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5.2 Optimum number of Segmentation for initial iteration purpose. 

Some methods of cluster subjects based on similarity on variables of interest (e.g., 

attribute importance), while other maximize the (within-segment) ability of the 

store images attributes to predict overall store image. The former type of method 

does not necessarily lead to cluster whose store –image attribute importance best 

explain the overall evaluation of the stores of each individual in the sample. One 

may obtain a good cluster solution (in terms of the homogeneity of estimated-

image-attribute weights without any appreciable increase in predictive power over 

the unsegmented  model, as was indeed found in the context of store image as 

previous studies indicates. It has been argued that predictive fit of the estimated 

store image functions should be maximized, as it is a key measure for evaluating 

market segmentation results and for developing a marketing strategy.  

 

In this research it has been desired to utilize the following (Xie and Beni‟s 

function, the compactness and separation validity„  function,  the Partition Index 

 Dunn's Index (DI) and Alternative Dunn Index (ADI)) algorithms that can 

efficiently determine a reasonable number of clusters/segments to return from any 

non- hierarchical clustering/segmentation algorithm. In order to identify the 

correct number of clusters to return from a non-hierarchical 

clustering/segmentation algorithm, this research utilizes the above mentioned 

cluster validity function.  
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Suppose we don't have a clear idea about how many clusters there should be for a 

given set of data. Subtractive clustering proposed by S.L.Chiu is a fast, one-pass 

algorithm for estimating the number of clusters and the cluster centers in a set of 

data, in which data points are considered as the candidates for cluster centers. By 

using this method, the computation is simply proportional to the number of data 

points and independent of the dimensions of the problems under consideration. 

 

Consider a collection of n data points nxx ....,1  in a M-dimensional space. 

Without loss of generality, the data points are assumed to have been normalized 

within a hypercube. Since each data point is a candidate for cluster centers, a 

density measure at data point ix
 is defined as 
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Where ar
 is a positive constant. Hence, a data point will have a high density value 

if it has many neighboring data points. The radius ar
defines a neighborhood; data 

points outside this radius contribute only slightly to the density measure. 

 

After the density measure of each data point has been calculated, the data point 

with the highest density measure is selected as the first cluster center. Let 1cx
 be 

the point selected and 1CD
its density measure. Next, the density measure for each 

data point ix
 is revised by the formula 
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Where br
is a positive constant. Therefore, the data points near the first cluster 

center 1cx
will have significantly reduced density measures, thereby making the 

points unlikely to be selected as the next cluster center. The constant br
 defines a 

neighborhood that has measurable reductions in density measure. The constant 

br
is normally larger than ar

to prevent closely spaced cluster centers; generally br
is 

equal to 1.5 ar
. (S.L.Chiu 1994) After the density measure for each data point is 

revised, the next cluster center 2cx
   is selected and all of the density measures for 

data points are revised again. This process is repeated until a sufficient number of 

cluster center are generated. The cluster estimates obtained from the subtractive 

cluster function can be used to initialize iterative optimization-based clustering 

methods (FCM) and model identification methods (like ANFIS). 

 

The “Subtractive clustering” - description method. 

We performed Subtractive cluster in MatLab® by using the subclust function.   

The Syntax is  [C,S] = subclust(X,radii,xBounds,options) 

The matrix X contains the data to be clustered; each row of X is a data point. The 

variable radii is a vector of entries between 0 and 1 that specifies a cluster center's 

range of influence in each of the data dimensions, assuming the data falls within a 

unit hyperbox.  Small radii values generally result in finding a few large clusters. 

Good values for radii are usually between 0.2 and 0.5.  “xBounds” is a 2-by-N 

matrix that specifies how to map the data in X into a unit hyperbox, where N is the 

data dimension. This argument is optional if X is already normalized. The first 
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row contains the minimum axis range values and the second row contains the 

maximum axis range values for scaling the data in each dimension.  

If “xBounds” is an empty matrix or not provided, then “xBounds” defaults to the 

minimum and maximum data values found in each data dimension.  

The options vector can be used for specifying clustering algorithm parameters to 

override the default values. These components of the vector options are specified 

as follows:  

Options(1) = quashFactor: This is the factor used to multiply the radii values that 

determine the neighborhood of a cluster center, so as to quash the potential for 

outlying points to be considered as part of that cluster. (we have set the quash  

factor as 14.25 ). 

Options(2) = acceptRatio: This sets the potential, as a fraction of the potential of 

the first cluster center, above which another data point will be accepted as a cluster 

center. (default: 0.5)  

Options(3) = rejectRatio: This sets the potential, as a fraction of the potential of 

the first cluster center, below which a data point will be rejected as a cluster 

center. (default: 0.15)  

Options(4) = verbose: If this term is not zero, then progress information will be 

printed as the clustering process proceeds. (default: 0)  

 

The function returns the cluster centers in the matrix C; each row of C contains the 

position of a cluster center. The returned S vector contains the sigma values that 

specify the range of influence of a cluster center in each of the data dimensions. 

All cluster centers share the same set of sigma values. 



275 | P a g e  

 

 

We have implemented the subclust function using the following arguments 

[C,S]=subclust(X,0.5,[],options); 

options = [14.25 0.5 0.15 0]; 

Thus number of cluster specified is four. 

Market researchers have discussed on store image based market segmentation in 

the perspective of various partitioning and clustering methods, but such studies 

have toiled with unsupervised clustering approaches. But, no studies have 

identified the integration of fuzzy c-means with subtractive clustering for 

obtaining store image based market segmentation.  This research attempts to make 

use of the above mentioned cluster validity function for this research, The above 

mentioned cluster validity functions are usually used for image processing analysis 

where the data is images in nature. But such validity functions are rarely used in 

social science research. So, utilizing such validity function in social science 

research and finding its merit and value in social science research is reasonable 

value addition to the literature.  

 

Most of the research often uses clustering analysis as a tool for market 

segmentation. In this research, the k-means partitioning method is used to segment 

the customers based on store image attributes.  Such non-hierarchical method of 

clustering algorithm always tries to find the best fit for a fixed number of clusters 

and the parameterized cluster shapes. However this does not mean that even the 

best fit is meaningful at all. Either the number of clusters might be wrong or the 

cluster shapes might not correspond to the groups in the data. To overcome such 
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problems, this research utilises the (Xie and Beni‟s 1991) cluster validity function 

which is to solve the cluster membership, ‟, and to measure the effectiveness of 

cluster. Xie and Beni‟s validity index aims to quantify the ratio of the total 

variation within clusters and separation of clusters.  The Xie and Beni‟s function is  

 

 
 

and is the optimal number of cluster which should minimize the value of 

the index. In continuation to further validate, the compactness and separation 

validity „  function is used. The validity function is  

 

 
 

The smaller the value of ‟, the better the compactness and separation between the 

clustering groups of in-cluster samples. The goal should therefore be to minimize 

the value of . At the same time, this approach also allows us to determine the 

minimal objective function of clustering algorithm. Till further to authenticate, the 

Partition Index   is used, and this is the ratio of the sum of compactness and 

separation of the clusters.  

 

 
 

SC is useful when comparing different partitions having equal number clusters. A 

lower value of SC indicates a better partition. Utilisation of mentioned validity 

function is well explored in soft computational problems and rarely used in 
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business and social science studies. The results of validity index are shown in the 

Figure 5.1. The analysis found the optimum number of cluster is four and thus the 

value obtained from such validity function can be used to initialize iterative 

optimisation-based clustering methods and model identification methods.  Further 

to substantiate,  the data set was validated with two more Indexes. They are 

Dunn's Index (DI) and Alternative Dunn Index (ADI).  Dunn's Index (DI) is 

originally proposed to use at the identification of "compact and well separated 

clusters". So the result of the 

clustering has to be recalculated as it was a hard partition algorithm. 

 

 
 

The main drawback of Dunn's index is computational since calculating becomes 

computationally very expansive as c and N increase. Where as the alternative 

Dunn Index (ADI), which the aim of modifying the original Dunn's index was that 

the calculation becomes more simple, when the dissimilarity function between two 

clusters  is rated in value from beneath by the triangle-

nonequality:  

 
 

Where  is the cluster center of the j-th cluster. 

 
 

 Note, that the only difference of SC, S and XB is the approach of the separation 

of clusters. In the case of overlapped clusters the value of DI and ADI are not 



278 | P a g e  

 

really reliable because of re-partitioning the results with the hard partition method. 

By comparing all the cluster validity methods, the optimum number of cluster is to 

be four. All the indexes indicate that the line of validity measure cut and gets turn 

at the point of four (See Figure 5.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



279 | P a g e  

 

 

Figure: 5.1. Cluster Validity Index 

 

 
Axis - X indicates Number of Cluster, Y indicates Validity Measure. 

Source: Secondary Data Analysis.  

 

 


