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Abstract 

 

We investigate the generation of third harmonic radiation  through the propagation of a circularly 

polarized laser beam in under dense quantum magneto plasma. This investigation employs the 

Quantum Hydrodynamic (QHD) model, which has been recently developed. Notably, the 

analysis accounts for the influence of quantum Bohm potential, quantum statistical Fermi 

pressure, and the electron spin of -1/2. As the circularly polarized laser beam travels through the 

quantum plasma, it induces density oscillations at the second harmonic. These oscillations, 

combined with velocity oscillations, result in a third-order current density that gives rise to third 

harmonic radiation. 
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1. Introduction 

 

1.1: Plasma: 

In 1920, Nobel laureate Irving Langmuir embarked on groundbreaking research, 

pioneering the systematic exploration of a luminescent ionized gas, generated through electric 

discharge within a confined tube. His efforts led to the conceptualization of this unique state of 

matter as "plasma," representing the fourth distinct phase. Remarkably, over 99% of the 

observable universe exists in the plasma state, underscoring its fundamental significance. 

          Presently, the realm of plasma physics stands as a burgeoning scientific field, gaining 

rapid traction in response to the pressing energy challenges of our time. With its interdisciplinary 

nature, plasma physics boasts a vast array of potential applications across laboratory settings, 

space exploration, and astrophysical contexts alike. In the industrial realm, laboratory-generated 

plasmas find practical implementation in diverse sectors, including metallurgy and industrial 

processes. Notable applications encompass plasma spraying, microelectronics etching, 

metalworking, welding, and enhancing surface durability through processes like nitriding to 

counteract corrosion and wear [1]. 

         The influence of plasma extends to the realm of astroplasma physics, where it plays a 

pivotal role in unraveling the complexities of various celestial phenomena. These encompass the 

formation of dust clusters and intricate structures, the behavior of molecular clouds, the genesis 

of proto-stars and fully-fledged stars, the dynamics of cometary tails, the properties of nebulae, 

and the enigmatic behavior of magnetospheres, among others. 

 



Yet another frontier in plasma physics involves addressing global energy scarcity. 

Scientists and researchers are diligently working towards devising solutions through controlled 

thermonuclear fusion. This ambitious pursuit employs cutting-edge experimental devices like 

ITER, JET, Tokamaks, and NOVA. These systems explore both inertial and magnetic 

confinement techniques, harnessing plasma to potentially revolutionize power generation and 

mitigate the energy crisis that looms on a global scale. 

In general it is not easy to say that all ionized gases are plasmas. A more rigorous 

definition requires three criterion to be satisfied. Firstly, its dynamics is governed by long range 

electromagnetic forces rather than force due to local collisions i.e. collective behavior. Secondly, 

the plasma oscillation frequency must be greater than collision frequency of charged particle to 

neutrals so that dynamics is still governed by long range force. According to the third criterion, 

its ability to ‘iron out’ an external electric potential i.e. sparing (shielding out) the bulk of plasma 

from external field which leads to quasi neutrality condition i.e. .nnn ei   Microscopic 

variation of quasi-neutrality leads to plasma electron oscillations with a frequency 

2/12
0 )4(( menp   where m  is the electron mass), known as the plasma frequency. This 

characterizes plasma as an elastic medium [2-4]. The ionic mass is much greater than the 

electronic mass. Therefore, the ion oscillation frequency is very small as compared to that of the 

electrons. The ions can therefore be regarded as a stationary immobile background in the plasma 

system. The energy distributions of ions and electrons within a plasma typically exhibit distinct 

characteristics. These distributions are often quantified by ion temperature and electron 

temperature, which may not necessarily align or be equivalent. Moreover, it's important to note 

that various ion and electron species can coexist within the plasma, each potentially possessing 

disparate temperatures or diverse energy distribution patterns. 



1.2: Quantum Plasma:  

Plasma physics is conventionally regarded as a field governed by classical principles. 

Nonetheless, the past decade has witnessed a resurgent fascination with plasma systems wherein 

quantum effects wield significant influence, driven by their pivotal applications in densely 

packed astrophysical entities [5], such as the interiors of Jupiter, massive white dwarfs, 

magnetars, and neutron stars. This resurgence extends to intense experiments involving plasmas 

at solid density irradiated by lasers [6-8], as well as ultra-small electronic devices [9] 

encompassing microelectronics, semiconductor devices, quantum dots, nanowires [10], carbon 

nanotubes [11], quantum diodes [12], bio-photonics [13], ultra-cold plasmas [14], and micro-

plasmas [15]. Quantum mechanics takes the forefront in plasmas when the quantum attributes of 

constituent particles distinctly shape their macroscopic characteristics. These quantum plasmas 

consist of ions, degenerate electrons, positrons, and charged nano-particles. The degeneracy of 

lighter plasma components emerges at notably high densities and relatively low temperatures, 

where the Wigner-Seitz radius equates to or dips below the De-Broglie thermal wavelength. In 

these equations, signifies the mass of the quantum particles (like degenerate electrons, ions, and 

nano-charged particles), denotes the thermal velocity of the quantum particles, represents 

temperature, and stands for the Boltzmann constant. The interplay of wave functions intensifies 

with overlapping or comparable values of the respective quantities, or when temperature 

approaches or falls below the Fermi temperature wherein denotes the Fermi energy. The 

transition from a Maxwell-Boltzmann distribution function to a Fermi-Dirac distribution function 

takes place as plasma particle temperature approaches. Consequently, defining a Quantum 

coupling factor becomes valuable for both electron-electron and ion-ion interactions. This factor 

for electron-electron Coulomb coupling hinges on the ratio of electrostatic interaction energy to 



the electron Fermi energy, taking into account as the electron charge magnitude and as the mean 

interaction separation. Notably, holds true for metallic plasmas, making it pertinent to scrutinize 

the role of inter-particle collisions in quantum plasma collective processes. Pauli blocking 

notably curtails collision rates in most practical scenarios, restricting collisions to an electron 

shell roughly around the Fermi surface. The collision frequency thus remains proportional to 

      These phenomena usher in a new realm of distinctions: (1) particles lack phase space 

localization, (2) distribution functions shift from Maxwell-Boltzmann to Fermi-Dirac, and (3) 

certain particles like electrons and protons possess intrinsic magnetic moments or spins, 

impacting dynamics through interactions with magnetic fields. A collision-free quantum plasma 

regime emerges, significant for phenomena transpiring within femtosecond time scales in 

metallic plasmas. In the context of astrophysical settings like white dwarf stars, the average 

electron separation aligns with the Compton length, leading to electron speeds at the Fermi 

surface comparable to the speed of light . A relativistic perspective becomes applicable, 

especially in the cores of massive stars where relativistic degenerate electrons prevail. As 

fermions, electrons adhere to the constraint of a single electron occupying a given quantum state 

(defined by position and spin). Consequently, the volume occupied by a lone electron amounts 

to. By virtue of the Heisenberg uncertainty principle, the mean momentum enters the equation. 

In scenarios featuring relativistic electrons, velocities approach the speed of light. Here, electron 

pressure in a simple gas arises from momentum, quantified as the momentum transfer per unit 

area: The manifestation of quantum effects can be quantified through the thermal De-Broglie 

wavelength, )/( TB mv . In the classical regime, particles can be approximated as point-like 

(  tends to 0), precluding overlapping wave functions. This implies that the classical and 

quantum regimes do not typically coexist. However, recent investigations have unearthed the 



potential for a phase transition between these two regimes. Quantum corrections rise to 

prominence when the distance separating charged particles mirrors or exceeds inter-particle 

distances, and when temperature descends beneath a critical point termed the Fermi temperature. 

1.3: Harmonic Generation: 

 

 

 

The interaction of high intensity laser pulse with plasma leading to harmonic generation has been 

active area of research for last thirty years [16]. The physical phenomenon of interaction of 

intense laser pulse with plasma leads to number of parametric instabilities and nonlinear effects 

such as laser wakefield acceleration, inertial  confinement fusion, Raman scattering, self phase 

modulation, ponderomotive self focusing and harmonic radiation generation. Generation of 

harmonic radiation in laser produced plasma and laboratory plasma is an important subject and 

also provides considerable potential for plasma diagnostics [17-23]. From few years a great deal 



of research has been focused on second and third harmonic in laser produced plasma [24-26]. In 

the process of harmonic generation, two photons of energy 1 and momentum 1k combines to 

produce a photon of energy 2  and momentum 2k , where  11,k  are the frequency and 

wave vector of fundamental wave and  22 ,k  are the frequency and wave vector of second 

harmonic wave which satisfy dispersion relation for electromagnetic wave. During third 

harmonic generation phenomenon, the fundamental laser beams generates a beam of frequency 

with three times of the fundamental frequency. The interaction of circularly polarized intense 

laser with homogenous plasma induced transverse nonlinear plasma current, resulting in 

generation of odd harmonics of laser frequency in forward direction [27]. Although number of 

high order harmonics generation [28-30] has been analyzed but third harmonic generation [31-

33] has its unique place in laser plasma interaction.  

All previous research has centered around classical plasmas. However, when dealing with 

plasmas in which the de Broglie thermal wavelength of charge carriers is comparable to or 

exceeds the inter particle distance 3/1

en i.e. 1Ben   or temperature T is similar to or lower than 

the electron Fermi temperature, the introduction of degeneracy becomes relevant, leading to the 

adherence of plasma particles to the Fermi-Dirac distribution. At this point, quantum degeneracy 

effects become pivotal, highlighting the significance of studying quantum plasma. Over the past 

decade, there has been a growing fascination with exploring novel facets of quantum plasma due 

to its practical applications. Numerous authors have delved into the subject of harmonic 

generation within quantum magnetoplasmas  [34-36]. While investigations have been conducted 

regarding phase-matched third harmonic generation of laser pulses in high-density quantum 

plasmas under the influence of a wiggler magnetic field [37], as of now, there is no recorded 

endeavor to examine the phase-mismatched third harmonic generation caused by circularly 



polarized lasers within densely magnetized quantum plasmas, accounting for electron spin-1/2 

effects. 

The objective of this chapter is to conduct a comprehensive analysis of the third harmonic 

radiation generated by a circularly polarized laser within a high-density, low-temperature 

quantum plasma. The investigation begins by assuming the plasma to be at a low temperature, 

allowing us to disregard the thermal motion of electrons. Within the framework of the mildly 

relativistic regime, a perturbative approach is employed alongside the newly developed Quantum 

Hydrodynamic (QHD) model. The QHD model extends the classical plasma model by 

expressing transport equations using conservation laws for particle quantities, momentum, and 

energy. One key advantage of the QHD model over kinetic models lies in its numerical 

efficiency and its direct utilization of macroscopic variables like momentum and energy. This 

facilitates the implementation of boundary conditions and enables a relatively simpler treatment 

of nonlinear phenomena. As a result, the QHD approach is particularly well-suited for describing 

such phenomena within quantum plasma. In the mildly relativistic regime, relativistic effects 

become significant in higher-order velocity components. 

        The structure of this chapter is organized as follows: It comprises four sections. Sec. 2 is 

dedicated to exploring the nonlinear current density associated with the generation of third 

harmonic radiation. Subsequently, the conversion efficiency is analyzed in Sec. 3. Finally, the 

Sec. 4 summarizes the findings and conclusions drawn from this study. 

2: Formulation: 

       Let us take the propagation of a circularly polarized laser pulse of frequency 0  and wave 

number 0k  and constant amplitude 0E  in magnetized cold quantum plasma of uniform density 

0n  along the direction of static magnetic field .ˆ|| zz  The fields of laser are  
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We assume that the plasma is cold and there is a fixed ionic background to ensure charge 

neutrality and fast processes to be considered in quantum plasma. Response of electron to the 

electromagnetic field is governed by the set of QHD equations [34,35],    
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where, m  is the rest mass of electron, e  is the electron charge, n  is the electron density,   is the 

relativistic factor,   is Planck’s constant divided by ,2
 S  is the spin angular momentum with 

2/00  SS , me 2/  is the Bohr magneton and 3
1

2 )3)(/( nmvF   represents the Fermi 

velocity of electrons. On the right hand side of equation (2) the first term represents the Lorentz 

force, second term is the electron Fermi pressure, third term is the quantum Bohm potential 

produced due to density fluctuations and the last term denotes the force due to spin magnetic 

moment of plasma electrons and the classical case may be recovered in the limit of .0   

On perturbation of eqs. (2) and (4) in orders of radiation field, the first order quiver 

velocity and density components are found to 
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Quantum degenerate plasma has a crucial characteristic called spin. It is essential for exposing 

the plasma to the external magnetic field, whose impact is discernible in the perturbed spin 

magnetic moment for plasma electrons via the spin angular momentum, 
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By following similar steps for nth harmonic, the velocity, perturbed density and spin 

magnetic moment for electron can be obtained by substituting 00  n , nEE


0 , 

   tnzktzk n 000   , from equations (5)-(11). Hence, the linear part of induced current 

density for nth harmonic, 
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The laser produces oscillatory velocity of electrons and exerts a ponderomotive force 

112 )2/1( BveF


  on them at  00 2,2 k , which gives rise to oscillatory velocity  2v , which 

couples with density perturbation at laser frequency through equation of continuity to produce 

density perturbation at  00 2,2 k  and 
)2(n  couples with 

)1(v  to produce nonlinear current 

density at the third harmonic of frequency.  

The third harmonic velocity and density components are obtained as,  
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where, 
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The spin angular momenta also contributes to source current thus we need to evaluate the spin 

magnetic moment plasma electron at third harmonic, 
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The third harmonic source current is  
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where, 3SJ
 and 3cJ  are the magnetization due to spin effect of electron and conventional  

 

current density, 
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3. Third harmonic generation 

 

The non-linear component of the third source current ,
)3(

NLJ
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 can be used with the wave 

equation, to analyze the growth of harmonic radiation, 

 

.
41 )3(

2

)3(

2

2

2

2

22

2

t

J

c
E

ctcz

p


















 














                                                                                  (24)                                          

 

The procedure to derive the amplitude of the phase mismatched third harmonic involves 
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where,  

 03 3kkk   is the wave vector.  
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From eq. (25), it is found that the harmonic oscillate in magnitude due to the de-phasing between 

pump laser and the radiation harmonics. The third harmonic radiation is proportional to the 

plasma electron density, propagation distance and the intensity of laser pulse.  

4: Conclusion: 

         The study focused on generating the third harmonic, an outcome of the interaction between 

a circularly polarized laser pulse and a dense, uniform quantum magnetoplasma. The 

magnetization process applied a steady longitudinal magnetic field. Employing the newly 

developed quantum hydrodynamic (QHD) model, the investigation initially derived self-

consistent QHD equations. This analysis considered the influence of distinct factors, including 

the quantum Bohm potential, Fermi statistical pressure, and electron spin. Subsequently, 

employing a perturbative expansion technique for QHD equations, the calculations yielded third-

order velocities, electron densities, and spin angular momenta. Two primary quantum corrections 

emerged for electrons, stemming from density fluctuations and magnetization energy. Quantum 

processes and electron spin induced variations in plasma current density, thereby introducing 

correction terms to the harmonic field amplitude. The quantum diffraction's impact significantly 

intensified nonlinear third harmonic radiation production. Interestingly, the research revealed a 

direct correlation between escalating third harmonic output and plasma density, along with 

magnetic field potency, up to saturation levels. However, harmonic generation ceased beyond 

these saturation points. Additionally, higher magnetic field strengths led to earlier plasma density 



saturation due to the influence of the dense and robustly magnetized polarization field effect. 

Notably, within interactions involving laser plasma and gas jet in clustered plasma, the enhanced 

efficiency of the third harmonic could serve as a diagnostic tool for detecting cluster presence 

and evaluating their dimensions.
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