Peristaltic flow of a Newtonian fluid through a porous medium
in a two-dimensional channel with Hall effects

1.1 Introduction

Magnetohydrodynamics (MHD) is the science which deals with the motion
of a highly conducting fluid in the presence of amagnetic field. The motion of the
conducting fluid across the magnetic field generateselectric currents that change the
magnetic field, and the action of the magnetic field on these currents gives rise
to mechanical forces which modify the flow of the fluid (Ferraro, 1966). The
magnetohydrodynamic  (MHD) flow of a fluid in a channel with elastic,
rhythmically contracting walls (peristaltic flow) is of interest inconnection with
certain problems of the movement of conductive physiological fluids, e.g, the
blood, blood pump machines and with the need for theoretical research on the
operation of a peristaltic MHD compressor. Agrawal and Anwaruddin (1984)
studied the effect of moving magnetic field on blood flow. They studied a simple
mathematical model for blood through an equally branched channel with flexible
outer walls executing peristaltic waves. The result revealed that the velocity of the
fluid increases with anincrease in the magnetic field. Peristaltic transport of a
Johnson-Segalman fluid under the effect of a magnetic field was developed by
Elshahed and Haroun (2005). The peristaltic flow of a MHD fourth grade fluid in
a planar channel has studied by Hayat et al. (2007). Ali et al. (2008)
haveinvestigated theeffect of slip condition on the peristaltic flow of a Newtonian
fluid  with variable viscosity under the influence of magnetic field.Non-linear
peristaltic motion of a Carreau fluid under the effect of a magnetic field in an
inclined planar channel was studied by Subba Reddy and Gangadhar (2010). Subba
Narasimhudu and Subba Reddy (2017) have studied the Hall effects on the
peristaltic flow of a Newtonian fluid in the channel.

Moreover, flow through a porous medium has been studied by a number of
researchers employing Darcy’s law Scheidegger (1974). Several studies about
this point have been given by Varshney (1979) and Raptis and Perdikis (1983).



The first study of peristaltic flow through a porous medium is presented by
Elsehawey et al. (1999). Elsehawey et al. (2000) investigated the peristaltic motion
of a generalized Newtonian fluid through a porous medium. Hayat et al. (2007)
have first investigated the Hall effects on the peristaltic flow of a Maxwell fluid
through the porous medium in channel. Peristaltic motion of the carreau fluid
through a porous medium in a channel under the effect of a magnetic field was
studied by Sudhakar Reddy et al. (2009). Subba Reddy and Prasnath Reddy (2010)
has investigated the effect of variable viscosity on peristaltic flow of a Jeffrey
fluid through a porous medium in the planar channel. Eldabe (2015) have studied
the Hall Effect on peristaltic flow of third order fluid in the porous medium with
heat and mass transfer.

In view of these, we studied the effect of hall on the peristaltic flow of a
Newtonian fluid through a porous medium in a two dimensional channel under
the assumption of long wavelength. A closed form solution is obtained for
axial velocity, temperature field and pressure gradient. The effects of various
emerging parameters on the pressure gradient, time-averaged volume flow level
and temperature field are discussed with the help of graphs.

1.1 Mathematical Formulation

We consider the peristaltic pumping of a conducting Newtonian fluid flow
through a porous medium in a channel of half-width a. A longitudinal
train of progressive sinusoidal waves takes place on the upper and lower
walls of the channel. For simplicity, we restrictour discussion to the half-
width of the channel is shown inthe Fig.1.1

The wall deformation is given by
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Whereb is the amplitude, A the wavelength and c is the wave speed
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Fig.1. 1 Physical Model
Under the assumptions that the channel length is an integral

multiple of the wavelength A and the pressure difference across the ends
of the channel isa constant, the flow becomes steady in the wave frame

(x,y) moving with velocity c away from the fixed (laboratory) frame(X,Y).
The transformation between these two frames is given by
x=X—-ct,v=F, u=U-c, v=Vand p(x) = P(X.1), (1.2.2)
Where (u, v)and (U, V) are the velocity factors, p and P

were pressures in the wave and fixed frames of reference, respectively.

The equations governing the flow in wave frame are given by
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Where pis the density o is the electrical conductivity, B, is the magnetic
field strength, mis the Hall parameter, k is the permeability of the
porous medium.

The dimensional boundary conditions are

u=-c at v=H (1.2.6)
“oo at  y=0 (1.2.7)
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Into equations (1.2.3) to (1.2.5), we get
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Here Re is the Reynolds number, M is the Hartmann number and
Da is the Darcy number.

Using long wavelength (i.e.,6<<1) approximation, the equations
(1.2.9)and (1.2.10) become
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From Eg. (1.2.12), it is clear that p is independenti of y. Therefore Eq.

(1.2.11) can be rewritten as
(1.2.13)
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The corresponding non- dimensional boundary conditions are given as
(1.2.14)
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(1.2.15)
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Knowing the velocity, the volume flow rate q in a wave frame of

reference is given by
q= | udy. (1.2.16)

The instantaneous flow Q(X,t) inthe laboratory frame is
(1.2.17)
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The time averaged volume flow rate Q over one period T(ZEjOf

the peristaltic wave is given by
(1.2.18)
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1.3 Solution

Solving Eq. (1.2.13) together with the boundary conditions (1.2.14) and
(1.2.15), we get

y= L dp|coshfy i (1.3.1)
B dx | cosh Bh

The volume flow rate gin a wave frame of reference is mentioned by
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From Eq. (1.3.2), we write
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The dimensionless pressure rise per one wavelength in the wave frame

is defined as
ldp
Ap=| =—dx 1.3.4
P=| ( )

As Da — oo, our results coincides with the results of Subbanarasimhudu and
Subba Reddy (2017).

1.4 Results and Discussion

Fig.1.2 depicts the wvariation of axial pressure gradient 3—5 with

Hartmann number M for Da=0.1, 4=0.6and m=0.3. It is found that, the

dp

axial pressure gradient ™
X

increases with increasing M .

The variation of axial pressure gradient 3—5 with Hall parameter m for

Da=0.1, ¢4=0.6 and M =1 is depicted in Fig 1.3. It is observed that, the axial

pressure gradient% decreases with increasing m.



Fig 1.4 illustrates the variation of axial pressure gradient jp

— with Darcy
X

number Dafor ¢=0.6, M =1and m=0.3. Itis noted that, the axial pressure

gradient 3—5 decreases on increasing Da.

The variation of axial pressure gradient % with amplitude ratio ¢ for

Da=0.1, M =1 and m=0.3is shown in Fig. 1.5. It is noticed that, the axial

, dp . . :
pressure gradient d_ INcreases on Increasing ¢ .
X

Fig.1.6 depicts the variation of pressure rise Ap with time- averaged
flow rate Q for different values of Hartmann number M with Da=0.1,
$=0.6 and m=0.3. Itisfound that, the time-averaged flow rate Q increases in
the pumping region (Ap >0) with increasing M , while it decreases in both the
free-pumping (Ap=0) and co-pumping (Ap <0) regions with increasing M .

The variation of pressure rise Ap with time- averaged flow rate Q for

different values of Hall parameter m withDa=0.1, ¢=0.6 and M =1 is depicted

in Fig.1.7. It is found that, the time- averaged flow rate Q decreases in the

pumping region on increasing m, while it increases in both the free-pumping
and co- pumping regions on increasing m.

Fig.1.8 illustrates the variation of pressure rise Ap with time- averaged

flow rate Q for different values of Darcy parameter Dawith m=0.3, ¢=0.6

and M =1. Itis found that, the time-averaged flow rate Q decreases in the
pumping region with an increase in Da, while it increases in both the free-
pumping and co-pumping regions with increasing Da.

The variation of pressure rise Ap with time-averaged flow rateQ for

different values of amplitude ratio ¢ with Da=0.1, M =1 and m=0.3 is shown in



Fig.1.9. It is found that the time-averaged flow rate Q increases with
increasing amplitude ratio ¢ in both the pumping and free pumping regions,
while it decreases with increasing amplitude ratio ¢ in the co-pumping region
for chosen Ap(<0).

1.5 Conclusions

In this chapter, the effect of hall on the peristaltic flow of a
conductingNewtonian fluid through a porous medium in a two- dimensional
channel under the assumption of long wavelength approximation is investigated.
The expressions for the velocity field and temperature field and pressure
gradient are obtained analytically . It is observed that, the pressure gradient and
the time- averaged flow rate in the pumping region are increases with
increasing Hartmann number M and amplitude ratio ¢ , while they decreases

with increasing hall parameter m and Darcy number Da.
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Fig. 1.2 The variation of axial pressure gradient 3—5 with Hartmann

number M for =05, Da=0.1and m=0.2.
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Fig. 1.3. The variation of axial pressure gradient % with Hall

Parameterm for¢=0.5., Da=0.1and M =1 .
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Fig.1. 4.The variation of axial pressure gradient % with Darcy number Da

for =05, m=0.2and M =1
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Fig.1. 5. The variation of axial pressure gradient —
pfor M =1, Da=0.1and m=0.2.

with amplitude ratio
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Fig. 1.6. The variation of pressure rise Ap with time-averaged flow

rateQ for different values of Hartmann number M with
Da=0.1, 4=05 and m=0.2.
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Fig. 1.7. The variation of pressure rise Ap with time-averaged flow

rate Q for different values of Hall parameter mwith
Da=0.1, ¢=05andM =1 .
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Fig.1. 8. The variation of pressure rise Apby time-averaged

flowrate Q for different values of Darcy number Da
with m=0.2, ¢=0.5 and M =1.
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Fig.1. 9. The variation of pressure rise Ap with time-averaged flow

rate Qfor different values of amplitude ratio ¢ with
M=1and m=0.2_.



