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                                                                 ABSTRACT 

The present study aims at investigating the combined effect of a uniform vertical magnetic field and Soret effect 

on the onset of double diffusive convection in a nanofluid layer. The linear stability analysis is based on normal 

mode technique. Galerkin method has been applied to find the critical Rayleigh number and the corresponding 

wave number in terms of various parameters numerically. The effects of Soret parameter, magnetic field, Lewis 

number, Modified diffusivity ratio, Concentration Rayleigh-Darcy number, Solutal Rayleigh number on the 

stability of the system has been investigated.  
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Nomenclature                                                

c                  Specific heat of nanofluid 

g                  Gravitational Acceleration 

*t                 Time  

t                    Dimensionless Time 

*T                Nanofluid Temperature 

* * *( , , )x y z  Space Coordinates 

( , , )X Y Z    Dimensionless Space Coordinates 

S                  Solute concentration 

*S               Dimensionless Solute Concentration 

                Viscosity 

( )
M

c      Medium’s effective heat capacity 

( )
F

c       Fluid’s effective heat capacity 

 ( )
P

c        Effective heat capacity of nanoparticles 

 dB             Brownian diffusion coefficient 

tB              Thermophoretic diffusion coefficient 

dS             Diffusion Coefficient 

ctS           Soret coefficient of salt 

t           Thermal Volumetric Coefficient 

c          Solutal Volumetric Coefficient 

mk        Effective thermal conductivity 

         Wave number 

m       Thermal diffusivity of the porous medium 

           Relaxation time 



          Heat capacity ratio 

          Frequency of oscillation 

*        Volume fraction of Nanoparticle 

*

0         Reference value of nanoparticle volume 

fraction 

         Porosity 

e         Magnetic permeability 

'      Electrical conductivity of nanofluid 

K         Permeability

I. INTRODUCTION 

Heat transfer mechanism has been improved by replacing micro sized particles with nano sized particles in 

conventional fluids. In 1992, Choi [1] observed that heat transfer is very excellent only when pumping power is 

increased and an expensive cryogenic system is maintained. The term nanofluid was first coined by Choi, he 

described the future and hope of the application of nanotechnology. The nanoparticles differ from conventional 

particles (milli-meter or micro scale) in sense that they stay in suspension in the fluid without sedimentation. 

Kumar, Prasad and Banerjee [2] established the utility of a particular nanofluid for its heat transfer application. 

Wong and Leon [3] focussed on giving the broad range of present and future applications of nanofluids. 

The problem of thermal convection for a Newtonian fluid layer was discussed by Chandrasekhar [4] taking 

varying assumptions of hydro-dynamics and hydro-magnetism. In a horizontal porous layer of nanofluid, 

convection was studied by Nield and Kuznetsov [5], incorporating Brownian Motion and Thermophoresis. He 

observed that the critical Rayleigh number decreases or increases by a significant amount when the basic 

nanoparticle concentration is increased at the top or bottom.  

Study of convective instability of the nanofluids has many uses in astrophysics and geophysics etc. Buongiorno [6] 

proposed the model for nanofluid convection. Later, Nield and Kuznetsov [7] revisited this problem by taking different 

types of non-dimensional variables. It was observed that nanofluids are more unstable than the pure fluids. Maxwell 

[8] gave mathematical model for non -Newtonian fluids exhibiting the elastic and viscous behaviour 

simultaneously. Khuzhayorov and Auriault [9] introduced law for linear flow of variety of viscoelastic fluids flow. 

Problem for Maxwell nanofluid taking into account thermophoresis and Brownian diffusion was studied by 

Jaimala, Singh and Tyagi [10].  

The study of magnetic field effects on the onset of convection has important applications in physics and 

engineering. In metal casting and in cooling systems of electronic devices, magnetic field effects are of great 

importance. The nanofluid can be taken as a working medium in order to get effective heat performance of such 

devices. Rayleigh Benard Magneto-convection arises due to combined effect of buoyancy force and magnetic 

field induced Lorentz force. A non-dimensional parameter called Chandrasekhar number gets introduced due to 

Lorentz force. Heris, Salehi and Noie [11] observed the increase in thermal efficiency of a two-phase closed 

thermosyphon while experimental study in presence of magnetic field. The combined effect of a vertical magnetic 

field and the boundaries on the onset of convection in an electrically nanofluid layer heated from below was 

investigated by Yadav, Agrawal and Bhargava [12]. Effect of magnetic field considering internal heating after 

filling the space between plates with nanofluid was also studied by Yadav, Changhoon, Jinho and Hyung [13]. 

Due to vast applications double diffusion has become appreciably important now days. The difference of 

temperature affects the buoyancy force in double diffusive convection, but also the difference of concentration of 

the fluid affects the buoyancy force in double diffusion. A detailed study on double diffusive convection has been 

discussed in the books by Bejan and Nield [14], Ingham and Pop [15] and Vafai [16]. Horton and Rogers [17] and 

Lapwood [18] studied fluid instability in a horizontal layer. Further work was made by Haajizadeh, Ozgue and Tien 

[19], Gaikwad, Malashetty and Prasad [20], Malashetty and Swamy [21].  



In fluid flow problems, Soret effect is phenomenon of generation of the concentration flux by temperature 

gradient. Soret effect induced in concentration on the convective instability of a regular Newtonian fluid saturated 

in a porous medium has been investigated by many researchers. Wang and Tan [22] investigated the Soret-driven 

convective instability in Benard cells in a non-Newtonian fluid. The role of Soret effect induced by the temperature 

gradient was explored by Singh, Bishnoi and Tyagi [23]. Bahlowl, Boutana and Vasseur [24] and Mansour, 

Amahmid, Hasnaoui and Bourich  [25] worked on Soret effect in different forms of fluid layer. Postelnicu [26] and 

Rajput and Shareef [27] also studied the Soret effect incorporating magnetic field. The phenomenon in a horizontal 

porous layer taking the base fluid of the nanofluid as binary fluid was studied by Agarwal, Sacheti, Chandran and 

Bhadauria [28]. These nanofluids proved importance in electroplating and as a transfer medium in medical 

treatment by Buongiorno [29]. 

The literature survey indicates that no study has investigated the effect of magnetic field on double diffusive 

convection in a nanofluid layer with Soret factor. The present study examines the effect of vertical magnetic field 

on Soret induced double diffusive convection in a nanofluid layer.

II. MATHEMATICAL STATEMENT 

We consider a layer of nanofluid confined between two infinite horizontal surfaces separated by a distance a, with 

z-axis vertically upward. Lower surface is maintained at higher temperature 
*

lT  and upper surface is maintained 

at temperature 
*

rT . A uniform vertical magnetic field 
* *

0(0,0, )M M=  is applied (See Fig. 1)  

                                   

                                   Fig. 1: Physical configuration of the problem 

The governing equations for conservation of mass, momentum, energy and concentration of salt and nanoparticles, 

following Buongiorno [29], Nield and Kuznetsov [7] using modified Darcy Maxwell model [30] are as follows: 
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Maxwell equations in modified form [4] are  
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where 
* * * *

1 2 3( , , )d d d du u u=q . 

For constant temperature and salt concentrations at the boundaries and zero nanoparticle flux (Flow conditions 

[31]), the boundary conditions are taken as 

* 0d =q , 
*

lT T= ,   
* *

lS S=  ,

* *

* * *
0t

d

c

B T
B

z T z

 
+ =

 
 at   

* 0z =  (8)                             

* 0d =q , 
*

rT T= ,  
* *

rS S=  ,

* *

* * *
0t

d

c

B T
B

z T z

 
+ =

 
 

at   
*z a=  (9)                                   

 We now non-dimensionalize the physical quantities in the following way: 
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On replacing dq by q , 

. 0 =q  ,  (10) 
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  The boundary conditions are  
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A. Basic State 

The basic time independent flow state is given by  

0=q , ( )bsp p Z= , ( )bs Z = , ( )bsT T Z= , ( )bsS S Z= , ˆ
Z=M e   (18)                                                            



where the suffix ‘bs’ refers to the basic flow. 

Following Chandrasekhar [4], the basic volume fraction and temperature equations are given as 
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On solving, we get  

1
bs

T Z= −   ,  0bs aN Z = + ,  and 1bsS Z= −  

 

B. Perturbed State

On the basic state, we superimpose perturbations in the form 

Let  =q q' , 'bsp p p= + ,  'bsT T T= + ,  'bsS S S= + ,  'bs  = +  , and ˆ
Z= +M e M'  , 

where the primes denote infinitesimal small quantities. Ignoring the products of primed quantities and their 

derivatives, following linearised form of equations is obtained: 
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III. LINEAR STABILITY ANALYSIS 

Following the linear stability theory by Chandrasekhar [4], the perturbations are taken of the form 

( )  3', ', , ' ( ), ( ), ( ), ( ) st iLX iMYT u S Z Z Z Z e + + =      ,                                             (29) 

where L and M  are dimensionless wave numbers in X  and Y directions respectively. 

On substituting the above values, we get 

2

2
2 2 2 2 2 2 21 1

1 1

2 2 2 2 21 1

1 1

2 2 21

1

(1 )

1 1

(1 )[ ( )]

a

m m

a n
m m

s

m

P P Ds sD D Q D D
P P

P Ps s s sR D R D
P P

PR s s D
Ln P

  
 

    
   

 
 

 
      

           
  

      
         
            

         

− − − − + −


− + − − + + − − 

+ + − −  0,=

 (30)            

2 2 0,a b bN N N
D s D D

Le Le


 
+ − − − −  = 

 
 (31)          

2 2 2 21
( ) [ ( ) ] 0ct

s
N D D

Ln
 




+ − + − −  =


 , (32)                                                           

2 2 2 21
( ) ( ) 0a aN N s
D D

Le Le
 



 
− − − − −  =   

  , (33) 

0= =  , 0 =  , 0aD N D+  =  at Z= 0 and Z = 1. (34)                        

 Employing Galerkin method to solve equations (30)-(33) together with the boundary condition (34) and taking 

first estimation as N=1, we have  
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Substituting these expressions in equations (30)-(33), we get  
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where 
2 2 2  = + . 

Taking the determinant of above matrix equation as zero, the following Rayleigh number is obtained 
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IV. RESULTS AND DISCUSSION 

 

A Stationary Convection 

Taking s=0 in equation (37), 
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From equation (37), the minimum Rayleigh number is given as  
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In absence of magnetic field, eq. (37) converts to 

 

 

which is same as obtained by Singh, Bishnoi and Tyagi [23]. For the stationary convection it is clear from eq. (38) 

that the critical Rayleigh number whose value is
24 , for Benard convection in Horton-Roger problem for a 

regular fluid in absence of magnetic field (Horton and Rogers [17]) is reduced with the presence of nanoparticles 

provided density of nanoparticles is greater than the density of base fluid. The presence of salt further reduces it 

but inclusion of Soret effect and magnetic field delays the convection. The stationary convection curves for 

Rayleigh number aR  versus the wave number  are shown in Fig. 2(a)-(f) by assigning fixed values.  

aN = 4, aD  = 0.2, Le  = 10, nR  = 4,   = 0.4, Q  = 800, sR =5, ctN =0.1 

with variations in one of these parameters.  
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Fig 2(a) shows the effect of Darcy number. The increase in Darcy Number increases the Rayleigh Number 

resulting in delay in convection. Fig 2(b) displays the effect of porosity parameter  . Porosity has stabilizing as 

well as destabilizing effect in presence of  Q . Initially there is decrease in Rayleigh no. with increase in porosity 

and after a certain wave no. behaviour gets reversed. Fig 2(c) illustrates the behaviour of Rayleigh Number for 

different values of Lewis number. There is decrease in Rayleigh number with Le .  

The effect of nR on Rayleigh Number is shown in Fig 2(d). Different Curves show that Rayleigh Number is 

decreased with increase in nR . 

The graphs for Rayleigh Number aR against the wave number   for various values of aN  and fixed values of 

other parameters are in Fig 2(e). It is evident that aN advances the onset of stationary convection.  

Fig 2(f) shows the variation of Rayleigh Number for different values of Q . It is clear from the figure that there 

is a significant increase in the value of critical Rayleigh Number with increase in Q  . Thus, the magnetic field 

stabilises the nanofluid layer and the increase in magnetic field increases the stabilising effect. 

Fig. 2(g) shows the effect of Soret parameter. Critical Rayleigh no. increases with increase in Soret parameter and 

hence responsible for promoting the stability of the flow.  

It is clear from Fig. 2(h) on increasing the solutal Rayleigh number critical Rayleigh no. is decreased, thus resulting 

in an early convection.

B Oscillatory Convection 

Taking s i=  in equation (35), we get the following Rayleigh Number: 
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The frequency of oscillation is given by 
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For oscillatory convection , aR vs   curves are shown in figure 3 (a)-(k) for fixed value of

, , , , , , ,n a aR Le Q D N   , Ln , sR and ctN  with variations in one of these parameters. No critical Rayleigh 

number is obtained for oscillatory convection. 

Fig 3(a), (d), (e), (f), (j) and (k) depict the effects of aD , aN , nR , Q , sR and  . In each of these graphs, 

Rayleigh no. increases with increase in each of the respective parameters. 

Fig 3(b), (g), (h) and (i) show the effects of  , Ln , and ctN . In each of these graphs, Rayleigh no. decreases 

with increase in each of these respective parameters. Fig. 3(c) shows the dual effect of Lewis number on oscillatory 

Rayleigh number. Initially Rayleigh number decreases with increase in Lewis no. but after a certain wave no. the 

effect gets reversed. 

The comparison of stability curves for both linear stationary convection and the linear oscillatory convection are 

drawn in figure 4(a)-(h). For different values of parameters, a comparison between two convections is shown.  

 

 

                          

 

 

 

 

 

 

 

 

 

 

                                     



(a) (b)                                                                 

(c) (d)                                                               

(e) (f)                                                                         

(g) (h)  

Fig. 2: Stationary convection for different values of 

(a) Da   (b)    (c) Le    (d) nR (e) aN    (f) Q   (g) ctN   (h) sR  
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(g) (h)  

(i) (j)  
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 Fig. 3:  Oscillatory convection for different values of 

(a) Da   (b)     (c) Le    (d) aN (e) nR   (f)  Q     (g) Ln    (h)  (i)   ctN    (j) sR    (k)    



(a) (b) (c)

(d)  

(e) (f)  

(g) (h)   

Fig. 4:  Comparison of both types for different values of 

(a) Da   (b)    (c)  Le   (d)  aN (e) nR  (f)  Q  (g) sR  (h)  ctN  

 



V. CONCLUSION 

In this paper, we have determined how the presence of the magnetic field affects double diffusive convection in 

Soret induced Darcy Maxwell nanofluid layer. The layer was soluted and heated from below and uniform magnetic 

field was applied in vertical direction. The comparison of results obtained has been done with the existing relevant 

studies. The main conclusions of the present analysis are as follows: 

• 
st

aR has been observed to be function of parameters Da , , Le , nR , aN , Q , ctN , sR whereas 
osc

aR  is 

function of Ln ,  and   in addition to above parameters. 

• The effect of Lewis number Le  is to decrease 
st

aR  but has twin effect on oscillatory convection. 

• An increase in porosity decreases 
osc

aR  but dual effect on stationary Rayleigh number. 

• A positive Soret coefficient ctN   has stabilizing effect on convection as obtained by Gaikwad, 

Malashetty and Prasad [32] for a regular fluid as well as obtained by Singh et al. [23] for a nanofluid but 

here in presence of magnetic field the effect is found to destabilize the oscillatory Rayleigh number as 

increase in ctN decreases 
osc

aR . 

• The influence of magnetic field is to stabilise the Soret induced double diffusive convection as was found 

by Yadav [13] in nanofluid convection induced by internal heating. 

• In this convection under magnetic field, Darcy number also comes into play and has been observed to 

provide stabilizing effect on stationary and oscillatory modes. 

• An increase in Solutal Rayleigh Darcy number sR  was observed to cause increase in  
st

aR  and  
osc

aR by 

Singh, Bishnoi and Tyagi [23] but the presence of magnetic field here causes the effect of sR to be 

stabilize the oscillatory convection. 

• The increase in parameters Ln ,  increases the oscillatory Rayleigh number. This behaviour is opposite 

to be observed in absence of magnetic field [23]. 

• Parameters nR  and  aN  destabilizes the stationary mode but are found to stabilize the oscillatory 

convection. 
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