Move method 

Pull up method 

Pull up field 

Data Class 
Move method 

Extract method 

 

C. Refactoring Sequence Selection Subsystem 

Refactoring would be time consuming by examining every code smells. It may be less 

important and given low priority to refactor code smells in a class that hasn't changed since its 

first implementation than a class that has seen more changes. By capturing priority, severity, 

risk and importance score the code smells can be prioritized. The rank of the code smells is 

calculated based on various factors namely priority, severity, risk and importance score. 

Priority scores are obtained from the developers who can prioritize different types of code smell 

based on their preferences. Severity scores are measured using the infusion tool based on design 

characteristics namely size, complexity, encapsulation, coupling, cohesion and hierarchy. Risk 

scores are measured using SonarQube tool based on continuous code quality inspection.  

Importance score are computed based on the code change history from the github repository. 

The fitness function is based on these four scores to evaluate the solution. 

The refactoring subsystem employs the SOA algorithm to determine the optimal 

sequence of refactoring. It accepts inputs from a refactoring base containing code smells with 

a set of refactoring operations. Each solution is a set of refactoring operations along with their 

control parameters. Each refactoring operation is evaluated using the fitness function. The 

solutions are then refined using a predetermined number of iterations. The sandpipers are sorted 

based on their best fitness function. Each sandpiper updates its position and generates a new 

set of sandpipers (solutions). Migration behavior directs the sandpiper to move from one 

position to another and can also change their speed and the angle of attack continuously. The 

subsystem generates the optimal refactoring sequence, from a list of possible refactoring, with 

the goal of improving software quality by reducing the number of detected code smells. 

 

 Solution representation 

Vector-based solution coding has been implemented in SOA design. A refactoring 

operation is represented by vector dimension. These refactoring operations are applied in the 

order indicated by their vector positions. A set of control parameters is selected for each 

refactoring. Table 5 provides an illustration of a solution. Initially, an empty vector is created 

that represents the current refactoring solution. Then, a refactoring operation is selected from 

the list of possible refactoring operations along with its controlling parameters. The refactoring 

operation is applied to an intermediate model that represents the source code.  After applying 

each refactoring operation, the model is updated and the process is repeated n times until the 

maximal solution length (n) is reached. 

 

Table 5: Solution representation 

 

Rop1 Move method(a1,a2,p) 

Rop2 Pull-up field(a1,a2,q) 

Rop3 Extract class(a1,a2) 

Rop4 Move field(a1,a2,q) 

Rop5 Inline class(a1,a2) 

Rop6 Pushdown method(a1,a2,p) 



 

 Refactoring feasibility 

It is critical to ensure that the proposed framework is feasible and that the suggested 

refactoring can be implemented. Opdyke [33] is the first to introduce a method of formalizing 

the pre-conditions that must be imposed before refactoring to preserve the system's behavior. 

Opdyke [33] developed functions that could be used to formulate constraints in predicate 

expressions. These are similar to the analysis functions that Cinneide [34] and Roberts [35] 

used to reduce program analysis through automatic refactoring tool. The proposed work uses a 

system inspired by Cinneide to check a set of simple conditions that employs pre and post-

conditions expressed in terms of conditions on the software code. The pre and post-conditions 

for the few refactoring operation is outlined in Table 6. 

 

Table 6: Outline of pre and post-conditions for refactoring operation 

 

Refactoring Pre and post-conditions 

Move 

method(a1,a2,p) 

Pre: Classes a1, a2 must exist & p must be method of a1. 

Post: Classes a1, a2 must exist & p must be method of a2. 

Move field(a1,a2,q) Pre: Classes a1, a2 must exist & q must be field of a1. 

Post: Classes a1, a2 must exist & q must be field of a2. 

Pull-up 

field(a1,a2,q) 

Pre: Classes a1, a2 must exist and a2 is superclass of a1 & q must be 

field of a1. 

Post: Classes a1, a2 must exist and a2 is superclass of a1 & q must be 

field of a2. 

Pull-up 

method(a1,a2,p) 

Pre: Classes a1, a2 must exist and a2 is superclass of a1 & p must be 

method of a1. 

Post: Classes a1, a2 must exist and a2 is superclass of a1 & p must be 

method of a2. 

Pushdown 

field(a1,a2,q) 

Pre: Classes a1, a2 must exist and a2 is subclass of a1 & q must be 

field of a1. 

Post: Classes a1, a2 must exist and a2 is subclass of a1 & q must be 

field of a2. 

Pushdown 

method(a1,a2,p) 

Pre: Classes a1, a2 must exist and a2 is subclass of a1 & p must be 

method of a1. 

Post: Classes a1, a2 must exist and a2 is subclass of a1 & p must be 

method of a2. 

 

V. EMPIRICAL STUDY DEFINITION AND DESIGN 

 

Experiments are conducted on open-source systems, namely GanttProject and Xerces-

J, to evaluate the framework's feasibility and efficiency in producing the best refactoring ideas. 

This section presents research questions, details of experiment design and discusses the results. 

 

A. Research Questions and Objectives 

The performance of the work is evaluated by determining whether it could lead to 

effective refactoring strategies that addresses code smells. The three research questions are 

outlined below, and the study explains how the experiments are set up to investigate them. The 

following are the three research questions:  

RQ1: How many code smells can be fixed by the proposed approach?  



RQ2: To what extent can the most severe, riskiest and important code smells be corrected by 

the proposed approach? 

RQ3: How effective is the proposed SOA-based approach in comparison to other algorithms 

GA, PSO, CRO and SPEA? 

 

B. Systems Studied 

The work has been experimented on the well-known Java projects namely Xerces-J and 

GanttProject. Xerces-J is a software packages for parsing XML. GanttProject is a software tool 

for project management. These systems are selected for validation because they have been 

actively developed over the past ten years, and their design has not induced a slowdown in their 

development.  An outline of descriptive statistics for the aforementioned software is shown in 

Table 7. Typically, a github repository is used to access open-source software and its change 

history. Code changes may be characterized in terms of recorded refactoring that are applied 

to earlier versions for software.    

 

Table 7: Software statistics 

Software  Release Class LOC Complexi

ty 

Code 

smells 

Code 

changes 

GanttProje

ct 

V1.10.2 245 47k 1.697 83 91 

Xerces-J V2.7.0 991 238k 1.4 171 7493 

 

C. Analysis Method 

RQ1 is addressed using the CCR and RP metrics. 

CCR measures the proportion of corrected code smells to the total number of detected 

code smells prior to applying the suggested refactoring sequence as shown in Eq.(5). 

𝐶𝐶𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐶𝑜𝑑𝑒 𝑠𝑚𝑒𝑙𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑑𝑒 𝑠𝑚𝑒𝑙𝑙𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑟𝑒𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑛𝑔
∈ [0,1]      (5) 

The feasibility of the proposed refactoring sequences for each system has been 

manually inspected for RP. The software ECLIPSE is used to implement the recommended 

refactoring, and the modified code fragments are examined for the semantic consistency. There 

have been some conceptual errors discovered through software behavior. When a conceptual 

error is discovered, the operations related to this change are considered as a bad 

recommendation. The correctness precision rate is expressed as the ratio of possible refactoring 

operations to the total number of proposed refactoring as shown in Eq.(6). 

𝑅𝑃 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑛𝑔𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑟𝑒𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑛𝑔𝑠
∈ [0,1]      

 (6) 

 

RQ2 is addressed using the ICR, RCR and SCR metrics. 

The ICR is expressed as the total sum of importance scores of detected code smells 

using a particular refactoring w to the one prior to refactoring as shown in Eq.(7). ICR measures 

the efficiency of a refactoring solution in fixing important code smells.  The higher the ICR, 

better is the refactoring solution. 

𝐼𝐶𝑅 = 1 −
∑ (𝑥𝑖×𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑎𝑖))𝑟−1

𝑖=0

∑ (𝑥𝑗×𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑎𝑗))𝑠−1
𝑗=0

∈ [0,1]       (7) 

where 𝑠 and 𝑟 are the number of classes in the system before and after applying the refactoring 

solution w, the function 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑎𝑖) gives the importance score of the class 𝑎𝑖, and 𝑥𝑖 

equals 0 if the actual class 𝑎𝑖 is detected as a code smell using detection rules, and 1 otherwise. 



The RCR is expressed as the sum of risk scores of detected code smells after applying a given 

refactoring solution w compared to the one prior to refactoring as shown in Eq.(8). RCR 

measures the efficiency of a refactoring solution in fixing the riskiest code smells. The higher 

the RCR, better is the refactoring solution. 

𝑅𝐶𝑅 = 1 −
∑ (𝑥𝑖×𝑟𝑖𝑠𝑘(𝑎𝑖))𝑟−1

𝑖=0

∑ (𝑥𝑗×𝑟𝑖𝑠𝑘(𝑎𝑗))𝑠−1
𝑗=0

∈ [0,1]        (8) 

where 𝑠 and 𝑟 are the number of classes in the system before and after applying the refactoring 

solution w, the function 𝑟𝑖𝑠𝑘(𝑎𝑖) gives the risk score of the class 𝑎𝑖, and 𝑥𝑖 equals 0 if the 

actual class 𝑎𝑖 is detected as a code smell using code smell detection rules, and 1 otherwise. 

The SCR is expressed as the sum of severity scores of detected code smells after applying a 

given refactoring solution w compared to the one prior to refactoring as shown in Eq.(9). SCR 

reflects the efficiency of a refactoring solution in correcting severest code smells. The higher 

the SCR, better is the refactoring solution. 

𝑆𝐶𝑅 = 1 −
∑ (𝑥𝑖 × 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦(𝑎𝑖))𝑟−1

𝑖=0

∑ (𝑥𝑗 × 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦(𝑎𝑗))𝑠−1
𝑗=0

∈ [0,1]       (9) 

where 𝑠 and 𝑟 are the number of classes in the system before and after applying the refactoring 

solution w, the function 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦(𝑎𝑖) gives the severity score of the class 𝑎𝑖, and 𝑥𝑖  equals 0 

if the actual class 𝑎𝑖 is detected as a code smell using code smell detection rules, and 1 

otherwise. 

 

RQ3 is addressed by evaluating the performance of the SOA algorithm compared to the three 

algorithms GA, PSO, CRO and SPEA. Additionally, recent surveys show that these three meta-

heuristics are the most frequently used in solving various software engineering problems. 

 

VI. RESULTS AND EVALUATION 

 

The performance of SOA is compared with four popular meta-heuristics (GA, PSO, 

CRO and SPEA) using the same fitness function. Because the algorithms are stochastic, a 

slightly new sets of results are generated every time during execution. This difficulty is solved 

by providing experimental study based on 31 independent simulation runs for each algorithm. 

The average CCR, ICR, RCR, and SCR scores for identifying the refactoring solution with the 

suitable prioritization over 31 independent simulations upon GanttProject is 90, 80, 92, and 

85%, as shown in Figure 6. The Wilcoxon rank sum test [36] is used to compare SOA-based 

approach and each of the other algorithms in terms of CCR, ICR, RCR, and SCR with a 99 % 

confidence level(𝛼 =  1 %). The tests show that the results are not merely coincidental but 

statistically significant ( 𝑝 𝑣𝑎𝑙𝑢𝑒 < 0.01). 
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Figure 6: Multiple simulation runs on GanttProject 

 

To better evaluate this work and answer RQ4, the results of SOA-based framework are 

compared with four different population-based algorithms (GA, PSO, CRO and SPEA), which 

have been shown to have competing performance in solving different software engineering 

problems. All algorithms employ the same formulation. According to the comparison results 

outlined in Table 8, SOA competes with the four algorithms in terms of CCR, ICR, and RCR 

with the refactoring precision of 70%. The average number of code smells fixed by SOA is 

94%, compared to 84, 84, 90, and 93% for GA, PSO, CRO, and SPEA, respectively. In 

addition, SOA fixed 89% of significant code smells according to ICR, compared to less than 

87% for other techniques. Based on these results, SOA competes with GA, PSO, CRO and 

SPEA. 

 

 

 

 

Table 8: Comparison of Proposed work with GA, PSO,CRO and SPEA 

 

The suggested refactoring operations improve code quality significantly, with good 

code smell correction scores as outlined in Table 9.  For Xerces-J, 100 % of blobs (31over 31), 

94 % of Functional decomposition (15 over 16), 90 % of Feature envy (65 over 72), 90 % of 

Data Class (26 over 29) and 100 % (13 over 13) of spaghetti code are fixed. For GanttProject, 

100 % of blobs (7 over 7), 100% of Functional decomposition (18 over 18), 91% of Feature 

envy (10 over 11), 88 % of Data Class (14 over 16) and 92% (12 over 13) of spaghetti code 

are fixed. 

 

Table 9: Code smell Correction Ratio (CCR)  

 

Software Code Smells CCR 

GanttProject 

Blob 100% (7/7) 

Functional 

Decomposition 

100% 

(18/18) 

Systems 
Algorit

hm 

CCR ICR RCR SCR RP 

Sco

re 

  p 

value 

Sco

re 

p 

value 

Sco

re 

 p 

value 

Scor

e 

 p 

value 

Sco

re 

p 

value 

GanttProj

ect 

GA 87 <0.01 84 <0.01 93 <0.01 84 <0.01 67 0.387 

PSO 87 <0.01 84 <0.01 93 <0.01 86 <0.01 67 0.235 

CRO 91 <0.01 87 <0.01 91 <0.01 87 <0.01 67 0.586 

SPEA 92 <0.01 - - - - - - 68 0.651 

Propose

d 

94 <0.01 88  92 <0.01 87 <0.01 68 0.235 

Xerces-J 

GA 84 <0.01 86 <0.01 87 <0.01 88 <0.01 76 0.689 

PSO 84 <0.01 85 <0.01 88 <0.01 87 <0.01 76 0.556 

CRO 91 <0.01 89 <0.01 90 <0.01 89 <0.01 76 0.695 

SPEA 94 <0.01 - - - - - - 78 0.659 

Propose

d 

95 <0.01 90 <0.01 91 <0.01 90 <0.01 78 0.521 



Feature Envy 91% (10/11) 

Data Class 88% (14/16) 

Spaghetti Code 92% (12/13) 

Xerces-J 

Blob 
100% 

(31/31) 

Functional 

Decomposition 

94% (15/16) 

Feature Envy 90% (65/72) 

Data Class 90% (26/29) 

Spaghetti Code 
100% 

(13/13) 

 

Another important factor is the distribution of refactoring operations. For both systems, 

the majority of the suggested refactoring is related to moving methods, moving fields, and 

adding parameters. Figure 7 illustrates how refactoring types are distributed differently in 

Xerces-J. Moving fields and moving methods are the two most frequently recommended 

refactorings. The majority of code smells are blob, functional decomposition, and spaghetti 

code that require refactoring. 

To fix a blob code smell, attributes and methods of blob class are moved to other classes 

by reducing the functionalities of blob class and adding functionalities to other classes. As a 

result, refactoring operations namely the move field and move method are more likely useful 

to correct the blob code smell. Furthermore, code smells correction scores for data classes will 

be very low and most of them are corrected with a good score of 89 %. This is mainly because 

data classes are relatively simple to fix and do not require extensive refactoring. There is a 

structural relationship between data classes and blobs, so fixing blobs can implicitly fix data 

classes. Improving the correction of blobs can implicitly increase the correction of data classes. 

 

Figure 7: Suggested refactoring distribution for Xerces-J 

 

The performance of the proposed method is also compared with two existing 

techniques; that is, SPEA, and the CRO. The improved performance of the proposed 

framework can be attributed to the ability of its efficiecy,effectiveness and the aplicability. 

Efficiency is determined by how well the suggested solution can correct code smells. The 

extent to which a framework is able to provide the necessary functionality serves as an index 
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of its effectiveness. The degree to which the framework can be adapted for various software is 

its applicability. The results of the comparison are shown in Figure 8 through Figure 10. 

 

 

 
 

            Figure 8: Efficiency – Proposed vs Exisiting work 

 

 

Figure 9: Effectiveness – Proposed vs Exisiting work 
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Figure 10: Applicability – Proposed vs Exisiting work 

 

VII. THREATS TO VALIDITY 

 

Construct validity refers to the relationship between the theory and the observation.  

The measurement of CCR that depends on the code smell detection rules is often questionable. 

This threat can be eliminated by inspecting and validating each code smell manually. 

Internal validity addresses the bias in the results that were obtained. The results 

produced by the stochastic algorithms on 31 independent simulation runs for each instance are 

statistically analysed using the Wilcoxon rank sum test [36] with a 99 % confidence level(𝛼 =
 1 %). The parameter tuning of the various optimization algorithms however creates another 

internal threat despite the same stopping criteria, which needs evaluation in further work. 

External validity is the generalization of observed results outside the sample instances 

utilized in the experiment. In this work, experiments are performed on five different code smell 

types and two widely used open-source systems with different sizes, as outlined in Table 7. 

However, the findings are not applicable to industrial applications or to other programming 

languages.  Further replications of this study are required to confirm the generalizability of our 

findings. 

 

VIII.  CONCLUSION AND SCOPEW FOR FUTURE 

 

The Sandpiper optimization algorithm is used in this paper to recommend the best 

refactoring solutions for fixing code smells considering software maintainers’ preferences. 

Initially metric-based detection rules are employed to detect code smells and the relevant 

refactoring operations are extracted from refactoring catalog. Refactoring operations are 

optimized using SOA to produce best refactoring sequences. The recommended refactoring 

sequence fixes the majority of critical, riskiest and severe code smells. Experiments on two 

software systems having five code smell types show that the proposed framework is 

competitive with four different popular meta-heuristic algorithms. The key benefit is to select 

the best refactoring sequence to fix the code smells. Future research would explore the 

connection between different code smells, as well as relationship between code smells and 

refactoring approaches. Injecting code smells into software and implicitly fixing them is 

considered as an additional objective. 
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APPENDIX 

Appendix.1. Abbreviations Used 

 

Abbreviation Phrase 

QDIR Quality Depreciation Index Rule 

SOA Sandpiper Optimization Algorithm 

GA Genetic Algorithm 



PSO Particle Swarm Optimization 

CRO Chemical Reaction Optimization 

SPEA Strength Pareto Evolutionary Algorithm 

GP Genetic Programming 

NSGA-II 
Nondominated Sorting Genetic 

Algorithm 

D-EA Distributed evolutionary algorithm 

MAT Memory Analyzer Tool 

spIRIT 
Smart Identification of Refactoring 

Opportunities  

MSE Encrypted Maxscript 

SRC Stability of Related Component 

RSS Relevance of a Code Smell 

RMS Related Modifiability Scenarios 

DC Data class 

FD Functional Decompositions  

CCR Code Smells Correction Ratio 

RP Refactoring Precision 

ICR Importance Correction Ratio 

RCR Risk Correction Ratio 

SCR Severity Correction Ratio 

XML Extensible Markup Language 
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