
NEW GENERALIZATION OF THE FIBONACCI SEQUENCE IN 

CASE OF THIRD ORDER RECURRENCE EQUATIONS 

 

1.1 INTRODUCTION 

 In this chapter we define new generalization of the Fibonacci sequence in case 

of third order recurrence equations. We generate pair of integer sequences using third 

order recurrence equations: 

n+3 = n+2 + n+1 + n  n > 0 

n+3 = n+2 + n+1 + n  n > 0 

 This process of constructing two sequences   0ii  and   0ii  is called 2-

Fibonacci sequences [5,7]. 

  

1.2 NEW GENERALIZATION 

 The process of construction of the Fibonacci numbers is a sequential process 

[1,2,6]. Atanassov, K. [3,4] consider two infinite sequence {an} and {bn} which have 

given initial values a1, a2 and b1, b2. Sequences {an} and {bn} are generated for every 

natural number n > 2 by the coupled equations, 

 an+2 = bn+1 + bn  

bn+2 = an+1 + an 

 In this chapter we consider two infinite sequences   0ii  and   0ii  which 

have given three initial values a, c, e and b, d, f (which are real numbers). Sequences 

  0ii  and   0ii  are generated for every natural number n > 3 by the coupled 

equations. 

n+3 = n+2 + n+1 + n  n > 0  

n+3 = n+2 + n+1 + n  n > 0 



 If we set a = b, c = d, e = f then the sequence   0ii  and   0ii  will coincide 

with each other and with the sequence  0iiF , which is a generalized Fibonacci 

sequence. 

where, Fo (a, c, e) = a, F1(a, c, e) = c, F2(a, c, e) = e,  

   Fn+3(a, c, e) = Fn+2(a, c, e) + Fn+1(a, c, e) + Fn(a, c, e) 

 There are eight different ways to construct sequences {i} and {i} : 

First way  : n+3 = n+2 + n+1 + n  

n+3 = n+2 + n+1 + n  

Second way :  n+3 = n+2 + n+1 + n  

n+3 = n+2 + n+1 + n  

Third way  :  n+3 = n+2 + n+1 + n  

n+3 = n+2 + n+1 + n  

Fourth way  :  n+3 = n+2 + n+1 + n  

n+3 = n+2 + n+1 + n  

Fifth way : n+3 = n+2 + n+1 + n  

n+3 = n+2 + n+1 + n 



Sixth way :  n+3 = n+2 + n+1 + n  

n+3 = n+2 + n+1 + n 

Seventh way:  n+3 = n+2 + n+1 + n  

n+3 = n+2 + n+1 + n 

Eighth way :  n+3 = n+2 + n+1 + n  

    n+3 = n+2 + n+1 + n 

 Graphically we can show the above generalization as under : 
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Figure 3 
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1.3 THE 2F-SEQUENCES 

 We are constructing two sequences   0ii  and   0ii  by the following way – 

 0 = a, 1 = c, 2 = e;  o = b, 1 = d, 2 = f 

n+3 = n+2 + n+1 + n  n > 0 

n+3 = n+2 + n+1 + n  n > 0    (1.3.1) 

where, a, b, c, d, e, f are real numbers. 

 First we shall study the properties of the sequence  


 0ii  and  


 0ii  defined by 

equation (1.3.1). The first ten terms of the sequences defined in equation (13.1) are 

shown in table below : 

n n n 

0 a b 

1 c d 

2 e f 

3 b + d + f a + c + e 

4 a + c + e + f + d b + c + d + e + f 

5 a + b + 2c + d + 2f + 2e a + b + c + 2d + 2e + 2f 

6 2a + 2b + 3c + 3d + 4e + 3f 2a + 2b + 3c + 3d + 3e + 4f 

7 3a + 4b + 5c + 6d + 6e + 7f 4a + 3b + 6c + 5d + 7e + 6f 

8 7a + 6b + 10c + 10d + 11e + 12f 6a + 7b + 10c + 10d + 12e + 12f 

9 12a + 12b + 18c + 18d + 22e + 22f 12a + 12b + 18c + 19d + 21e + 22f 

 

 

 



Theorem – 1 : For every integer n > 0 

(a) 4.n + o = 4.n + o 

(b) 4.n+1 + 1 = 4.n+1 + 1 

(c) 4.n+2 + 2 = 4.n+2 + 2 

(d)  4.n+3 + 3 = 4.n+3 + 3 

 We prove the above results by induction hypothesis. 

Proof of (a) : If n = 0 the result is true because – 

 o + o = 0 + o 

Assume that the result is true for some integer n > 1. 

Now by equation (1.3.1) we can write – 

 4.n+4 + 0 = 4.n+3 + 4.n+2 + 4.n+1 + o 

       = 4.n+2 + 4.n+1 + 4.n + 4.n+2 + 4.n+1 + o 

       = 4.n+2 + 4.n+1 + 4.n+2 + 4.n+1 +  4.n + o 

       = 4.n+2 + 4.n+1 + 4.n+2 + 4.n+1 +  4.n + o (by ind. hyp.) 

       = 4.n+2 + 4.n+1 + 4.n+3 + o  (By eq. 1.3.1) 

       = 4.n+3 + 4.n+2 + 4.n+1 + o 

       = n+4 + o (By eq. 1.3.1) 

Hence the result is true for all integers n > 0. 

(b) : If n = 0 the result is true because  1 + 1 = 1 + 1 

Assume that the result is true for some integer n > 1. 

Now by eqn. (1.3.1) we can write – 

 4.n+5 + 1 = 4.n+4 + 4.n+3 + 4.n+2 + 1 



       = 4.n+3 + 4.n+2 + 4.n+1 + 4.n+3 + 4.n+2 + 1 (By eq.1.3.1) 

       = 4.n+3 + 4.n+2 + 4.n+3 + 4.n+2 +  4.n+1 + 1 

       = 4.n+3 + 4.n+2 + 4.n+3 + 4.n+2 +  4.n+1 + 1 (By ind. hyp.) 

       = 4.n+3 + 4.n+2 + 4.n+4 + 1 (By eq. 1.3.1) 

       = 4.n+4 + 4.n+3 + 4.n+2 + 1 

       = 4.n+5 + 1 (By eq. 1.3.1) 

Hence the result is true for all integer n > 0. 

(c): If n = 0 the result is true because 6 + 2 = 6 + 2 

Now from eqn.(2.3.1) we can write – 

 4.n+6 + 2 = 4.n+5 + 4.n+4 + 4.n+3 + 2 

       = 4.n+4 + 4.n+3 + 4.n+2 + 4.n+4 + 4.n+3 + 2 (By eq. 1.3.1) 

       = 4.n+4 + 4.n+3 + 4.n+4 + 4.n+3 +  4.n+2 + 2 

       = 4.n+4 + 4.n+3 + 4.n+4 + 4.n+3 +  4.n+2 + 2 (By ind. hyp.) 

       = 4.n+4 + 4.n+3 + 4.n+5 + 2 (By eq. 1.3.1) 

       = 4.n+3 + 4.n+4 + 4.n+5 + 2 

       = 4.n+6 + 2 (By eq. 1.3.1) 

Hence the result is true for n > 0. 

(d) : If n = 0 the result is true because 7 + 3 = 7 + 3 

Now from eqn.(2.3.1) we can write  

 4.n+7 + 3 = 4.n+6 + 4.n+5 + 4.n+4 + 3 

       = 4.n+5 + 4.n+4 + 4.n+3 + 4.n+5 + 4.n+4 + 3 (By eq. 1.3.1) 

       = 4.n+5 + 4.n+4 + 4.n+5 + 4.n+4 + 4.n+3 + 3 



       = 4.n+5 + 4.n+4 + 4.n+5 + 4.n+4 + 4.n+3 + 3 (By Ind. hyp.) 

       = 4.n+5 + 4.n+4 + 4.n+6 + 3 (By eq. 1.3.1) 

       = 4.n+6 + 4.n+5 + 4.n+4 + 3 

       = 4.n+7 + 3 (By eq. 1.3.1) 

Hence result is true for n > 0. 

 Some results for particular value of sequences {i} and {i} defined in equation 

(1.3.1). 

2.4 RESULTS 

Result I:  

(1) For K = 0,  4.K+3 = 




2K4

0i

 i + 1 + 2 

(2) For K = 1,  4.K+3 = 




2K4

0i

 i + 1 + 2 + 5 

Result II:  

(1) For K = 0,  


K4

0i

 i - i = 0 - 0 

(2) For K = 1,  


K4

0i

 i - i = 0 - 0 

(3) For K = 2,  


K4

0i

 i - i = 0 - 0 - 2 

Result III: Relationship between sequence defined in (1.3.1) and Fibonacci numbers : 

(1) n+3 + n+3 = Fn+1 (0 + 0) + Fn+2 (1 + 1) + Fn+3 (2 + 2) - 0 - 0 

 

above result is true for n = 0. 

 

(2) n+3 + n+3 = Fn+1 (0 + 0) + Fn+2 (1 + 1) + Fn+3 (2 + 2)   

above result is true for n = 1, n = 2. 



(3) n+3 + n+3 = Fn+1 (0 + 0) + Fn+2 (1 + 1) + Fn+3 (2 + 2) - 0 - 0 + 1 + 1 - 

2 - 2 

above result is true for n = 3. 

2.5 PARTICULAR CASES 

(1) If we take 0 = 1, 1 = 2, 2 = 3 and 0 = 3, 1 = 2, 2 = 1 then with the help of 

equation (1.3.1) we get the sequences {i} and {i} in the following form :  

Table - 2 

n n n 

0 1 3 

1 2 2 

2 3 1 

3 6 6 

4 9 11 

5 18 18 

6 35 33 

7 62 62 

8 113 115 

9 210 210 

 

By induction we can show the following results from the Table above: 

 (a) 4.n + 0 = 4.n + 0 

 (b) 4.n+1 + 1 = 4.n+1 + 1 

(c) 4.n+2 + 2 = 4.n+2 + 2 

(d) 4.n+3 + 3 = 4.n+3 + 3 

 

(2) If we take 0 = 1, 1 = 2, 2 = 3 

and 0 = 1, 1 = 2, 2 = 3 

 Then with the help of equation (1.3.1) we get the sequences {i} and {i} in 

the following form : 



Table - 3 

n n n 

0 1 1 

1 2 2 

2 3 3 

3 6 6 

4 11 11 

5 20 20 

6 37 37 

7 68 68 

8 125 125 

9 230 230 

 

 In Table 3 sequence {i} and {i} coincide with each other because of the 

reason that we set initial values – 

 o = o, 1 = 1, 2 = 2 

  In this case sequences {i} and {i} also coincide with the sequence  0iiF , 

which is generalized Fibonacci sequence which is defined by the recurrence 

relation. 

 Fn+3 = Fn+2 + Fn+1 + Fn 

 where, Fo = 0, F1 = 1, F2 = 2. 
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