STUDY OF STRUCTURE AND OPERATORS ON ALMOST KAEHLERIAN MANIFOLDS

Neha Rani ${ }^{1}$, Neetu Ram ${ }^{2}$, U. S. Negi ${ }^{3}$,
${ }^{1}$ Research Scholar, Department of Mathematics, H.N.B. Garhwal University (A Central University), S.R.T. Campus Badshahithaul, Tehri Garhwal- 249 199, Uttarakhand, India. E-mail: nehavaishali040@gmail.com
${ }^{2}$ Assistant Professor, Department of Mathematics, H.V.M, (P.G.) College Raisi Laksar, Haridwar. Uttarakhand. India. E-mail: dr.n.chaudhary.rke@gmail.com
${ }^{3}$ Associate Professor, Department of Mathematics, H.N.B. Garhwal University (A Central University), S.R.T. Campus Badshahithaul, Tehri Garhwal- 249 199, Uttarakhand, India.
E-mail: usnegi7@gmail.com

Abstract

:

Kodaira and Spencer (1957) have studied on the variation of almost complex structure. Hsiung (1966) has defined and studied structures and operators on almost Hermition manifolds. Also, Ogawa (1970) has studied operators on almost Hermition manifolds. In this paper, we have defined and studied structure and operators on almost Kaehlerian spaces and several theorems have been derived. We have also been demonstrated within nearly Kaehlerian spaces that for the structure to be integrable, it is both necessary and sufficient that the square of the difference between Γ and γ, i.e., (Γ $\gamma)^{2}=0$. Additionally, when the operator Γ^{2} vanishes across the entire space, then the space can be classified as Kaehlerian.

Keywords: Almost complex structure, almost Hermition spaces, almost Kaehlerian spaces, Kaehlerian spaces.

MSC: 53C55, 53B35.

1 Introduction:

Consider M^{n} as a Riemannian space, where its fundamental metric tensor is denoted as $g_{i j}$, and $g=\operatorname{det}\left|g_{i j}\right|$. In this context, Greek indices i, j, k, and so on, range from 1 to n , which is the dimension of the space. Let $\varepsilon_{i_{1} \ldots \ldots . . i_{p}}^{j_{1} \ldots \ldots j_{p}}$ represent the generalized Kronecker's delta, and $\varepsilon_{i_{1} \ldots . . i_{p}}$ signify $\varepsilon_{i_{1} \ldots \ldots i_{p}}^{1 \ldots \ldots \ldots}$. We define F^{p} as the algebra of differential p-forms
on M^{n}. Consequently, the operators of exterior differentiation $\boldsymbol{d}: \boldsymbol{F}^{\boldsymbol{p}} \rightarrow \boldsymbol{F}^{\boldsymbol{p + 1}}$, and the adjoint operator $\boldsymbol{d}^{\prime}: \boldsymbol{F}^{\boldsymbol{p}} \rightarrow \boldsymbol{F}^{\boldsymbol{n}-\boldsymbol{p}}$ can be expressed for a p-form $u=\left(u_{i_{1} \ldots \ldots i_{p}}\right)$ as follows:

$$
\begin{align*}
& (d u)_{i_{0} \ldots \ldots i_{p}}=\frac{1}{p!} \varepsilon_{i_{0} \ldots \ldots . i_{p}}^{\rho j_{1} \ldots \ldots j_{p}} \nabla_{\rho} u_{j_{1} \ldots \ldots j_{p}} \tag{1.1}\\
& \left(d^{\prime} u\right)_{i_{1} \ldots \ldots i_{n-p}}=\frac{1}{p!} \sqrt{g} g^{\rho_{1} j_{1} \ldots \ldots .} g^{\rho_{p} j_{p}} u_{\rho_{1} \ldots \ldots \rho_{p}} \varepsilon_{j_{1} \ldots \ldots j_{p} i_{1} \ldots \ldots i_{n-p}} \tag{1.2}
\end{align*}
$$

where ∇_{j} Represents the covariant differentiation concerning the Riemannian connection, the exterior co-differentiation $\boldsymbol{\delta}: \boldsymbol{F}^{\boldsymbol{p}} \rightarrow \boldsymbol{F}^{\boldsymbol{p} \mathbf{1}}$ is specified by

$$
\begin{equation*}
\delta=(-1)^{n p+n+1} \quad d^{\prime} d d^{\prime} \tag{1.3}
\end{equation*}
$$

can be expressed locally as

$$
\begin{equation*}
(\delta u)_{i_{2} \ldots \ldots i_{p}} \nabla^{\rho} u_{\rho i_{2} \ldots \ldots i_{p}} \tag{1.4}
\end{equation*}
$$

Let Δ be the Laplace-Beltrami operator defined by

$$
\Delta=d \delta+\delta d
$$

Subsequently, utilizing equations (1.1) and (1.3), it is straightforward to confirm that in the case of a p - degree form u,

$$
\begin{align*}
(\Delta u)_{i_{1} \ldots \ldots . . . i_{p}} & =-\nabla^{\rho} \nabla_{\rho} u_{i_{1} \ldots \ldots i_{p}}++\sum_{i=1}^{p} R_{i_{\lambda}}^{\rho} u_{i_{1} \ldots \stackrel{a}{a} \ldots i_{p}}^{\lambda} \tag{1.5}\\
& +\sum_{\lambda<\mu} R_{i_{\lambda} i_{\mu}}^{\rho a} u_{i_{1} \ldots \tilde{\rho} \ldots \stackrel{a}{a} \ldots i_{p}}^{\mu}
\end{align*}
$$

holds, where $R_{i j k l}$ (or $R_{i j}$) represents the curvature (or Ricci) tensor linked to the Riemann connection. In the notation $u_{i_{1} \ldots \ldots \ldots i_{p}}^{\lambda}$, the index ρ replaces the index i_{λ}, while in $u_{i_{1} \ldots \hat{a} \ldots \ldots i_{p}}$ indicates that the subscript i_{a} is deleted.

If a Riemannian space M^{n} admits an almost complex structure A_{i}^{j} satisfying

$$
\begin{equation*}
g_{k h} A_{i}^{k} A_{j}^{h}=g_{i j} \tag{1.6}
\end{equation*}
$$

then it is called an almost Hermitian space.
And If in an almost Kaehler space, the Nijenhuis tensor satisfies the condition

$$
N_{j i h}+\quad N_{j h i}=0,
$$

then we deduce from it $G_{j i h}=0$, i.e.

$$
F_{i, j}^{h}+F_{j, i}^{h}=0
$$

and the space is an almost Tachibana space. Thus, we have

$$
3 F_{i h, j}=F_{j i, h}=0 .
$$

Consequently, the space is a Kaehler space i.e., an almost Kaehler space is a Kaehler space, if and only if the Nijenhuis tensor equation is satisfied.

Let $T^{c}(M)$ represent complexified tangent space of the manifold M^{n}. consider F_{c}^{p} as the space of complexified differential p-forms, which are essentially complex-valued functions defined on $T^{c}(M) \wedge \ldots . \wedge T^{c}(M)$. For non-negative integers r , s we introduce the projection mapping denoted by $\Pi: \underset{c}{c} F_{\mathrm{r}, \mathrm{s}}^{p} \rightarrow F_{c}^{p}$, where
$p=\mathrm{r}+\mathrm{s}$ as follows. At first

$$
\begin{equation*}
\prod_{i, 0}^{j}=\left(\frac{1}{2}\right)\left(\delta_{i}^{j}-\sqrt{-1} A_{i}^{j}\right) \tag{1.7}
\end{equation*}
$$

and its conjugate

$$
\begin{equation*}
\prod_{i, 1}^{j}=\underset{1,0}{j} \bar{\prod}_{i}^{j}=\left(\frac{1}{2}\right)\left(\delta_{i}^{j}+\sqrt{-1} A_{i}^{j}\right) \tag{1.8}
\end{equation*}
$$

which will be abbreviated to Π and $\bar{\Pi}$ respectively. Then for a p-form \mathbf{u} of F_{c}^{p}, we define

$$
\begin{align*}
& \left(\prod u\right)_{i_{2} \ldots \ldots \ldots i_{p}}=\left(\frac{1}{p!}\right) \underset{\substack{\mathrm{r}, \mathrm{~s}}}{\prod_{i_{2} \ldots \ldots . .}^{j_{1} \ldots \ldots j_{p}} j_{p}} u_{j_{1} \ldots \ldots \ldots j_{p}} \tag{1.9}\\
& \quad=\left[\frac{1}{(r!s!)}\right] \varepsilon_{i_{1} \ldots \ldots \ldots \ldots \ldots \ldots i_{p}}^{t_{1} \ldots t_{r} h_{1} \ldots \ldots h_{s}} \prod_{t_{1}}^{j_{1}} \ldots \ldots \cdot \prod_{t_{r}}^{j_{r}} \bar{\Pi}_{h_{1}}^{k_{1}} \ldots \ldots . \bar{\Pi}_{h_{s}}^{k_{s}} u_{j_{1} \ldots . j_{r} k_{1} \ldots \ldots k_{s} .} .
\end{align*}
$$

A p-form u of F_{c}^{p} is called of type (r,s) if it satisfies $\left(\prod_{\mathrm{r}, \mathrm{s}} u\right)=u$.
Now, here following two Lemmas given by [Kodaira and Spencer (1957)], Ogawa (1970),
Lemma (1.1): In an almost complex space, for any set of functions $u_{i_{1} \ldots \ldots . . . i_{p}}$, we have

$$
\begin{equation*}
\sum_{v=0}^{p}\left(\prod_{(p-v, v)} u\right)_{i_{1} \ldots \ldots \ldots i_{p}}==u_{i_{1} \ldots \ldots \ldots i_{p}} \tag{1.10}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{v=0}^{p}{ }_{p} C_{v} \varepsilon_{j_{1} \ldots \ldots \ldots j_{p}}^{\rho_{1} \ldots \ldots \ldots \rho_{p}} \Pi_{\rho_{1}}^{j_{1}} \ldots \ldots \Pi_{\rho_{v}}^{j_{v}} \bar{\Pi}_{\rho_{v+1}}^{j_{v+1}} \ldots \ldots \bar{山}_{\rho_{p}}^{j_{p}} u_{j_{1} \ldots \ldots j_{p}} \tag{1.11}\\
& =\varepsilon_{i_{1} \ldots \ldots \ldots i_{p}}^{j_{1} \ldots \ldots \ldots j_{p}} u_{j_{1} \ldots \ldots \ldots \ldots j_{p}}
\end{align*}
$$

holds for any p-form $u_{j_{1} \ldots \ldots \ldots \ldots j_{p}}, 1 \leq p \leq n$.
Now we define the operators $d_{1}: F_{c}^{p} \rightarrow F_{c}^{p+1}$ of type (1,0) and $d_{2}: F_{c}^{p} \rightarrow F_{c}^{p+1}$ of type $(2,-1)$ in accordance with [Kodaira and Spencer (1957)] given by

$$
\begin{array}{ll}
d_{1}=\sum_{\mathrm{r}+\mathrm{s}=\mathrm{p}} \prod_{\mathrm{r}+1, \mathrm{~s}} d \prod_{\mathrm{r}, \mathrm{~s}}, \\
d_{2}=\sum_{\mathrm{r}+\mathrm{s}=\mathrm{p}} \prod_{\mathrm{r}+2, \mathrm{~s}-1} d \prod_{\mathrm{r}, \mathrm{~s}} . \tag{1.13}
\end{array}
$$

Here we denote the conjugate operator of $d_{1}\left(\right.$ or $\left.d_{2}\right)$ by $\bar{d}_{1}\left(\right.$ or $\left.\bar{d}_{2}\right)$.
Lemma (1.2): In an almost complex space, on F_{c}^{p}, we have

$$
\begin{equation*}
\prod_{\mathrm{r}+3, \mathrm{~s}-2} d \prod_{\mathrm{r}, \mathrm{~s}}=0 \tag{1.14}
\end{equation*}
$$

where, $\mathrm{r}+\mathrm{s}=\mathrm{p}$.
From Lemmas (1.1) and (1.2), we have [2] [Kodaira and Spencer (1957)] given by

$$
\begin{equation*}
d=d_{1}+d_{2}+\bar{d}_{1}+\bar{d}_{2} \tag{1.15}
\end{equation*}
$$

The definitions of complex counterparts of the real operators d and δ, as per the framework established by Kodaira-Spencer in their (1957) work [2], can be stated as follows:

$$
\begin{align*}
& \partial=2 d_{2}+d_{1}-\bar{d}_{2} \tag{1.16}\\
& \mathfrak{D}=-* \partial * \tag{1.17}
\end{align*}
$$

On the other hand, Hsiung (1966) defined them by the following operators

$$
\begin{align*}
& (\boldsymbol{\partial} u)_{i_{0} \ldots \ldots \ldots i_{p}}=\left(\frac{1}{p!}\right) \sum_{\substack{\mathrm{r}+\mathrm{s}=\mathrm{p}}} \prod_{i_{0} \ldots \ldots \ldots i_{p}}^{t j_{1} \ldots \ldots j_{p}} \prod_{t}^{h} \nabla_{h} u_{j_{1} \ldots \ldots j_{p}}, \tag{1.18}\\
& (\mathfrak{D} u)_{i_{0} \ldots \ldots \ldots \ldots i_{p}}=-\sum_{\mathrm{r}+\mathrm{s}=\mathrm{p}} \prod_{\mathrm{r}, \mathrm{~s}}^{j_{1} \ldots \ldots \ldots \ldots i_{p}} \prod_{h}^{j_{1} \ldots \ldots j_{p}} \Pi^{t} \nabla^{h} u_{j_{1} \ldots \ldots j_{p}}, \tag{1.19}
\end{align*}
$$

for a p-form $u=\left(u_{i_{1} \ldots \ldots . . i_{p}}\right)$. After then we shall show that the relation

$$
\begin{equation*}
\mathfrak{D}=-* \boldsymbol{\partial} * \tag{1.20}
\end{equation*}
$$

is valid.

2. Operators on Almost Kaehlerian Manifolds:

We have studied the following properties of the operators
Lemma (2.1): In an almost Kaehlerian space, the operator Γ is a skew-derivation and satisfies

$$
\begin{equation*}
* \Gamma *=-D \tag{2.1}
\end{equation*}
$$

Proof: Ogawa (1967) gives that Γ is a skew-derivation and that for any p-form u
$=u_{i_{1} \ldots \ldots . . i_{p}}$,
$(* \Gamma * u)_{i_{2} \ldots \ldots \ldots i_{p}}=(-1)^{n p+n+1}(D u)_{i_{2} \ldots \ldots \ldots i_{p}}$
holds, where \boldsymbol{n} is the dimension of the space. Since \boldsymbol{n} is even, therefore
(2.1) is proof.

Lemma (2.2): In an almost Kaehlerian space, the operator \emptyset is a derivation and satisfies for any p-form u_{p},

$$
\begin{align*}
& * \emptyset * u_{p}=(-1)^{p} \emptyset u_{p}, \tag{2.2}\\
& d \emptyset-\emptyset d=-\Gamma+\Upsilon \tag{2.3}
\end{align*}
$$

Proof: From directive calculation with respect to an orthonormal local coordinate system for any $\quad p$-form $\quad u=u_{i_{1} \ldots \ldots \ldots i_{p}} \quad$, we have

$$
\begin{aligned}
(* \emptyset * u)_{i_{1} \ldots \ldots \ldots i_{p}} & =\left(\frac{1}{(n-p)!p!}\right) g g^{j_{1} j_{1} \ldots \ldots \ldots} g^{j_{n-p} j_{n-p}} g^{k_{1} r_{1} \ldots \ldots \ldots} g^{k_{p} r_{p}} u_{k_{1} \ldots \ldots \ldots k_{p}} \\
& =(-1)^{p(n-p)}(\emptyset u)_{k_{1} \ldots \ldots k_{p}} .
\end{aligned}
$$

Since n is even, we have $(-1)^{p(n-p)}=(-1)^{p}$, and thus (2.2) is proved.
Now, we have

$$
\begin{aligned}
& (d \emptyset u)_{i_{0} \ldots \ldots . i_{p}}=\nabla_{i_{0}} A_{i_{r}}^{t} u_{i_{1} \ldots \ldots . \tilde{t}_{\ldots} \ldots i_{p}}^{r}-\nabla_{i_{r}} A_{i_{0}}^{t} u_{i_{1} \ldots \ldots . \tilde{t}_{\ldots . . i_{p}}^{r}} \\
& -\sum_{r \neq s} \nabla_{i_{r}} A_{i_{s}}^{t} u \underset{i_{1} \ldots \tilde{i}_{0} \ldots \tilde{t}_{n}^{r} \ldots i_{p}}{r}+A_{i_{r}}^{t} \nabla_{i_{0}} u_{i_{1} \ldots \ldots . . \tilde{t}_{\ldots . \ldots i_{p}}^{r}}^{r} \\
& -A_{i_{0}}^{t} \nabla_{i_{r}} u_{i_{1} \ldots \ldots . . \tilde{t}_{\ldots . . i_{p}}^{r}}^{r}-\sum_{r \neq s} A_{i_{s}}^{t} \nabla_{i_{r}} u_{i_{1} \ldots \tilde{i}_{0} \ldots \tilde{t} \ldots i_{p}}^{r} \\
& (\emptyset d u)_{i_{0} \ldots \ldots . i_{p}}=A_{i_{0}}^{t} \nabla_{t} u_{i_{1} \ldots \ldots . i_{p}}-A_{i_{s}}^{t} \nabla_{t} u_{i_{1} \ldots \ldots . . \tilde{i}_{0} \ldots \ldots i_{p}}^{s} \\
& +A_{i_{r}}^{t} \nabla_{i_{0}} u_{i_{1} \ldots \ldots . .{ }_{t}^{t} \ldots . i_{p}}^{r}-A_{i_{0}}^{t} \nabla_{i_{r}} u_{i_{1} \ldots \ldots \ldots . . \tilde{t}_{\ldots}^{r} \ldots i_{p}} \\
& -\sum_{r \neq s} A_{i_{s}}^{t} \nabla_{i_{r}} u_{i_{0} \ldots \ldots . . \tilde{t}_{\ldots}^{s} \ldots \tilde{i}_{0} \ldots . . i_{p}}^{r} .
\end{aligned}
$$

Hence it follows that

$$
\begin{aligned}
(d \emptyset u-\emptyset d u)_{i_{0} \ldots \ldots \ldots \ldots i_{p}}= & \left(\nabla_{i_{0}} A_{i_{r}}^{t}-\nabla_{i_{r}} A_{i_{0}}^{t}\right) u_{i_{1} \ldots \ldots . \tilde{t} \ldots i_{p}}^{r} \\
& -\sum_{n}(-1)^{n} A_{i_{n}}^{t} \nabla_{t} u_{i_{0} \ldots \ldots \hat{n} \ldots i_{p}}^{r} \\
& +\sum_{r<s}(-1)^{r}\left(\nabla_{i_{r}} A_{i_{s}}^{t}-\nabla_{i_{s}} A_{i_{r}}^{t}\right) u_{i_{0} i_{1} \ldots \hat{r} \ldots \stackrel{t}{t} \ldots . . i_{p}}^{s} . \\
= & \sum_{n<m}(-1)^{n}\left(\nabla_{i_{n}} A_{i_{m}}^{t}-\nabla_{i_{m}} A_{i_{n}}^{t}\right) u_{i_{0} \ldots \hat{n} \ldots \tilde{t} \ldots \ldots i_{p}}^{m} \\
- & \sum_{n}(-1)^{n} A_{i_{n}}^{t} \nabla_{t} u_{i_{0} \ldots \ldots \hat{n} \ldots \ldots . i_{p}} \\
= & (\Upsilon u-\Gamma u)_{i_{0} \ldots \ldots \ldots i_{p}} .
\end{aligned}
$$

Now, we have consider the following relation

Then, we have

$$
\begin{aligned}
& (\emptyset u \wedge v)_{i_{1} \ldots \ldots \ldots i_{p+q}}+(u \wedge \emptyset v)_{i_{1} \ldots \ldots \ldots \ldots i_{p+q}} \\
& =\left(\frac{1}{(p!q!)}\right)\left[\sum_{r=1}^{p} \varepsilon_{i_{1} \ldots \ldots \ldots \ldots i_{p+q}}^{j_{1} \ldots \ldots \ldots j_{p+q}} A_{j_{r}}^{t} u_{j_{1} \ldots \ldots \ldots \ldots \ldots j_{p}}^{s} v_{j_{p+1} \ldots \ldots j_{p+q}}\right. \\
& \left.+\sum_{s^{\prime}=p+1}^{p+q} \varepsilon_{i_{1} \ldots \ldots \ldots i_{p+q}}^{j_{1} \ldots \ldots j_{p+q}} A_{j_{s^{\prime}}}^{t} u_{j_{1} \ldots \ldots j_{p}} v_{j_{p+1} \ldots \ldots . . \ldots}^{s^{\prime} \ldots j_{p+q}} \quad\right] \\
& =\left(\frac{1}{(p!q!)}\right) \sum_{n=1}^{p+q} A_{i_{n}}^{t} \varepsilon \varepsilon_{\substack{j_{1} \ldots \ldots \ldots j_{p+q} \\
i_{1} \ldots \ldots . \ldots \ldots . i_{p+q}}}^{\substack{n \\
j_{1} \ldots \ldots j_{p}}} v_{j_{p+1} \ldots \ldots \ldots j_{p+q}}
\end{aligned}
$$

$$
=\emptyset(u \wedge v)_{i_{1} \ldots \ldots \ldots \ldots \ldots \ldots i_{p+q}}
$$

Thus, the operator \varnothing is a derivation. From this, we have the following:
Corollary (2.1): In almost Kaehlerian space, the operator Υ is a skew-derivation.
Corollary (2.2): In almost Kaehlerian space, the relation

$$
\begin{equation*}
d \Gamma+\Gamma d=d \Upsilon+\Upsilon d \tag{2.4}
\end{equation*}
$$

holds.
Theorem (2.3): In almost Kaehlerian spacer, we have

$$
\begin{equation*}
* \Upsilon *=-\boldsymbol{\vartheta}-i(\delta A) \tag{2.5}
\end{equation*}
$$

where $i(\delta A)$ denotes the inner product with respect to a 1-form $\delta A\left(A=A_{i j}\right)$
Proof: We have the definition of Υ, for a p-form u,

$$
(\Upsilon u)_{i_{0} \ldots \ldots \ldots . . i_{p}}=\sum_{n<m}(-1)^{n} T_{i_{n} i_{m}}^{t} u_{i_{0} \ldots \ldots \ldots \ldots \ldots \ldots . .}^{m} \ldots \ldots i_{p},
$$

Where, we write $T_{i j}^{t}=\nabla_{i} A_{j}^{t}-\nabla_{j} A_{i}^{t}$. Therefore we have

$$
\begin{aligned}
& (* \Upsilon * u)_{i_{2} \ldots \ldots \ldots . . i_{p}}=\frac{g}{(a-p+1)!p!} \sum_{1 \leq r<s \leq a-p+1}(-1)^{r-1} T_{j_{r} j_{s}}^{h} \\
& . g^{t_{1} j_{1}} \ldots \ldots \ldots g^{t_{a-p+1} j_{a-p+1}} g^{h_{1} k_{1}} \ldots \ldots \ldots \ldots \ldots g^{h_{p} k_{p}} \\
& . u_{k_{1} \ldots \ldots \ldots k_{p}} \varepsilon_{h_{1} \ldots \ldots h_{p} j_{1} \ldots \hat{r} \ldots j_{a-p+1}} \varepsilon_{t_{1} \ldots \ldots \ldots t_{a-p+1} i_{2} \ldots \ldots i_{p}} \\
& =\frac{(-1)^{r(p-1)(a-p+1)}}{(a-p+1)(a-p) p!} \sum_{r<s} T_{\tau}^{t_{r} t_{s}} \varepsilon_{j_{2} \ldots \ldots \ldots \ldots . . . j_{p} t_{r} t_{s}}^{k_{1} \ldots \ldots \ldots \ldots \ldots k_{p}} u_{k_{1} \ldots \ldots} \\
& =-\nabla^{l} A_{l}^{t} u_{t i_{2} \ldots \ldots . . . i_{p}}-\sum_{n=2}^{p}(-1)^{n} \nabla^{t} A_{i_{n}}^{h} u_{t h i_{2} \ldots \ldots . . . \ldots i_{p}} \\
& =[\mathrm{i}(\delta A) u-\boldsymbol{\vartheta} u]_{i_{2} \ldots \ldots \ldots . .} i_{p} \text {. }
\end{aligned}
$$

Similarly, we have proof of the following:
Theorem (2.4): In an almost Kaehlerian space, we have

$$
\begin{align*}
& \boldsymbol{\partial}=(d-\sqrt{-1} \Gamma) / 2 \tag{2.6}\\
& \mathfrak{D}=(\delta-\sqrt{-1} \mathrm{D}) / 2 \tag{2.7}\\
& \overline{\boldsymbol{\jmath}}=(d+\sqrt{-1} \Gamma) / 2, \tag{2.8}\\
& \overline{\mathfrak{D}}=(\delta+\sqrt{-1} \mathrm{D}) / 2 \tag{2.9}\\
& \boldsymbol{\partial}=[d-\sqrt{-1}(\Gamma-\Upsilon)] / 2, \tag{2.10}\\
& \mathfrak{D}=[\delta-\sqrt{-1}\{\mathrm{D}-\boldsymbol{v}-\mathrm{i}(\delta A)\}] / 2, \tag{2.11}
\end{align*}
$$

3. Structure on almost kaehlerian spaces:

Theorem (3.1): In an almost Kählerian space, the structure's integrability is both a necessary and sufficient condition when:

$$
(\Gamma-\Upsilon)^{2}=0
$$

Proof. We have the intergability condition of the almost complex structure is defined by $\partial^{2}=0$, given by [2] Kodaira and spencer (1957), Then by equation (2.10)

$$
\partial^{2}=\frac{1}{4}\left[-(\Gamma-\Upsilon)^{2}+\sqrt{(-1)}(\mathrm{d} \Gamma+\Gamma d-d \Upsilon-\Upsilon d)\right]
$$

Considering that the imaginary components disappear due to the implication of Corollary (2.2), we derive the result:

$$
\partial^{2}=-\frac{1}{4}(\Gamma-\Upsilon)^{2}
$$

Which is real operator.
The operator Γ which delineates a Kählerian structure through an almost Hermitian structure, demonstrates Kählerian characteristics only when the operator Γ^{2} ceases to have an effect. As Γ functions as a skew- derivation, its second operation, Γ^{2}, acts as a derivation. Consequently, when Γ^{2} nullifies its impact on forms of degrees 0 and 1 , its influence dissipates across forms of all degrees. Taking into consideration a 0 -form f and a 1 -form $u=\left(u_{i}\right)$, the following relationship holds:

$$
\begin{aligned}
\left(\Gamma^{2} f\right)_{i j} & =\left(A_{i}^{t} \nabla_{t} A_{j}^{h}-A_{j}^{t} \nabla_{t} A_{i}^{h}\right) \nabla_{h} f, \\
\left(\Gamma^{2} u\right)_{i j k} & =\bigcup\left(A_{i}^{t} \nabla_{t} A_{j}^{h}-A_{j}^{t} \nabla_{t} A_{i}^{h}\right) \nabla_{h} u_{k}+\bigcup_{\mathrm{i}, \mathrm{j}, \mathrm{k}}\left(A_{i}^{t} A_{j}^{h} R_{t h k}^{l}\right) u_{l}
\end{aligned}
$$

Where U indicates that the terms are summed cyclically with respect to I, i,j,k
i, j, k. Consequently, the condition $\Gamma^{2}=0$ can be expressed equivalently through the following relationships:

$$
\begin{gather*}
\left(A_{i}^{t} \nabla_{t} A_{j}^{h}-A_{j}^{t} \nabla_{t} A_{i}^{h}\right)=0, \tag{3.1}\\
\cup\left(A_{i}^{t} A_{j}^{h} R_{t h k}^{l}\right)=0 . \tag{3.2}\\
\mathrm{i}, \mathrm{j}, \mathrm{k}
\end{gather*}
$$

Theorem (3.2): In an almost Kaehlerian space, the operator Γ^{2} consistently equals zero.
Proof: Since the complex structure A_{i}^{j} is a covariant constant in an Kaehlerian space, we have from (3.1)

$$
A_{i}^{t} R_{t j k}^{\omega}=A_{j}^{t} R_{t i k}^{\omega}
$$

and therefore $\quad A_{i}^{t} A_{j}^{h} R_{t h k}^{\omega}=R_{i j k}^{\omega}$,
which gives (3.2) holds.
Theorem (3.3): In an almost Kaehlerian space, when $\Gamma^{2}=0$, if signifies that the structure is almost semi-Kaehlerian.
Proof: We have, Transvecting (3.1) with A_{l}^{i}, then

$$
\nabla_{l} A_{j}^{h}+A_{l}^{i} A_{j}^{t} \nabla_{t} A_{i}^{h}=0
$$

Contracting \boldsymbol{l} and \mathbf{h} and noting $A^{i h} \nabla_{t} A_{\text {ih }}=0$. prove the theorem.

Theorem (3.4): If $\Gamma^{2}=0$ in an almost Kaehlerian space, then we have

$$
\begin{align*}
& \mathrm{U}\left(A_{i}^{t} R_{j k t}^{\omega}\right)=0 \tag{3.3}\\
& \mathrm{i}, \mathrm{j}, \mathrm{k} \\
& \frac{1}{2} A^{t h} R_{t h i}^{j}+A_{i}^{t} R_{t}^{j}=0, \tag{3.4}\\
& A_{i}^{t} R_{t j}+A_{j}^{t} R_{t i} \tag{3.5}
\end{align*}
$$

Proof: Here, from equation (3.2), we get

$$
\begin{equation*}
A_{i}^{t} A_{j}^{h} A_{k}^{l} R_{t h l}^{\omega}=A_{i}^{t} R_{k t j}^{\omega}-A_{j}^{t} R_{k t i}^{\omega} \tag{3.6}
\end{equation*}
$$

Taking the sum of terms of (3.6) cyclically with respect to the indices $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we have

$$
\underset{\mathrm{i}, \mathrm{j}, \mathrm{k}}{\mathrm{U}} A_{i}^{t} A_{j}^{h} A_{k}^{l} R_{t h l}^{\omega}=\underset{\mathrm{i}, \mathrm{j}, \mathrm{k}}{\mathrm{U}} A_{i}^{t} R_{j k t}^{\omega}=0 .
$$

gives (3.3). Contraction of \mathbf{i} and $\boldsymbol{\omega}$ in (3.3) yields

$$
\begin{equation*}
A^{i t} R_{i t j k}+A_{j}^{t} R_{t k}-A_{k}^{t} R_{t j}=0 \tag{3.7}
\end{equation*}
$$

And, from equation (3.6) we get

$$
-A_{k}^{t} A_{i}^{h} A_{j}^{l} R_{t h l}^{\omega}=A_{i}^{t} R_{k t j}^{\omega}-A_{k}^{t} R_{i t j}^{\omega}-A_{j}^{t} R_{k i t}^{\omega}
$$

Which can reduced to (3.4) by contracting with $g^{i j}$. Also, from (3.7) and (3.4), then we get the relation (3.5).

Theorem (3.5): If $\Gamma^{2}=0$ in an almost Kaehlerian space, then we have

$$
\begin{equation*}
\nabla^{i} A^{j k} \nabla_{j} A_{i \omega}=0 \tag{3.8}
\end{equation*}
$$

Proof: We have, Differentiating (3.1) by ∇_{i}, then

$$
A^{i t} \nabla_{i} \nabla_{t} A_{j}^{h}=\nabla^{i} A_{j}^{t} \nabla_{t} A_{i}^{h}+A_{j}^{t}\left(R_{i t l}^{i} A^{l h}+R_{i t l}^{h} A^{i l}\right)
$$

From (3.4) and (3.5) and noting above equation, we get

$$
\begin{aligned}
\left(\frac{1}{2}\right) A^{i t}\left(\nabla_{i}\right. & \left.\nabla_{t} A_{j}^{h}-\nabla_{t} \nabla_{i} A_{j}^{h}\right) \\
& =\left(-\frac{1}{2}\right) A^{i t} R_{i t j}^{l} A_{l}^{h}+\left(\frac{1}{2}\right) A^{i t} R_{i t l}^{h} A_{j}^{l}=-R_{j}^{h}+R_{j}^{h}=0
\end{aligned}
$$

Here, the second and third terms on the right- hand side are reduced to $-R_{j}^{h}$ and R_{j}^{h}, respectively and thus we have (3.8).

Theorem (3.6): If the operator Γ^{2} vanishes everywhere in an almost Kaehlerian space, it implies that the space is Kaehlerian.
Proof: Here, firstly we prove that

$$
\begin{equation*}
A^{j k} \nabla^{t} \nabla_{t} A_{j k}=0 \tag{3.9}
\end{equation*}
$$

Then, by virtue of (3.1) we find

$$
\nabla_{i} A_{j}^{h}=A_{j}^{h} A_{l}^{t} \nabla_{t} A_{i}^{l}
$$

the above equation and (3.8) and (3.5) gives

$$
\nabla^{\mathrm{i}} \nabla_{i} A_{j}^{h}=A_{j}^{h} \nabla^{i} A_{l}^{t} \nabla_{t} A_{i}^{l}
$$

Now contracting above equation with A_{h}^{j} and noting theorem (3.5), we obtain (3.9). From equation (3.9) follows immediately

$$
\nabla^{i} A^{j k} \nabla_{i} A_{j k}=\left(\frac{1}{2}\right) \nabla^{i} \nabla_{i}\left(A^{j k} A_{j k}\right)-A^{j k} \nabla^{i} \nabla_{i} A_{j k}=0 .
$$

Which means $\nabla_{i} A_{j k}=0$. proving the structure to be Kaehlerian.

REFERENCES

[1] C.C. Hsiung (1966), Structures and operators on almost Hermitian manifolds, Trans, Amer. Math Soc., 122, 136-152.
[2] K. Kodaira and D, C, Spencer (1957), On the variation of almost complex structure, A Sympos. in Honor of S. Lefschetz, Princeton University press, Princeton, 139-150.
[3] A. Lichnerowicz (1955), Theorie globale des connexions et des groupes d'holonomie, Cremonese, Rome.
[4] Y. Ogawa (1967), On C-harmonic forms in a compact Sasakian space, Tohoku Math. J., 19, 267-296.
[5] K. Yano (1965), Differential geometry on complex and almost complex spaces, Pergamon, New York.
[6] K. Ogawa (1970), Operators on almost Hermitian manifolds, J. Differential Geometry, Vol.4, 105-119.
[7] Wong Y. G. (1961), Recurrent tensors on linearly connected differentiable, Trans. Amer. Math. Soc., 99, 325-341.
[8] Kirichenko V. F. (1977), Differential geometry of K-spaces, Itogi NaukiI Tehniki. VINITI, Moscow, Problem Geo., 8, 139-161
[9] Kirichenko V. F. (1980), Methods of the generalized Hermitian geometry in the theory of almost contact metric manifolds, Itogi Nauki I Tehniki VINITI, Moscow, Problem Geometric, 18, 25-72.
[10] Vanhecke L., Yano K. (1977), Almost Hermitian manifolds and the Bochner curvature tensor, Kodai Math. Semin. Repts., 29, 10-21.

