By

R.Kailasam ME G.Nirmal kumar ME B.Rajesh Kannan (BE)

FORMULAE HAND BOOK FOR STRENGTH OF MATERIALS SIMPLE STRESS AND STRAIN

SIMPLE STRESS AND STRAI FORMULAE HAND BOOK FOR STRENGTH OF MATERIALS

Ν

Stress(σ)	$\sigma = \frac{P}{A}$	Where, $\sigma = \text{stress in N/mm}^2$ P = Load in N $A = \text{Area in mm}^2$
Strain (e)	$e = \frac{\Delta L}{L}$	Where, e =strain ΔL = Change in length or elongation in mm L=Original length or gauge length in mm
Youngs modulus(E)	$E = \frac{\sigma}{e}$	Where, E= Youngs modulus or modulus of elasticity in N/mm^2 $\sigma =$ stress in N/mm ² e = strain
Factor of safety(FoS)	$FOS = \frac{\sigma u}{\sigma}$	Where, $\sigma_u =$ Ultimate stress in N/mm ² $\sigma =$ Working stress in N/mm ²

Area(A) $A = \pi/4 \times d^{2}$ $A = \pi/4 \times (D^{2} - d^{2})$ $A = b \times t$ $A = area in mm^{2}$ $D = Major diameter or outer diameter in mm d = Minor diameter or inner diameter in mm t = Thickness in mm$	Area(A)	$A = \pi/4 \times d^{2}$ $A = \pi/4 \times (D^{2} - d^{2})$ $A = b \times t$	Where, A=area in mm ² D= Major diameter or outer diameter in mm d= Minor diameter or inner diameter in mm b= breadth or wide in mm t= Thickness in mm
--	---------	--	---

UTM (TENSILE TEST)

Yield Stress(σy)	$\sigma y = \frac{Py}{A}$	Where, $\sigma_y = \text{Yield stress in N/mm}^2$ $P_y = \text{Yield Load in N}$ $A = \text{Area in mm}^2$
Ultimate Stress(σu)	$\sigma u = \frac{Pu}{A}$	Where, σ_u = Ultimate stress in N/mm ² P_u = Ultimate Load in N A=Area in mm ²
Breaking Stress(σB)	$\sigma B = \frac{Pb}{A}$	Where, σ_B = Breaking stress in N/mm ² P_B = Breaking Load in N A=Area in mm ²
% of Elongation (% Δ L)	$\%\Delta L = \frac{(LF - LI)}{LI} \times 100$	Where, L_{F} = Final length in mm L_{I} = Initial length in mm
% of Reduction area (% ΔA)	$\%\Delta A = \frac{A - a}{A} \times 100$	Where, A= Initial area in mm ² a= Final area or area of neck in mm ²

VOLUMETRIC STRAIN

		Where,
Volumetric strain (e _v)	$\mathcal{EV} = \Delta V/V$ = $\mathcal{E}lin \times (1 - 2 \times 1/m)$	e_v = Volumetric strain ΔV = Change in volume in mm ³ V=Original volume in mm ³ 1/m = Poisson's ratio e_{lin} = Linear strain
Volume (V)	$V = A \times L$	Where, A= Area in mm2 L= Length in mm
Poisson's ratio (1/m)	1/m = eLat / elin	Where, e_{Lat} = Linear strain e_{Lin} = Linear strain or Longitudinal strain
Lateral strain (e _{Lat)}	$eLat = \Delta d/d$ (or) $\Delta b/b$ (or) $\Delta t/t$	Where, Δd = Change in diameter in mm d= Original diameter in mm Δb = Change in breadth or width in mm b= Original breadth or width in mm

FORMULAE HAND BOOK FOR STRENGTH OF MATERIALS			
	$\Delta t = Change in thickness in$		
	mm		
		t = Original thickness in mm	
		Where,	
		ΔL = Change in length or elongation	
Linear strain (e _{Lin)}	$eLin = \Delta L/L$	in mm	
		L=Original length or gauge length	
		in mm	

ELASTIC CONSTANTS (E,G &K)

Young's modulus (E)	Bulk modulus (K)	Rigidity modulus (C or N or G)		
$E = \frac{\sigma}{e}$	$K = \frac{\sigma d}{eV}$	$C = N = G = \frac{\sigma S}{eS}$		
Where,	Where,	Where,		
E= Youngs modulus or	K= Bulk modulus or in	C=N=G=Modulus of rigidity or		
modulus of elasticity in N/mm ²	N/mm ²	shear modulus in N/mm ²		
$\sigma =$ stress in N/mm ²	σ_d = Direct stress in	e_s = Shear strain		
e =strain	N/mm ²			
	$e_V = Volumetric strain$			
Relationship between E,G,K				
	$E = 2G \times (1 + 1/m)$			

$E = 3K \times (1 - 2 \times 1/m)$

E = 9KG / (3K + G)

OMPOSITE BAR

Condition (i)	$\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2$ $\mathbf{P} = \sigma_1 \mathbf{A}_1 + \sigma_2 \mathbf{A}_2$	Where, P=Total load acting on the composite in N σ_1 =Stress induced in Material -1 σ_2 =Stress induced in Material -2 A ₁ = Mareial-1 cross sectional area in mm ² A ₂ = Mareial-2 cross sectional area in mm ²
Condition (ii)	e1 = e2 $\sigma 1/E1 = \sigma 2/E2$	Where, σ_1 =Stress induced in Material -1 σ_2 =Stress induced in Material -2 E_1 = Young's modulus of Material -1 E_2 = Young's modulus of Material -2

FORMULAE HAND BOOK FOR STRENGTH OF MATERIALS SHEAR FORCE AND BENDING MOMENT DIAGRAM

DIAGRAM SHORT CUT (SFD AND BMD)

LOAD	SFD	BMD
Point	Horizontal	Inclination
U.D.L	Inclination	Parabola
U.V.L	Parabola	Parabola

CALCULATIONS (SFC AND BMC)

BEAM	LOAD	SFC	BMC
Cantilever, Simply supported	Point	W	W×D
Cantilever, Simply supported	U.D.L	W×D	$W \times D \times (D/2+G)$
Cantilever, Simply supported	U.V.L	1/2bh	$\frac{1}{2} \times bh \times \left(\frac{1}{3} \times d + G\right)$ Or $\frac{1}{2} \times bh \times \left(\frac{2}{3} \times d + G\right)$
Where, W= Load in N or KN, D= Distance in m or mm, G= Gap in m or mm			

FORMULAE HAND BOOK FOR STRENGTH OF MATERIALS THEORY OF SIMPLE BENDING

		Where,
		M=Bending moment or moment of resistance in
	N The	N-mm
		I= Moment of in inertia in mm ⁴
Bending equation $\frac{M}{I} = \frac{OD}{y} = \frac{E}{R}$	σ_b = Bending stress in N/mm ²	
	I Y R	y= Distance in mm
		E= Youngs modulus or modulus of elasticity in
	N/mm ²	
		R= Radius of curvature in mm

BEAM	LOAD	BENDING MOMENT (M)
Cantilever	Point	WL
Cantilever	U.D.L	$\frac{WL^2}{2}$
Simply supported	Point	$\frac{WL}{4}$
Simply supported	U.D.L	$\frac{WL^2}{8}$

BEAM SECTION	MOMENT OF INERTIA (I)	DISTANCE (y)	SECTION MODULUS (Z=I/y))
Solid circular	$\frac{\pi}{64} \times d^{4}$	d/2	$\pi/32 \times d^3$
Hollow circular	$\frac{\pi}{64} \times (D^{4} - d^{4})$	D/2	$\pi/32 \times (D^4 - d^4)/D$
Rectangular	$\frac{bd^{3}}{12}$	d/2	bd²/6
Square or cube	$\frac{a^{4}}{12}$	a/2	a ³ /6

$ \begin{array}{ c c c c c c c c } \hline T & T & T & T & T & T & T & T & T & T$	Torsional Equation	T/J= f _S / R=Cθ/L	Where, T=Torque or twisting moment in N-mm $J= Polar Moment of in inertia in mm^4$ $f_s = Shear stress in N/mm^2$ R= Radius in mm C=N=G=Modulus of rigidity or shear modulus in N/mm ² $\theta=$ Angle of twist in radians
--	--------------------	------------------------------	---

FORMULAE HAND BOOK FOR STRENGTH OF MATERIALS			
		Where,	
		P= Power in Watts	
Power(P)	$P=2\pi NT/(60\times 10^3)$	T=Torque or twisting moment in N-mm	
		N=Speed in Rpm	
		θ = Angle of twist in radians	
		Where,	
	$T=\pi/16 \times f_s \times d^3$	T=Torque or twisting moment in N-mm	
	For solid shaft	$f_s = Shear stress in N/mm^2$	
		d= Diameter in mm	
Torque (T)		Where,	
	$T_{1}(x f_{+}) (D_{+}^{4} d_{+}^{4})$	T=Torque or twisting moment in N-mm	
	$I = \pi / 10^{1} \text{ s} \times (D = U / D)$	$f_S = Shear stress in N/mm^2$	
	For Hollow shall	D=Major diameter in mm	
		d= Minor Diameter in mm	
	I/37×44	Where,	
	$J=\pi/32 \times d^{2}$	J=Polar moment of inertia moment in N-mm	
Polar moment	For solid shall	d= Diameter in mm	
of inertia		Where,	
(J)	$J=\pi/32\times(D^4-d^4)$	J=Polar moment of inertia moment in N-mm	
	For Hollow shaft	D=Major diameter in mm	
		d= Diameter in mm	
Dading (D)	R=d/2 For solid shaft	Where,	
Kadius (K)	R=D/2 For Hollow	d= Diameter in mm	

FORMULAE HAND BOOK FOR STRENGTH OF MATERIALS D=Major diameter in mm **GEOMETRICAL SECTIONS** Where, $a_1 =$ Section 1 area in mm² $\overline{X} = \frac{a1x1 + a2x2 + a3x3}{a1 + a2 + a3}$ $a_2 =$ Section 2 area in mm² $a_3 =$ Section 3 area in mm² Centroid $\overline{Y} = \frac{a1y1 + a2y2 + a3y3}{a1 + a2 + a3}$ $I_{xx}=b_1d_1^3/12+b_2d_2^3/12+b_3d_3^3/12+a_1\times(\overline{y}-y_1)^2+a_2\times(\overline{y}-y_2)^2+a_3\times(\overline{y}-y_3)^2$ Moment of inertia $I_{yy} = d_1b_1^3/12 + d_2b_2^3/12 + d_3b_3^3/12 + a_1 \times (\overline{x} - x_1)^2 + a_2 \times (\overline{x} - x_2)^2 + a_3 \times (\overline{x} - x_3)^2$ $Kxx = \sqrt{\frac{Ixx}{A}}$ $Kyy = \left| \frac{Iyy}{I} \right|$ Radius of gyration A = a1 + a2 + a3

Cylindrical shell

Cylinder and spherical shells

Hoop stress or Circumferential stress (σ ₁)	$\sigma 1 = \frac{Pd}{4t}$	
Longitudinal Stress (σ ₂)	$\sigma 2 = \frac{Pd}{2t}$	Where,
Maximum shear stress(τ)	$ au = rac{Pd}{8t}$	P= Internal Pressure in N/mm ²
Circumferential strain (e1)	$e1 = \frac{\Delta d}{d} = \frac{\sigma1}{E} \times \left(1 - \frac{1}{2} \times \frac{1}{m}\right)$	t=Thickness of the cylinder in mm
Longitudinal strain (e ₂)	$e2 = rac{\Delta L}{L} = rac{\sigma 1}{E} imes \left(rac{1}{2} - rac{1}{m} ight)$	Δd = Change in diameter in mm ΔL = Change in length in mm
	$\Delta V = 22 \pm 2c1$	E= Young's modulus in N/mm ²
	$ev = \frac{1}{V} = \frac{1}{V} + 2e1$	1/m= Poisson's ratio
Volumetric Strain(e _v)	$V = A \times L$	
	$A = \pi/4 \times d^2$	

Hoop stress or Circumferential stress (σ ₁)	$\sigma 1 = \frac{Pd}{4t}$	Where, P= Internal Pressure in N/mm ²
Circumferential strain (e ₁)	$e1 = \frac{\Delta d}{d} = \frac{\sigma1}{E} \times \left(1 - \frac{1}{m}\right)$	d= Internal diameter in mm
Volumetric Strain(e _v)	$\Delta V = 3e1 \times V$ $V = \pi/6 \times d^3$	$\Delta d = Change in diameter in mm$ $E = Young's modulus in N/mm^2$ $1/m = Poisson's ratio$

FORMULAE HAND BOOK FOR STRENGTH OF MATERIALS Spherical shell

Slope and deflection of the beam

Double integration method

Beam	Load	Slope (θ)	Deflection (y)
Cantilever	Point load at free end	$\frac{WL^2}{2EI}$	$\frac{WL^3}{3EI}$
Cantilever	Point load apart from fixed and free end	$\frac{Wa^2}{2EI}$	$\frac{Wa^3}{3EI} + \frac{Wa^2}{2EI} \times (L-a)$
Cantilever	UDL distributed at entire length	$\frac{WL^3}{6EI}$	$\frac{WL^4}{8EI}$
Cantilever	UDL distributed from fixed end to "a" distance	$\frac{Wa^3}{6EI}$	$\frac{Wa^4}{8EI} + \frac{Wa^3}{6EI} \times (L-a)$
Simply supported	Point load at mid span	$\frac{WL^2}{16EI}$	$\frac{WL^3}{48EI}$

Simply	UDL distributed at entire	WL ³	5 <i>WL</i> ⁴
Supported	length	24 <i>EI</i>	384 <i>EI</i>