BUILDING DECENTRALIZED
APPLICATIONS ON
THE INTERNET COMPUTER AN
OVERVIEW AND IMPLEMENTATION
GUIDE

S VENKATA MOHITH REDDY'!
YANAMALA SAI KEERTHANA? A B MANJU?
MANYAM KIRAN KUMAR REDDY" Assistant Professor
RASINENI HAREESH* School of Technology
Computer Science Engineering'? The Apollo University

Electronics and Communications Engineering*
Sri Venkateswara College of Engineering
and Technology

ABSTRACT

Internet computing is a decentralized computing platform intended to enhance the capability of the web
beyond traditional client-server architectures. The Internet computer enables developers to develop and share
decentralized applications (dApps) by using a public blockchain that is available to everyone with an
Internet connection. The process of establishing a dApp on an internet computer is presented. The installation
of the Canister SDK, the development and deployment of the dApp on a local server, the purchase of cycles,
and the public distribution of the dApp on the blockchain are explored and presented. The document also
provides a command-line guide for using dfx, a versatile tool included in DFINITY that can be used to build
and maintain dApps on the Internet computer platform.

Keywords—Blockchain; Internet Computer; Decentralized Applications; Canister SDK; Motoko
programming language

I. INTRODUCTION

Blockchain technology has transformed the way we view and use digital currencies. One of the most
exciting new entrants in the blockchain space is the DFINITY blockchain. DFINITY is a decentralized
computing network that aims to revolutionize the way we build and run applications. The network uses a
unique consensus mechanism called "Threshold Relay" that ensures fast finality and high security. DFINITY
is built on the concept of "Internet Computer" which allows developers to build and deploy decentralized
applications without relying on centralized infrastructure. The network is powered by a revolutionary new
programming language called "Motoko," which simplifies the development of smart contracts and
decentralized applications. In addition, DFINITY uses a unique canister-based architecture that allows
developers to deploy their code as standalone units that can interact with other canisters on the network. One
of the most important features of DFINITY is its consensus mechanism, the "Threshold Relay." This
consensus mechanism allows DFINITY to achieve fast finality and high security without sacrificing
scalability. Unlike other consensus mechanisms like proof-of-work and proof-of-stake, threshold relay does
not rely on a fixed set of validators. Instead, validators are selected randomly from a large pool of potential
validators. This ensures that the network is not vulnerable to attacks from a small group of validators. Another

important aspect of DFINITY is its focus on building a truly decentralized network. Unlike other blockchain
networks that rely on a small group of node operators to secure the network, DFINITY is designed to be fully
decentralized. This means that anyone can run a node and participate in the consensus process. In addition,
DFINITY has a unique governance model that allows token holders to vote on network upgrades and changes.

The DFINITY blockchain is an exciting new entrant in the blockchain space that has the potential to
revolutionize the way we build and run decentralized applications. The network's unique consensus
mechanism, canister-based architecture, and focus on decentralization make it a compelling option for
developers looking to build on a truly decentralized network. As the network continues to grow and mature, it
will be interesting to see how it stacks up against other blockchain networks and whether it can achieve its
goal of becoming the "Internet Computer" of the future.

II. LITERATURE

Blockchain is a distributed ledger technology that has gained a lot of attention due to its ability to
ensure transparency and reduce fraud in various sectors. It stores transactions in a secure and transparent
manner, making it difficult to manipulate or corrupt. Immutability, transparency, and decentralization features
of blockchain have made it a promising technology for reducing fraud and enhancing transparency in various
industries.

A. Blockchain for Transparency and Fraud Reduction

Blockchain technology has the potential to significantly reduce fraud and enhance transparency in
various industries. In the financial industry, blockchain technology can reduce fraud by providing a
tamper-proof record of all financial transactions. This can reduce the need for intermediaries, such as banks,
and enable faster and more secure transactions. Several studies have shown that blockchain technology can
improve financial systems' efficiency, security, and transparency (Kshetri, 2018 [13]; Crosby et al., 2016

[12]).

In the healthcare industry, blockchain technology can ensure the transparency and security of patient
data. Blockchain can ensure that patient data is secure and can only be accessed by authorized personnel.
Blockchain can also ensure the accuracy of medical records by providing an immutable record of all medical
transactions. Several studies have shown that blockchain technology can improve healthcare systems'
efficiency, security, and transparency (Pilkington, 2016 [26]; Radanovic et al., 2018 [27]).

Blockchain technology in the supply chain industry ensures all transactions in the supply chain are
transparent and secure, reducing the possibility of fraud. This can help to ensure that products are authentic
and of high quality. Several studies have shown that blockchain technology can improve the efficiency,
security, and transparency of supply chain systems (Zheng et al., 2017 [14]; Xu et al., 2018 [11]).

Smart contracts, which are self-executing contracts with the terms of the agreement between buyer and
seller being directly written into lines of code, can further enhance transparency and reduce fraud using
blockchain. Smart contracts can help to ensure that all parties involved in a transaction fulfill their obligations,
reducing the possibility of fraud. Several studies have shown that smart contracts can improve various
blockchain systems' efficiency, security, and transparency (Buterin, 2014 [23]; Domingo-Ferrer et al., 2018

[24]).

The use of blockchain technology has the potential to greatly reduce fraud and increase transparency
across a range of businesses such as financial, healthcare, smart contracts and supply chain sectors due to its
fundamental characteristics of immutability, transparency, and decentralization.

ITII. PROPOSED WORK

A. Architecture

Intermet Computer

ICP protoco!

IP / Internet

Data Centers

Figure 1: Internet Computer Architecture

Creating a dApp on the Internet Computer, a canister smart contract containing Web Assembly code
and configuration is required.

Canister modules are created using Motoko language and SDK. Deployed using HTTPS interface.
Users interact with the canister via System API. System API allows them to read from and write to the
canister's state, among other things. In addition, users can issue read-only queries for faster results, but they
won't be able to modify the canister's state.

PN PN
s [Internet Computer
Developer User P
i i

T
| | |
i /submit create canister o

>

! ! | create | canister 1 |

_ canister-id=1 '

| Jsubmit install module

I S

initialize

Jsubmit call “hello”

hello

| | "Hello world!"
| a3

Developer User [mternet Computer‘ [Canisterl

Figure 2 : A Typical use of Internet Computer

B. Peer to peer layer

The peer-to-peer layer (P2P) of the Internet Computer enables secure and reliable communication of
network messages (artifacts) between the nodes of a subnet. Artifacts include network messages that need to
be broadcasted in the subnet, such as input to canister smart contracts submitted by users or
protocol-originating messages like blocks produced by the consensus layer. P2P guarantees the eventual
broadcast delivery of an artifact to all nodes requiring it to progress, making it the communication fabric for
the IC protocol stack. Gossip protocol is the basic principle behind P2P communication networks. Every node
in the subnet is connected to a subset of other nodes, and whenever a node receives or generates an artifact, it
gossips it to all its peers. This ensures that every artifact eventually propagates through the whole subnet.
Figure 3 presents peer to peer layer

Peer-to-Peer Layer

Lowest layer of the ICP protocol

@ Execution
Internet Computer
Messaging ibic cvhersoace
{t; Consensus
ICP protocol
P2P
%ﬁl IP / Internet

Purpose: Data Centers

Make information available at one IC node
reach enough other IC nodes in the same
subnet efficiently

Figure 3: Peer-to-peer layer

Adverts are used to mitigate duplication of delivered artifacts. Instead of sending the artifact to all
peers, nodes send adverts to artifacts containing the hash of the artifact and some additional metadata. After
receiving an advert, a node may request the corresponding artifact from one or more of its peers who sent it an
advert for that artifact.

Prioritization of artifacts is important to ensure that the protocol can always make progress and not be
starved of network bandwidth by "less important" traffic. This principle is well known from traditional
networking and applies equally well to a blockchain system.

Input
{ Replica (Subnet_x) } { Replica (Subnet_v} }
BLOCK MAKER D
Message INDUCTION POOL MSG SCHEDULER QUEUE TO Subnet,
Routing MSG; MSG, MSG, + — MSG;— MSG, =
MSG: M5G; M5Gm MSG ROUTER T)
VALID SET RULE
4
I QUEUE TO Subnet,
Consensus [FNALIZER | [BLOCKNOTARIZER | [BLOCKMAKER |« MSG: MSG.
ry T r -
v Arrows indicate
P2P chop:: BLK; % F.SIG; N.SIG 4 BLK» MSG. BLKs MSG, information flow
F.51G 4 N.SIG ARTIFACT POOL MSG, T-n_ =——— infois pulled
| = info is pushed

Figure 4: P2P Architecture

Figure 4 presents P2P architecture. To prevent DOS attacks, nodes only request and accept connections
with nodes in the same subnet. Subnet membership is managed by the Network Nervous System (NNS). P2P
guarantees that all the communication between two nodes is encrypted and authenticated using TLS thanks to
the information stored in the NNS canisters.

Consensus Handles Artifact Pool Changes

i:} fn on_state_change ()

Consensus uses artifact pool to

Gossip informs consensus of determine its next action: initiates
changes in the artifact pool changes (adding, deleting, .)
to artifact pool

cbﬁf BLE; FSIG NSIG BLK, MSG. BLK, MSG,
° FSIG. MNSIG. ARTIFACTPOOL MSG.

Analogously, Gossip interacts with all its client application components, namely
Ingress Manager and State Synchronization
Figure 5: Consensus handles Artifact pool changes

Figure 5, presents consensus handles artifacts pool changes. Asynchronous communication network

assumption is used for the IC's communication and consensus layers as it reflects the properties of real-world
networks.

GOSSIP Data Structures at a Node

Artifacts have baen valldated by appication Diata structuras maintained for each pear
camponant. o be relayed
4
Adverts recaived
ARTIFACT POOL R N T
queued to
E ADVERTE QIUFEUE ™ raquatt artifacte
. accarding ta
pricrity
VALIDATED REGUESTED Adverts of
ariifacts
— currently
= e
from peer
= iisy
UNVAUDATED 1 UNVALIDATED 2 UNVALIDATED d I it

Artifacts received from peer 2, not valldated
‘vet by spplication component

Figure 6: GOSSIP Data Structure at a Node

Figure 6 presents GOSSIP data structure at a Node. The P2P layer is used by the consensus layer to
broadcast artifacts to the nodes in the subnet, and it is the communication fabric for the IC protocol stack.

C. Canister Architecture

book_trip book_flight
—— _—
e
_
m booked

Call context for book_trip

Figure 7: Canister

Figure 7 presents a canister. In the context of the Internet Computer Protocol (ICP), a canister is a
fundamental building block that encapsulates an application or a smart contract. It is a secure and isolated
environment where code can be deployed and executed on the ICP network.

Canister Code — Creation/Installing/Reinstalling

Creation
B ——
Install e Install: install code on an empty canister.
B ——
— Reinstall — Reinstall: replace the Wasm module of a canister, wipe canister
M —_— m state, keep existing call contexts

Figure 8: Creation, Installing, and Reinstalling

Creation, Installation, and Reinstalling of canister code is shown in figure 8. A canister is essentially a
container that holds the code and data of an application or a smart contract. It is similar to a container in a
traditional computing environment but with some important differences. For example, canisters are designed
to be completely isolated from each other and from the underlying operating system. This means that even if
one canister is compromised, it cannot affect the security or stability of other canisters on the network.

Canisters are a key component of the ICP network because they enable developers to deploy and
execute code without having to worry about the underlying infrastructure. They also provide a high degree of
security and isolation, which is critical for applications that deal with sensitive data or transactions.

Canister Upgrade

Upgrade Upgrade: replace the Wasm module of a canister;

preserve data between versions of the canister.

|

Write to - m— Read from =
—— Stable Memory a M Stable Memory Aod
M R - —_— B
Stable Stable
Memory Memory
pre_upgrade post_upgrade

Upgrading is atomic

Call contexts are preserved across upgrades: can stop a canister before an upgrade

Figure 9: Canister Upgrade

Figure 9 presents the upgradation of the canister. One of the main advantages of using canisters on the
ICP network is scalability. Because canisters are designed to be completely isolated from each other, they can

be deployed and scaled independently. This means that applications can be easily scaled up or down as
needed, without having to worry about the underlying infrastructure. Another advantage of using canisters on
the ICP network is interoperability. Canisters can interact with each other and with other components of the
ICP network, such as the Internet Identity (II) service, using open standards and protocols. This enables
developers to create complex applications that can leverage the full power of the ICP network.

Overall, canisters are a key component of the ICP network and provide a secure and scalable
environment for deploying and executing applications and smart contracts. They enable developers to focus
on building their applications, without having to worry about the underlying infrastructure or security
concerns.

D. Working Model:

The proposed work involves the development of a transaction history management system using
blockchain technology to reduce the misuse of funds with an immutable ledger without using traditional
databases. The system is developed using Motoko programming language and ICP Dfinity blockchain
platform.

The developed transaction history management system is based on a decentralized blockchain network,
where all transactions will be recorded and stored in an immutable ledger. The system developed using
Motoko programming language and deployed on the ICP Dfinity blockchain platform.

() index.js M = mainmo M ® < index.html

‘e func createTranscations(num: Nat,text: Text,ID: Text) {
newTranscation : n = {
transactionID = ID;
typeOfTranscation = text;
amount = num;
createdAt Time.now();
description0fTranscation = "Transcation Details";
transactionRecipient ="Transaction Recipient"
h
transcations := [push(newTranscation, transcations);
Debug.print({debug W(Time.now()));

gquery nc viewAllTranscation():
(trans in L Array(transcations).vals()) {
ig.print(d w(trans.amount}));

n currentBalance;

- amount ist.List<Nal> = List.ni
quer viewAllAmounts(): as 5
or (trans List.toArray(transcations).vals()} {
amount := List.push(trans.amount, amount);
};

n amount;

ry func returnTransactions(): as)

n List.toArray(transcations);

Figure 10:Backend Code in Motoko

Figure 10 presents backend code in Motoko. The system consists of a smart contract responsible for
managing all transactions and maintaining an up-to-date record of the account balance. The smart contract is
developed using the Motoko programming language and deployed on the ICP Dfinity blockchain platform.
When an account holder performs a transaction, the smart contract will verify the transaction and record it in
the blockchain ledger. This will ensure that all transactions are transparent and tamper-proof, reducing the risk
of fraud and misuse of funds.

main.mo M

larations/dbank"

src
dbank
= main.mo
unixTimeNano /

const date w Date{unixTimeMs

hours + 5;
minutes +

declarations
minutesIST >

hoursIST += 1
minutesIST

Figure 11: Frontend Code in JavaScript

Figure 11 presents the frontend code in javascript. To view the transaction history, account holders and
administrators can access the ledger through a user interface that displays all transactions, including the date,
time, type of transaction, and amount. The ledger is stored in a decentralized manner, ensuring that it is
available to all users at all times and cannot be manipulated.

sactionRecipient’ IDL.Text
IDL.Int
cription0fTranscation IDL.Text
'amount IDL.Nat

List, fill({IDL Pids IDL.Nat, List
2o 101 :

[IDL.Nat ['query
return i FUNC IDL Transcation) | query
"topUp
‘viewAllAmounts
viewAllTra
withdraw C{ [ID ' oneway

declarations
dbank
dbank.did

Figure 12: Motoko function declarations.

Figure 12 shows the function declaration part in Motoko.The proposed transaction history management
system using blockchain technology provides an immutable, transparent, and tamper-proof ledger to reduce
the risk of fraud and misuse of funds. The system was developed using the Motoko programming language
and deployed on the ICP Dfinity blockchain platform. The smart contract manages all transactions and
maintains an up-to-date record of the account balance, while the ledger will be stored in a decentralized
manner to ensure availability and security.

The impact of using blockchain technology to maintain transaction records can be significant compared
to traditional databases.

E. Results and Discussions

Canister SDK is installed. Build and deploy dApp on a local server. Free cycles are acquired to
power the dApp. “ Cycle wallets” are established to enable transfer cycles to other dApps that require them.
Deploy the dApp on the blockchain for public usage. The following are the steps to develop and deploy a
decentralized application (dApp).

IV. STEPS FOR IMPLEMENTATION

A. Installing Tools

° SDK installation:

Download and install the latest version of the DFINITY Canister smart contract SDK, called dfx, by
running the command below. dfx is natively supported on Linux or macOS 12.* Monterey or later.

° Install on Mac/Linux:
To install dfx, Table 1 presents the SDK installation.

Table 1: SDK installation

*“*bash

sh -ci "$(curl -fsSL https://internetcomputer.org/install.sh)"

tip
If you are using a machine running Apple silicon, you will need to have

[Rosetta] (https://support.apple.com/en-us/HT211861) installed. You can
install Rosetta by running

‘softwareupdate --install-rosetta” in your terminal.

° Install on Windows:

To install dfx, there is no native support for dfx on Windows. However, by installing Windows
Subsystem for Linux (WSL), Follow Microsoft's instructions for installing the Windows Subsystem
for Linux. Make sure Windows 10 (version 2004 or higher) or Windows 11 is running.

The SDK installation script installs several components in default locations on the local computer.
The following table describes the development environment components that the installation script
installs:

Table 2 presents the different components that get installed.

https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.microsoft.com/en-us/windows/wsl/install

Table 2: Components that get installed

Component Description Default location

dfx DFINITY /usr/local/bin/dfx
execution

command-line
interface (CLI)

moc Motoko runtime ~/.cache/dfinity/versions/<VERSION>/moc
compiler

replica Internet computer ~/.cache/dfinity/versions/<VERSION>/repli
local network ca
Binary

uninstall.sh Script to remove ~/.cache/dfinity/uninstall.sh
the SDK and all of
its components

versions Cache directory ~/.cache/dfinity/versions
that contains a
subdirectory for
each version of the
SDK you install.

B. Core components in a versioned directory

The ~/.cache/dfinity/versions directory is used to store cached copies of the DFINITY SDK, but the
specific directory structure and contents can vary based on the system and installed components. Table 3
presents the contents of the directory.

Table 3 contents of the ~/ cache/dfinity/versions/0.9.3 directory

total 349192

drwxr-xr-x 17 pubs staff 544 Mar 15 11:55 .
drwxr-xr-x 4 pubs staff 128 Mar 25 14:36 ..
drwxr-xr-x 49 pubs staff 1568 Mar 15 11:55 base
drwxr-xr-x 20 pubs staff 640 Mar 15 11:55 bootstrap

-r-x------ | pubs staff 66253292 Mar 15 11:55 dfx

-1-x------ | pubs staff 10496256 Dec 31 1969 ic-ref

-r-x------ 1 pubs staff 5663644 Dec 31 1969 ic-starter

-1-x------ 1 pubs staff 9604 Dec 31 1969 libcharset.1.0.0.dylib
-r-x------ 1 pubs staff 38220 Dec 31 1969 libffi.7.dylib
-1-x------ | pubs staff 668300 Dec 31 1969 libgmp.10.dylib

-1-x------ | pubs staff 958248 Dec 31 1969 libiconv.2.4.0.dylib

-1-x------ 1 pubs staff 4200 Dec 31 1969 libiconv.dylib

-1-x------ 1 pubs staff 96900 Dec 31 1969 libz.1.2.11.dylib
-1-x------ 1 pubs staff 15417684 Dec 31 1969 mo-doc
-1-x------ | pubs staff 14634020 Dec 31 1969 mo-ide
-1-x------ | pubs staff 15111508 Dec 31 1969 moc

-1-x------ 1 pubs staff 49404128 Dec 31 1969 replica

C. Command-Line Reference

DFINITY's command-line execution environment, dfx, is a versatile tool for developing and managing
dApps on the Internet Computer platform. With dfx, allows to create, deploy, and manage dApps using
various flags and subcommands. To use dfx, simply need to enter the appropriate flags and subcommands for
the operation that you want to perform. For instance, use dfx deploy to deploy a dApp, or dfx canister to
manage a canister. The syntax for running dfx commands is straightforward and easy to use.

D. Basic Syntax
dfx [subcommand] [flag]

Depending on the subcommand, the options and flags that specify might apply to the parent command
or to a specific subcommand.

The dfx upgrade command allows you to check for and download any available updates to the
DFINITY SDK. Run this command, it compares the version of dfx currently installed with the latest version
available for download, and if a newer version is available, it automatically downloads and installs it. Keeping
DFINITY SDK up-to-date is important because it ensures access to the latest fixes and enhancements.

Syntax

dfx upgrade

E. Installing the Node.js

Node.js is necessary for rendering the frontend assets and so is necessary to complete this tutorial. Note
however that Node.js is not needed for canister development in general. It supports all stable versions of
Node.js starting with 12. Install 12, 14, or 16. Please note that Node 17 does not support Webpack’s api proxy
tool, so npm start may not work correctly.

Download the Node.js source code or a pre-built installer for the platform.

https://nodejs.org/en/download/

F. Motoko Programming Language

Motoko is a modern, general-purpose programming language use specifically to author Internet
Computer canister smart contracts.

The base directory in the versioned subdirectory of the SDK contains the Motoko base library modules
that are compatible with that version of the SDK.

https://nodejs.org/en/download/
https://internetcomputer.org/
https://internetcomputer.org/

G. Create a New Project

A dfx project is a set of artifacts, including source code and configuration files, that can be compiled to
a canister. We Use Command Line Interface using command

dfx new [name]

The terminal output should look similar to this:

G ting new
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
Insta

CREATE
CREATE
CREATE

o -

D .
Creating git repository...

Figure 13: Terminal output when we create a new dfx project.

Figure 13, presents terminal output when we create a new dfx project.

H. Run dApp Locally

dfx has the ability to start a local execution environment for deploying dApps locally. This
environment is optimized for deployment purposes and is not a complete replica of the IC network. As a
lightweight environment, it is solely intended for efficient deployment of dApps.
Syntax

dfx start

5. rqojn-woasl-4fzor-aujbz-4bmjc
‘ (c-atnmo-xiahs-cklpy-jymf
V-We/1¢_cons 0
atlable validation context 15 smaller than the parent validation

context (locally available=ValidationContext { regist
' , time: Time(1854167

Figure 14: Terminal output

Figure 14 presents terminal output. Register, build, and deploy the hello canister to the local execution
environment by running

Syntax

dfx deploy

Figure 15: Terminal output
Figure 15 presents terminal output. Use npm start to start the front-end.

Syntax

npm start

sent /

tota

1 29d 160 26m

Figure 16: Terminal output

Figure 16 presents terminal output. Deploying to Internet Computer Mainnet Deployment

Step 1 - Check the connection
To check the current status of the IC and the ability to connect to it, run the following command
dfx ping ic
The expected output is presented in table 4
Table 4: Expected Output

{

"certified height": 58554739 "ic api version": "0.18.0" "impl hash":
"4d21914baeebfd4f510746d571b70646d2dfe6cfcf06457d726d6eb66e7d696c"
"impl _version": "a2fd44dafbf4ac6c41b26575077199{847bc924c"
"replica_health_status": "healthy" "root key": [48, 129, 130, 48, 29, 6, 13,43,6, 1,4, 1,
130,220, 124, 5,3, 1,2, 1,6, 12,43, 6, 1,4, 1, 130, 220, 124, 5, 3,2, 1, 3, 97, 0, 129, 76,
14, 110, 199, 31, 171, 88, 59, 8, 189, 129, 55, 60, 37, 92, 60, 55, 27, 46, 132, 134, 60,
152, 164, 241, 224, 139, 116, 35, 93, 20, 251, 93, 156, 12, 213, 70, 217, 104, 95, 145, 58,
12,11, 44, 197, 52, 21, 131, 191, 75, 67, 146, 228, 103, 219, 150, 214, 91, 155, 180, 203,
113,113, 18, 248, 71, 46, 13, 90, 77, 20, 80, 95, 253, 116, 132, 176, 18, 145, 9, 28, 95,

135, 185, 136, 131, 70, 63, 152, 9, 26, 11, 170, 174]
}

Step 2: Connecting to the ledger to get account information

° Use the following command to confirm which developer identity that are currently using:
dfx identity whoami

° Use the following command to view the principal associated with the current identity:
dfx identity get-principal

° To get the account identifier associated with the developer identity, use this command:
dfx ledger account-id

° Finally, check the account balance using the following command:
dfx ledger --network ic balance

Step 3: Register, Build and Deploy

° Make sure to be in the root directory of the project.
° If necessary, install the node modules by running "npm install" in the project directory.
° Run "dfx deploy --network ic" to register, build, and deploy the application. This command installs

dApp on the Internet Computer blockchain mainnet.

° Check the command output to ensure that canisters are created, built, installed, and authorized
correctly.
° If enough cycles are not availble, add more by running
"dfx ledger --network ic top-up gastn-uqaaa-aaaae-aaafq-cai --amount 1.005"
° To get canister ID run command

dfx canister —network ic id [project_name] assets
This gives the canister ID that looks like this
ryjl3-tyaaa-aaaaa-ababa-cai
° To see the project which is live in blockchain, use this canister ID

https://[canister ID].raw.ic0.app

V. CONCLUSION

Blockchain technology has become a necessity in today's digital age due to its ability to provide secure,
decentralized, and transparent systems for various applications. As traditional centralized systems become
more vulnerable to hacking, fraud, and data breaches, blockchain offers a solution by providing a distributed
ledger system that is immutable and transparent. This technology has already been implemented in various
industries such as finance, supply chain management, healthcare, and voting systems.

In addition to providing secure and efficient transactions, blockchain technology promotes
decentralization by removing intermediaries such as banks and financial institutions in financial transactions.
This creates more opportunities for financial inclusion and empowerment, particularly in developing countries
where traditional banking services may not be readily available. The use of blockchain technology is
becoming increasingly necessary as society becomes more dependent on digital systems and transactions. Its
ability to provide security, transparency, and decentralization makes it a valuable tool in various industries and
applications.

The DFINITY Foundation, a Swiss-based not-for-profit organization, recognizes the potential of
blockchain technology and has a vision to create a blockchain singularity. The foundation aims to rebuild
every system and service using smart contracts that run entirely on the Internet Computer blockchain. As a
major contributor to the development of the Internet Computer blockchain, the foundation has the largest
R&D team in the blockchain industry. Furthermore, the Internet Computer blockchain is an open-source tool
that allows developers to build decentralized applications and smart contracts. With the development of
innovative technologies like the Internet Computer blockchain, the potential for future innovation in
blockchain technology is vast.

VI. CODE REFERENCE

https:/gith m/mohith-venkata/ic-project

REFERENCES

[1] The Internet Computer for Geeks (v1.3), The DFINITY Team* April 19, 2022 https:/internetcomputer.org/whitepaper.pdf

[2] J. Camenisch, M. Drijvers, T. Hanke, Y.-A. Pignolet, V. Shoup, and D. Williams. Internet Computer Consensus. Cryptology ePrint
Archive, Report 2021/632, 2021. hitps://ia.cr/2021/632.

[3] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Retrieved from https://bitcoin.org/bitcoin.pdf

[4] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and Verifiably Encrypted Signatures from Bilinear Maps. In E. Biham,
editor, Advances in Cryptology - EUROCRYPT 2003, International Conference on the Theory and Applications of Cryptographic
Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, volume 2656 of Lecture Notes in Computer Science, pages 416— 432.
Springer, 2003.

[5] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil Pairing. In C. Boyd, editor, Advances in Cryptology -
ASIACRYPT 2001, 7th International Conference on the Theory and Application of Cryptology and Information Security, Gold Coast,
Australia, December 9-13, 2001, Proceedings, volume 2248 of Lecture Notes in Computer Science, pages 514-532. Springer, 2001.

[6] Y. Desmedt. Society and Group Oriented Cryptography: A New Concept. In C. Pomerance, editor, Advances in Cryptology -
CRYPTO ’87, A Conference on the Theory and Applications of Cryptographic Techniques, Santa Barbara, California, USA, August
16-20, 1987, Proceedings, volume 293 of Lecture Notes in Computer Science, pages 120—127. Springer, 1987.

[7]1 Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling Byzantine Agreements for Cryptocurrencies.
Cryptology ePrint Archive, Report 2017/454, 2017. https:/eprint.iacr.org/2017/454.

[8] R. Pass and E. Shi. Thunderella: Blockchains with Optimistic Instant Confirmation. In J. B. Nielsen and V. Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes in Computer Science, pages
3-33. Springer, 2018.

[9] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. HotStuff: BFT Consensus in the Lens of Blockchain, 2018.
arXiv:1803.05069, http://arxiv. org/abs/1803.05069.

[10] R. C. Merkle. A Digital Signature Based on a Conventional Encryption Func- tion. In Advances in Cryptology - CRYPTO ’87, A
Conference on the Theory and Applications of Cryptographic Techniques, Santa Barbara, California, USA, August 16-20, 1987,
Proceedings, volume 293 of Lecture Notes in Computer Science, pages 369—-378. Springer, 1987.

[11] Xu et al., 2018 is a paper titled "A Survey on Smart Contracts: Challenges, Solutions, and Open Issues."

[12] Crosby, M., Pattanayak, P., Verma, S., & Kalyanaraman, V. (2016). Blockchain technology: Beyond bitcoin. Applied Innovation,
2(6-10), 71-81.

[13] Kshetri, N. (2018). Blockchain’s roles in meeting key supply chain management objectives. International Journal of Information
Management, 39, 80-89.

[14] Zheng, Z., Xie, S., Dai, H.-N., Chen, W., & Wang, H. (2018). Blockchain challenges and opportunities: A survey. International
Journal of Web and Grid Services, 14(4), 352-375.

[15] Zhang, J., Wen, X., & Zhang, H. (2018). Blockchain based transparent and secure logistics. In 2018 3rd International Conference on
Automation, Control and Robotics Engineering (CACRE) (pp. 21-24). IEEE.

[16] Huang, X., Zeng, X., Wu, Q., & Li, Y. (2017). An e-commerce logistics model based on blockchain technology. In Proceedings of
the 2017 2nd International Conference on Logistics and Intelligent Transportation Systems (pp. 177-182). ACM.

[17] Li, S., Li, J., & Li, X. (2019). Blockchain in logistics and supply chain: A review. International Journal of Information Management,
49, 264-272.

[18] Lee, J. (2019). Blockchain-based smart contract in supply chain management. Sustainability, 11(16), 4407.

https://github.com/mohith-venkata/ic-projects
https://internetcomputer.org/whitepaper.pdf
https://ia.cr/2021/632
https://eprint.iacr.org/2017/454

[19] Fanning, K., & Centers, D. P. (2016). Blockchain and its coming impact on financial services. The Journal of Corporate Accounting
& Finance, 27(5), 53-57.

[20] Tapscott, D., & Tapscott, A. (2016). Blockchain revolution: how the technology behind bitcoin is changing money, business, and the
world. Penguin.

[21] Antonopoulos, A. M. (2014). Mastering Bitcoin: Unlocking Digital Cryptocurrencies.

[22] Domingo-Ferrer, J., Martinez-Ballesté, A., & Soria-Comas, J. (2018). The rise of smart contract-based decentralized autonomous
organizations. IEEE Internet Computing, 22(3), 26-34.

[23] Buterin, V. (2014). A next-generation smart contract and decentralized application platform. Ethereum Project Yellow Paper, 151(3)

[24] Domingo-Ferrer, J., de la Prieta, F., & Prieto, J. M. (2018). A systematic review of smart contracts: Challenges, solutions, and open
issues. ACM Computing Surveys (CSUR), 51(5), 1-39.

[25] Swan, M. (2015). Blockchain: Blueprint for a new economy. O'Reilly Media, Inc.

[26] Pilkington, M. (2016). Smart contracts: State of the art, challenges, and opportunities. International Journal of Electronic Commerce,
21(1), 22-39.

[27] Radanovic, M., Tasca, P., & Tessone, C. J. (2018). Blockchain-empowered smart contracts: A systematic mapping study. ACM
Computing Surveys (CSUR), 51(4), 1-42.

