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Abstract 

 

An exact solution to the problem of a transit free convective flow through porous medium of an 

electrically conducting viscous incompressible fluid past an infinite vertical porous plate in a rotating system 

taking into account the effect of Hall current and heat source is presented when the temperature as well as the 

concentration at the plate varies periodically with time. The fluid with the plate rotates with a constant angular 

velocity about the normal to the plate. A uniform magnetic field is assumed to be applied along the normal to 

the plate directed into the fluid region. The magnetic Reynolds number is assumed to be so small that the 

induced magnetic field can be neglected. The expressions for the temperature, concentration, primary and 

secondary velocity fields and skin frictions at the plate due to primary and secondary velocity fields are obtained 

in non-dimensional form. The velocity fields, temperature distribution, species concentration are demonstrated 

graphically. 

Keywords : Hall current, free convection, MHD, Porous medium, rotation, mass diffusion. 

Nomenclature 

q :  Velocity vector 

  : Angular velocity 

r  : position vector  

  : Fluid density  

p  : Fluid pressure 

,J J  : Current density  

B  : Magnetic induction vector 

B0 : Strength of the applied magnetic field  

  : Coefficient of volume expansion for heat transfer 
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   : Coefficient of volume expansion for mass transfer 

 g   : Acceleration due to gravity 

   : Coefficient of viscosity  

 Cp : Specific heat at constant pressure 

 k : Thermal conductivity 

 K : Permeability of Porous Medium 

   : Frictional heat 

 v0  : Constant suction velocity 
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
 : Ohmic dissipation  

   : Electrical conductivity 

 C  : Species concentration 

C0  : Reference concentration 

 C


  : Concentration of the fluid far as from the plate 

 D : Coefficient of mass diffusivity  

 T


  : Fluid temperature for away from the plate   

0
T  : Reference temperature 

T  : Temperature  

,  t t  : Time       

Gr  : Grashof number for heat transfer 

Gm : Grashof number for mass transfer 

M : Hartmann number 



 

3 
 

m : Hall parameter 

e
  : Number density of electron 

e
  : Electron frequency  

e
  : Electron collision time 

Pr : Prandtl number 

 Sc : Schmidt number 

 S : Heat Source parameter 

e : Electron charge 

  : Non-dimensional temperature 

  : Non-dimensional species concentration 

Pe : Electron pressure 

E  : Electric field  

2 q
 

:
 

Coriolis acceleration 

( )r    : Centripetal acceleration 

( , , ),  ( , , )x y z x y z  : The coordinates in three dimensions 

( , , ),  ( , , )u v w u v w   : The velocity components along ( , , ) /( , , )x y z x y z axes 

( , , ),  ( , , )
x y z x y z

J J J J J J : The current density components along ( , , ) /( , , )x y z x y z axes, where the 

bars represent dimensional quantities 

Introduction 

MHD is the science of motion of electrically conducting fluid in presence of magnetic field. There are 

numerous examples of application of MHD principle. Engineer apply MHD principle in fusion reactors, 

dispersion of metals, metallurgy, design of MHD pumps, MHD generators and MHD flow meters etc. The 
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dynamo and motor is classical example of MHD principle. Geophysics encounters MHD characteristics in the 

interaction of conducting fluid and magnetic field. MHD convection problems are also very significant in fields 

of Stellar and Planetary magnetospheres, aeronautics and chemical and electrical engineering. The MHD 

principle also finds its application in Medicine and Biology. Application in biomedical engineering includes 

cardiac MRI, ECG etc. The principle of MHD is also used in stabilizing a flow against the transition from 

laminar to turbulent flow. 

MHD in its present form is due to the pioneer contribution of several notable authors like Alfven [3], 

Cowling [14], Shercliff [6], Ferraro and Plumption [15] and Crammer and Pai [7]. It was emphasized by 

Cowling [14] that when the strength of the magnetic field is sufficiently large, Ohm’s law needs to be modified 

to include Hall current. The Hall Effect is due merely to the sideways magnetic force on the drifting free 

charges. The electric field has to have a component transverse to the direction of the current density to balance 

this force.  In many works on plasma physics, the Hall Effect is ignored. But if the strength of magnetic field is 

high and the number density of electrons is small, the Hall Effect cannot be disregarded as it has a significant 

effect on the flow pattern of an ionized gas. Hall Effect results in a development of an additional potential 

difference between opposite surface of a conductor for which a current is induced perpendicular to both the 

electric and magnetic field. This current is termed as Hall current. Model studies on the effect of Hall current on 

MHD convection flows have been carried out by many authors due to application of such studies in the 

problems of MHD generators and Hall accelerators.  Some of them are Pop [5], Kinyanjui et al. [11], 

Aboeldahab [2], Datta et al. [13], Acharya et al. [10], Sharma et al. [1] and Maleque and Sattar [12], Swarup et. 

Al. [16], Kumar et. Al. [17]. 

The rotating flow of an electrically conducting fluid in presence of a magnetic field is encountered in 

Geophysical fluid dynamics. It is also important in the solar physics dealing with the sunspot development, the 

solar cycle and the structure of rotating magnetic stars. It is well known that a number of astronomical bodies 

possess fluid interiors and magnetic fields. Changes that take place in the rate of rotation, suggest the possible 

importance of hydro magnetic spin-up. Many authors have studied this problem of spin-up in MHD under 

different conditions of whom the names of Debnath [9], Singh [8] and Takhar et al. [4] are worth mentioning. 

Recently, Ahmed and Kalita [18] have studied on transient MHD Free Convection from an Infinite Vertical 

Porous Plate in a Rotating System with Mass Transfer and Hall Current. 

Due to importance of studying MHD free convection through porous medium problems in rotating 

system, we have proposed in the present paper to investigate the problem of the unsteady MHD free convective 
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flow through porous medium of an electrically conducting viscous fluid past an infinite vertical porous plate 

taking into account the effect of the Hall current and heat source when the plate and the fluid in unison rotate 

about the normal to the plate.  Here our main objective is to study the effects of the magnetic field, rotation of 

the fluid and Hall current on the flow and transport characteristics. 

Basic Equations 

 The equations governing the motion of an incompressible viscous electrically conducting fluid through 

porous medium in a rotation system in presence of a magnetic field are  

Equation of continuity: 

 . 0q =                  …(1) 

Momentum equation: 

( ) ( ) 22  .
q

q r q q p J B pg q q
t K


 

 
+  +   +  = − +  + +  −  

            

…(2) 

Energy equation: 

 ( ) ( )
2

2.p p

T J
C q T k T C S T T

t
 




 
+  =  ++ + − 

 
          …(3) 

Species continuity equation: 

 ( ) 2 2

1.
C

q C D C D T
t


+  =  + 


         …(4) 

Kirchhoff’s first law: 

 . 0J =                 …(5) 

 

General Ohm’s law: 

 ( ) 1
Be e

c

o e

J J E q B p
B e

 




 
+  = +  +  

 
           …(6) 

Gauss’s law of magnetism 

 . B 0 =                 …(7) 

The physical quantities involves in the above equations are defined in the Nomenclature 
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We now consider an unsteady flow of an incompressible viscous electrically conducting fluid past an 

infinite vertical porous plate in a rotating system with constant suction (the plate suction velocity being quite 

small) taking into account the species concentration and Hall current in presence of a uniform transverse 

magnetic field. Our investigation is restricted to the following assumptions. 

(i) All the fluid properties except the density in the buoyancy force term are constants. 

(ii) The plate is electrically non-conducting. 

(iii) The entire system is rotating with angular velocity   about the normal to the plate. 

(iv) The magnetic Reynolds number is so small that the induced magnetic field can be neglected. 

Also, the electrical conductivity   of the fluid is reasonably low and hence the Ohmic 

dissipation may be neglected. 

(v) The electron pressure Pe is constant. 

(vi) 0E = i. e. the electric field is negligible. 

(vii) | |  is so small that | ( ) |r  i.e. the centrifugal force may be neglected. 

 

Figure 1. Flow configuration. 
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We introduce a coordinate system ( ),  ,  X Y Z with X-axis along the direction of the buoyancy force, 

Y-axis normal to the plate directed into the fluid region which is the axis of rotation and Z-axis along the width 

of the plate. Let ˆˆ ˆq iu jv kw= + +
 
be the fluid velocity, ˆˆ ˆ

x y zJ J i J j J k= + +
 
be the current density 

at the point P ( ), , ,x y z t and 
0
ˆB B j= be the applied magnetic field, ˆˆ ˆ, ,i j k

 
being the unit vectors along 

X-axis, Y-axis and Z-axis respectively. As the plate is infinite in X-direction and Z-direction, therefore all the 

quantities except possibly the pressure are independent of  and x z . 

The equation (1) gives 0
v

y


=


             …(8) 

Which is trivially satisfied by 0v v= −
            

…(9) 

Vo being the suction velocity and it is fairly small.    

Therefore the velocity vector q is given by 

 ˆˆ ˆ
oq ui v j wk= − +                       …(10) 

The equation (7) is satisfied by 
oB B J=                   …(11) 

The equation (5) reduces to 0 which shows that 0
y

y

J
J

y


= =


      …(12) 

(As the plate is electrically non-conducting) 

Hence the current density is given by 

 ˆˆ
x zJ J i J k= +                       …(13) 

Under the assumption (v) and (vi), the equation (6) takes the form 

 ( ) ( )
0

m
J J B q B

B
+  =                      …(14) 

Where 
e em = is the Hall parameter. 

The equations (10), (11), (13), and (14) yield, 

 ( )0

21
x

B
J mu w

m


= −

+
            …(15) 
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 ( )0

21
z

B
J u mw

m


= +

+
                     …(16)  

With the foregoing assumptions and under the usual boundary layer and Boussinesq approximation the 

equations (2), (3) and (4) reduce to 

( ) ( )
( )

( )

2

0 2

2

0

2

2

                          ...(17)
1

u u u
v w

t y y

B u mw
g T T g C C u

Km



 
 


 

  
− +  =

  

+
+ − + − − −

+

          

 
( )
( )

22
0

2 2
2

1
o

B mu ww w w
v u w

t y Kmy

 




−  
− −  = + −

  +
        …(18) 

( )
2

0 2

p

T T k T
v S T T

t y C y


  
− = + −

  
                  …(19) 

2 2

0 12 2

C C C T
v D D

t y y y

   
− = +

   
           …(20) 

The relevant boundary conditions are 

( ) ( )0 00 :  0,  0,  ,   i t i ty u w T T T T e C C C C e 

   = = = = + − = + − ...(21) 

:  0,  0,  ,  y u w T T C C → → → → →          …(22) 

 

We introduce the following non-dimensional variables and parameters. 

2

0

0 0 0 0

,    ,    ,     ,   ,    ,ov y v t u w T T C C
y t u w

v v T T C C
 

 
 

 

− −
= = = = = =

− −
 

( ) ( ) 2
0 0 0

3 3 2

0 0 0

,    ,    ,    Pr
p

g T T g C C CB
Gr Gm M

V V v k

     



 − −
= = = =  

2 2

0 0

2
,    ,     Sc

D V V

  



=  = = , 

2

2

0

K
K

v


= ,  

2

0v S
S


= , 

( )
( )

0

1

0

A C C
D

T T

 



−
=

−
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The non-dimensional form of the equations (17), (18), (19) and (20) are 

( )
2

2 21

u u u M
w mw u Gr Gm

t y y m
 

  
− + = − + + +

   +  

       ...(23) 

( )
2

2 21

w w w M
u mu w

t y y m

  
− − = + −

   +
         …(24) 

2

2

1

Pr
S

t y y

  


  
− = +

  
            …(25) 

2 2

2 2

1
A

t y Sc y y

      
− = +

               

…(26) 

Subject to the boundary conditions. 

 0 :   0,   0,   ,   i t i ty u w e e  = = = = =               …(27) 

 :   0,   0,   0,   0y u w  → = = = =           …(28) 

Method of Solution 

We now introduce a new complex variable q defined by  

q u iw= +               …(29) 

Where 1i = −  

Then non-dimensional form of the equations governing the flow and transport characteristics can be 

rewritten as follows:  

( )2

2 2

1 1

1

M imq q q
Gr Gm i q q

t y y m K
 

−   
− = + + − −  − 

   + 
       …(30) 

2

2

1

Pr
S

t y y

  


  
− = +

  
           …(31) 

2 2

2 2

1
A

t y Sc y y

      
− = +

   
           …(32) 

Subject to the boundary conditions:  



 

10 
 

0:   0,   ,   i t i ty q e e  = = = =            …(33) 

:   0,   0,   0y q  → = = =            …(34) 

The conditions (33) and (34) suggest that the solutions of the equations (30), (31) and (32) are of the 

form. 

( ). i tq f y e =               …(35) 

( ). i th y e =                        …(36) 

( ). i ty e =               …(37) 

On substitutions of (35), (36) and (37) in (30), (31) and (32) respectively the following differential 

equation are obtained. 

 1
"( ) '( ) ( ) ( ) ( )f y f y A i f y Grh y Gm y + − + = − −        …(38) 

( )"( ) Pr '( ) Pr ( ) 0h y h y i S h y+ − − =                    …(39) 

"( ) '( ) ( ) ( )y Sc y i Sc y ScAh y    + − = −          …(40) 

Subject to the conditions 

(0) 0,   ( ) 0f f=  =             …(41) 

(0) 1,   ( ) 0h h=  =              …(42) 

(0) 1,   ( ) 0 =  =             …(43) 

The solutions of the equations (38), (39) and (40) subject to the boundary conditions (41), (42) and (43) 

are follows: 

31 2

6 4 5
( )

m ym y m yf y A e A e A e
−− −= − −            …(44) 

2( ) m yh y e−=               …(45) 

3 2

3 2
( )

m y m yy A e A e − −= −             …(46) 
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Where,  
( )

1 2

1 1

1

M im
A i

m K

− 
= − + 

+ 
 

  

2

2
2 2

2 2

ScAm
A

m Scm i Sc
=

− −
 

  
3 21A A= +

 

  

( )
( )

2

4 2

2 2 1

Gr GmA
A

m m A i

−
=

− − +  

  ( )
3

5 2

3 3 1

GmA
A

m m A i
=

− − +  

  6 4 5
A A A= +

 

  

( )1

1

1 1 4

2

A i
m

+ + +
=  

( )2

2

Pr Pr 4 Pr

2

i S
m

+ + −
=

 

2

3

4

2

Sc Sc i Sc
m

+ +
=  

Hence the non-dimensional velocity, temperature and concentration distributions are given by 

( )31 2

6 4 5
.

m ym y m y i tq u iv A e A e A e e −− −= + = − −          …(47) 

( )2 .m y i te e  −=              …(48) 

( )3 2

3 2
.

m y m y i tA e A e e  − −= −             …(49) 

Temperature and Concentration Fields 

 On splitting (48) and (49) into real and imaginary parts and considering the real parts only, the 

temperature and concentration fields are obtained as 
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( )
2Pr

2 2, .
2

y y
y t e Cos t




 

+ 
− 
   

= − 
 

          …(50) 

( ) 7 8

9 10, . .
y y

y t e e
   − −

= −            …(51) 

 

Velocity Fields 

 Spiting (47) into real and imaginary parts we get the primary and secondary velocity fields as follows: 

25 25. ( ) . ( )u Cos t Sin t   = −            …(52) 

 
25 25. ( ) . ( )w Cos t Sin t   = +            …(53) 

Results and Discussion 

 we have carried out numerical calculations for the dimensionless concentration  , temperature θ, 

primary velocity u, secondary velocity w and skin frictions 
1 2  and   at the plate due to both the primary 

and secondary velocity fields respectively for different values of the rotation parameter Ώ, the frequency 

parameter η, Schmidt number Sc, Hartmann Number M. Hall parameter m, Porosity parameter K, Grashof 

number Gr,  Modified Grashof number Gm, thermal diffusion parameter A, heat source parameter S, Prandtl 

number Pr and normal coordinate y keeping the values of  time t = 0.01and these numerical values have been 

displayed in different graphs.   

 Figures – (1) and (2) shows the variation of primary and secondary velocity profile of fluid for different 

value of Magnetic field parameter (M). We observe that the primary velocity (u) of fluid is accelerated due to 

increase in the values of M, but the secondary velocity (w) reduced due to increase in the values of M. 

Figures – (3) and (4) demonstrate show the primary and secondary velocity profile of fluid for different 

value of Hall current parameter (m). It is observed that the primary and secondary velocity decreases with 

increases the value of Hall current parameter (m) continuously.     

 The primary and secondary velocity profile is displayed in figures – (5) and (6) for the different value 

of porosity parameter (K). It is cleared that the primary velocity (u) is decreased due to increase the value of K, 

but the secondary velocity increases with increase the value of K.  

 Figures – (7), (8), (9), (10), (11), (12) and (13) present the variation of the primary velocity u under the 

influence of Gr, Gm, Ω, A, S, Pr and Sc. It is inferred from those figures that the primary velocity u remains 

negative for small and moderate values of y. That is the fluid flows in the downward vertical direction in the 

portion of the fluid region adjacent to the plate and at a large distance from the plate the fluid has a tendency to 
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move in the upward vertical direction before it vanishes at y → . It is also marked in these figures that for the 

fluid region adjacent to the plate, the magnitude of the primary velocity (u) is accelerated due to increase in each 

of values of Gr, Gm, A and S. But it is seen that the primary velocity is reduced due to increase in the values of 

Ω, Pr and Sc. These results are clearly supported from the physical point of view. 

 The profiles for the secondary velocity (w) are shown in figures – (14), (15), (16), (17), (18), (19) and 

(20) for different value of Gr, Gm, Ω, A, S, Pr and Sc.  It is observed from these figures that the secondary 

velocity profiles (w) show wavy character about Y-axis (the axis rotation) near the plate. This secondary 

velocity (w) remains negative in a thin layer adjacent to the plate and after this layer it becomes positive and 

increases up to an another consecutive thin layer as y increases and finally it asymptomatically decreases and it 

vanishes as y → .  It is clear from these figures the secondary velocity profile (w) is accelerated due to 

increase in each of values of Gr, Gm, A and S. But it is seen that the primary velocity is reduced due to increase 

in the values of Ω, Pr and Sc, same as primary velocity profile. This phenomenon establishes the fact that due to 

application of the effect of the rotation and Hall current on the secondary flow becomes immaterial for which 

the secondary flow is stabilized. 

Figures – (21) and (22) shows the variation of primary and secondary velocity profile of fluid for 

different value of the frequency of oscillation (η). We observe that the primary velocity (u) of fluid is 

accelerated due to increase in the values of η, but the secondary velocity (w) reduced due to increase in the 

values of η. 

Figures – (23) and (24) demonstrate show the species concentrations profile (ϕ) is affected by mass 

diffusion and the thermal diffusion.  These two figures indicate that the concentration profile (ϕ) first increases 

in a very thin layer adjacent to the plate and there after it asymptotically decreases to zero as y → .  The 

figures – (23) & (24) further show that the concentration rises near the plate and falls away from the plate when 

y is increased. It may be noted that an increase in Sc means a decrease in mass diffusion. But the concentration 

profile (ϕ) is increased when thermal diffusion parameter (A) increases.   
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Fig. 2: The secondary velocity profile for different values of M. 
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Fig. - 3: The primary velocity profile for different value of m.
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Fig. 4: The secondary velocity profile for different values of m. 
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Fig. - 5: The primary velocity profile for different value of K.
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Fig. 6: The secondary velocity profile for different values of K. 
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Fig. - 7: The primary velocity profile for different value of Gr.
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Fig. - 8: The primary velocity profile for different value of Gm.
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Fig. - 9: The primary velocity profile for different value of Ω.
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Fig. - 10: The primary velocity profile for different value of A.
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Fig. - 11: The primary velocity profile for different value of S.
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Fig. - 12: The primary velocity profile for different value of Pr.
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Fig. - 13: The primary velocity profile for different value of Sc.
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Fig. 14: The secondary velocity profile for different values of Gr. 
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Fig. 15: The secondary velocity profile for different values of Gm. 
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Fig. 16: The secondary velocity profile for different values of Ω. 
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Fig. 17: The secondary velocity profile for different values of A. 
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Fig. 18: The secondary velocity profile for different values of S.
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Fig. 19: The secondary velocity profile for different values of Pr.
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Fig. 20: The secondary velocity profile for different values of Sc.
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Fig. - 21: The primary velocity profile for different value of η.
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Fig. 22: The secondary velocity profile for different values of η. 
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Fig. - 23: The Concentration Profile for different Value of Sc.

y

Sc = 0.4, 0.6, 0.8

M = 1, m = 0.1, K = 2, Pr = 0.71, A = 1 

Gr = 3, Gm = 4, S = 0.01, η = 0.01, Ω = 5, t = 0.01

ϕ



 

27 
 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10

Fig. - 24: The Concentration Profile for different Value of A.
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