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Abstract :

In this note we discuss adjacency matrix and incidence matrix of some rarely known
Euler graphs: 1) Devil’s Star graph, and 2) Mohmad scimitar graph which relate to
historian age of middle east countries. As known by the properties of ‘External
Connectivity of each edge of a given graph predicting about Eulerity of corresponding
their line graphs, we also depict some salient features. In addition to this, we have, in
this note discussed Eulerity of dual graphs using the notion of external edge
connectivity.
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1) Introduction:

1.1) Euler Graph

I) A connected graph G is a Eulerian one if it has a Euler tour- a closed circuit that
contains each edge traversed exactly once in one direction only.
This property is identified by checking evenness of degrees of each vertex.
II) Union of finite cycles:
A graph which has either one cycle of even degree vertices or a union of all cycles of
even degree vertices is an Euler graph. Euler graph � = �1 ∪ �2 ∪……. . ∪ �� where
each �� is an even cycle.
i.e., each cycle has vertices of even degree.

1.2) Rarely known Euler graphs

We have collection of some rare graphs which observe the Eulerian property.
I) Mohmad scimitar - the shape of the graph resembles to curved swords. The old-
fashioned Arabian sword.



[Figure 1 : Mohmad scimitar ��]

II) Devil’s Star

It is also inherits all the characteristics of Euler graph.

[Figure 2: Devil’s Star ��]

It is on the national flag of the country Israel.it is a graph with two equilateral
triangles, one with upside down.

1.3) Notion of External Connectivity of an Edge and related Euler graph :

Let � = < �, � > be a given connected graph with � vertices and � number of
edges;(�, � ∈ �) External connectivity of an edge �� of the set � [ � = 1, 2…�] Is
the sum of number of edges incident on end vertices of the edge �� .This is denoted as
�� �� = �1 +�2 = � where �1 and �2 are the number of edges from the end
vertices of the said edge; �1 +�2 ∈ � ∪ 0

Theorem : For the given connected graph G [may not be a simple graph] if the
external edge connectivity of every edge is even then its corresponding line graph is
an Euler graph.



1.4) Line Graph:
Let G = < V, E > be the given graph with vertex set V = {v1, v2 , ………. , vn} and
the set of edges E = e1, e2, ……, em —n vertices and m edges. Corresponding to
each edge ej, j = 1 to 4 there is a corresponding set X = x1, x2, ……, xn of vertices
of the said line graph, denoted as L(G), such that if any two edges ei and ej of the
graph G are incident on a vertex then in accordance to that there are vertices xiand xj
which are adjacent to each other in the graph L(G).

i.e. (1) The number of edges of � equals number of vertices of the line graph �(�).
(2) There is a strict one –one sequential correspondence between the set � =

�1, �2, ……, �� of � and the set of vertices � = �1, �2, ……, �� of the graph �(�);
so that if any two edges �� and �� are incident on a vertex in � parallels that there is an
edge connecting the vertices �� and �� of the line graph �(�).

1.5) Notion of Dual Graph:
As we know that each graph has its reflex with respect to faces and edges. As

known, some graphs are self duals and they stands for the basic concept that dual of
the dual graph is the primal graph.
In our note the Eulerity of the dual graph is also discussed keeping the central idea of
Eulerity and external edge connectivity.

2) Adjacency Matrix and Related Properties :

The Adjacency Matrix of a graph G with n vertices and no parallel edges is an n by n
symmetric binary matrix X = xij defined over the ring of integers such that

xij =
1 ; if tℎere is an edge between itℎ and jtℎ vertices
0 ; if tℎere is no edge between itℎ and jtℎ vertices

Some prime observations related to adjacency matrix X of a given graph are as
follows :

i. The entries along the principal diagonal of X are all zero’s if and only if if the graph
has no self - loops. A self - loop at the itℎ vertex corresponds to xij = 1.

ii. If the graph has no self - loops, the degree of a vertex equals the number of one’s in
the corresponding row or column of matrix X.

iii. If a graph is disconnected and consists two components G1 and G2. The adjacency
matrix X G of graph G can be written in a block diagonal form as

X G =
X G1 ⋮ 0
⋯ ⋮ ⋯
0 ⋮ X G2



2.1) Adjacency Matrix of �� :

1 2 3 4 5 6 7 8 9 10 11 Row
Total

1 0 1 0 0 0 0 0 0 0 1 0 2
2 1 0 1 1 0 0 0 0 0 1 0 4
3 0 1 0 1 0 0 0 1 1 0 0 4
4 0 1 1 0 1 1 0 0 0 0 0 4
5 0 0 0 1 0 1 0 0 0 0 0 2
6 0 0 0 1 1 0 1 1 0 0 0 4
7 0 0 0 0 0 1 0 1 0 0 0 2
8 0 0 1 0 0 1 1 0 1 0 0 4
9 0 0 1 0 0 0 0 1 0 1 1 4
10 1 1 0 0 0 0 0 0 1 0 1 4
11 0 0 0 0 0 0 0 0 1 1 0 2
Column
Total

2 4 4 4 2 4 2 4 4 4 2 36

=

0 1 0
1 0 1
0 1 0

0 0 0
1 0 0
1 0 0

0 1 1
0 0 0
0 0 0

0 1 1
1 0 1
1 1 0

0 0 0
0 0 0
0 1 1

1 0
1 0
0 0

0 0 0
0 0 0
1 1 0

0 0
0 0
0 0

0 0 0
0 0 1
0 0 1

0 0 1
0 0 1
0 0 0

1 1 0
0 0 0

0 0 0
0 0 0

0 1 0
1 0 1
0 1 0

0 0
0 0
1 1

0 0 1
0 0 1

0 1
1 0

2.2) Incidence Matrix of �� :

1 2 3 4 5 6 7 8 9 10 11 Row
Total

�1 1 1 0 0 0 0 0 0 0 0 0 2
�2 0 1 1 0 0 0 0 0 0 0 0 2
�3 0 0 1 1 0 0 0 0 0 0 0 2
�4 0 0 0 1 1 0 0 0 0 0 0 2
�5 0 0 0 0 1 1 0 0 0 0 0 2
�6 0 0 0 0 0 1 1 0 0 0 0 2
�7 0 0 0 0 0 0 1 1 0 0 0 2
�8 0 0 0 0 0 0 0 1 1 0 0 2
�9 0 0 0 0 0 0 0 0 1 1 0 2
�10 0 0 0 0 0 0 0 0 0 1 1 2
�11 1 0 0 0 0 0 0 0 0 1 0 2
�12 0 1 0 0 0 0 0 0 0 1 0 2
�13 0 1 0 1 0 0 0 0 0 0 0 2
�14 0 0 0 1 0 1 0 0 0 0 0 2
�15 0 0 0 0 0 1 0 1 0 0 0 2
�16 0 0 1 0 0 0 0 1 0 0 0 2
�17 0 0 1 0 0 0 0 0 1 0 0 2
�18 0 0 0 0 0 0 0 0 1 0 1 2

Column
Total

2 4 4 4 2 4 2 4 4 4 2 36



=

1 1 0
0 1 1
0 0 1

0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
0 0 0

0 0
0 0
0 0

0 0 0
0 0 0
0 0 0

1 1 0
0 1 1
0 0 1

0 0 0
0 0 0
1 0 0

0 0
0 0
0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 1 0
0 1 1
0 0 1

0 0
0 0
1 0

0 0 0
1 0 0
0 1 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 1
1 0
1 0

0 1 0
0 0 0
0 0 0

1 0 0
1 0 1
0 0 1

0 0 0
0 0 0
0 1 0

0 0
0 0
0 0

0 0 1
0 0 1
0 0 0

0 0 0
0 0 0
0 0 0

0 1 0
0 0 1
0 0 1

0 0
0 0
0 1

3) Incidence Matrix and Related Properties:

The Incidence Matrix of a graph G with n vertices and no self - loops is an n by e
matrix A = aij , whose e rows, correspond to the e edges and the n columns
correspond to the n vertices, such that

aij =
1 ; if jtℎ edge ej is incident on tℎe itℎ vertex vi

0 ; Otℎerwise

It is also called vertex – edge incidence matrix and is denoted by A (G)

The incidence matrix contains only two types of elements 0 and I clearly, this is a
binary matrix or a ( 0, I ) matrix.

Some prime observations related to incidence matrix A G of a given graph are as
follows :

i. Since every edges is incident on exactly two vertices, each row of matrix A has
exactly two one’s.
ii. The number of one’s in each column equals the degree of the corresponding vertex.
iii. A row with all zeros represents an isolated vertex.
iv. Parallel edges in a graph produce identical column in its incidence matrix.
V. If a graph is disconnected and consists two components G1 and G2. The incidence
matrix A (G) of graph G can be written in a block diagonal form as

A G =
A G1 ⋮ 0
⋯ ⋮ ⋯
0 ⋮ A G2



3.1) Adjacency Matrix of ��

1 2 3 4 5 6 7 8 9 10 11 12 Row
Total

1 0 1 0 0 0 0 0 0 0 0 0 1 2
2 1 0 1 1 0 0 0 0 0 0 0 1 4
3 0 1 0 1 0 0 0 0 0 0 0 0 2
4 0 1 1 0 1 1 0 0 0 0 0 0 4
5 0 0 0 1 0 1 0 0 0 0 0 0 2
6 0 0 0 1 1 0 1 1 0 0 0 0 4
7 0 0 0 0 0 1 0 1 0 0 0 0 2
8 0 0 0 0 0 1 1 0 1 1 0 0 4
9 0 0 0 0 0 0 0 1 0 1 0 0 2
10 0 0 0 0 0 0 0 1 1 0 1 1 4
11 0 0 0 0 0 0 0 0 0 1 0 1 2
12 1 1 0 0 0 0 0 0 0 1 1 0 4
Column
Total

2 4 2 4 2 4 2 4 2 4 2 4 36

=

0 1 0
1 0 1
0 1 0

0 0 0
1 0 0
1 0 0

0 1 1
0 0 0
0 0 0

0 1 1
1 0 1
1 1 0

0 0 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

0 0 0
0 0 0
1 1 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 1
0 0 1
0 0 0

0 0 0
0 0 0
1 1 0

0 0 0
0 0 0
0 0 0

0 1 0
1 0 1
0 1 0

0 0 0
1 0 0
1 0 0

0 1 1
0 0 0
0 0 0

0 1 1
1 0 1
1 1 0

3.2) Incidence Matrix of ��

1 2 3 4 5 6 7 8 9 10 11 12 Row
Total

�1 1 1 0 0 0 0 0 0 0 0 0 0 2
�2 0 1 1 0 0 0 0 0 0 0 0 0 2
�3 0 0 1 1 0 0 0 0 0 0 0 0 2
�4 0 0 0 1 1 0 0 0 0 0 0 0 2
�5 0 0 0 0 1 1 0 0 0 0 0 0 2
�6 0 0 0 0 0 1 1 0 0 0 0 0 2
�7 0 0 0 0 0 0 1 1 0 0 0 0 2
�8 0 0 0 0 0 0 0 1 1 0 0 0 2



�9 0 0 0 0 0 0 0 0 1 1 0 0 2
�10 0 0 0 0 0 0 0 0 0 1 1 0 2
�11 0 0 0 0 0 0 0 0 0 0 1 1 2
�12 1 0 0 0 0 0 0 0 0 0 0 1 2
�13 0 1 0 0 0 0 0 0 0 0 0 1 2
�14 0 1 0 1 0 0 0 0 0 0 0 0 2
�15 0 0 0 1 0 1 0 0 0 0 0 0 2
�16 0 0 0 0 0 1 0 1 0 0 0 0 2
�17 0 0 0 0 0 0 0 1 0 1 0 0 2
�18 0 0 0 0 0 0 0 0 0 1 0 1 2

Column
Total

2 4 2 4 2 4 2 4 2 4 2 4 36

=

1 1 0
0 1 1
0 0 1

0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
0 0 0

0 0
0 0
0 0

0 0 0
0 0 0
0 0 0

1 1 0
0 1 1
0 0 1

0 0 0
0 0 0
1 0 0

0 0
0 0
0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 1 0
0 1 1
0 0 1

0 0
0 0
1 0

0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 1
0 1
0 0

0 1 0
0 0 0
0 0 0

0 0 0
1 0 0
1 0 1

0 0 0
0 0 0
0 0 0

0 0
0 0
0 0

0 0 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

0 1 0
0 1 0
0 0 0

0 0
1 0
1 0

0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1

4) Eulerity of Line of of �� and ��:
As we know that, For the given connected graph � [may not be a simple graph] if the
external edge connectivity of every edge is even then its corresponding line graph is
an Euler graph.

4.1) External Connectivity of an Edge of �� :

�� �1 = 3 + 1 = 4 , �� �2 = 4, �� �3 = 4, �� �4 = 4, �� �5 = 4, �� �6 = 4,
�� �7 = 4, �� �8 = 4, �� �9 = 4, �� �10 = 4, �� �11 = 4, �� �12 =
4, �� �13 = 4, �� �14 = 4, �� �15 = 4,�� �16 = 4, �� �17 = 4, �� �18 = 4

Line graph of graph G1 is an Euler graph.



4.2) External Connectivity of an Edge of �� :

�� �1 = 3 + 1 = 4 , �� �2 = 4, �� �3 = 4, �� �4 = 4, �� �5 = 4, �� �6 = 4,
�� �7 = 4, �� �8 = 4, �� �9 = 4, �� �10 = 4, �� �11 = 4, �� �12 =
4, �� �13 = 4, �� �14 = 4, �� �15 = 4,�� �16 = 4, �� �17 = 4, �� �18 = 4

Line graph of graph G2 is an Euler graph.

5) Dual Graph and its salient features for the graph �� and ��:

Salient features of dual graphs and its characteristic as follows:

5.1) Dual of �� :

For the further discussion we will refer the graph G1 as Mohmad scimitar
Graph.
5.2) Dual of �� :

For the further discussion we will refer the graph G1 as Devil’s Star Graph.



Here, G1 and G2 are Euler but its dual graphs are not Euler.
6) Results :
 External connectivity of an edge of each edge of these two graphs is even that’s

why line graph of both graph is also Euler.
 We have seen that Sum of the row total and column total are same for adjacency

matrix for both graphs.
 In adjacency matrix A G , aij = aji ; for eacℎ i and j.

i.e. adjacency matrix A G is symmetric
 All the entries of the main diagonal of A G are 0.

 In incidence matrix the sum of the elements in the jtℎ column gives the degree of
the vertex vi and the sum of the elements in each row is 2.

Conclusion:

As known,there are some dominating characteristics related to vertices and cycles of
an Euler graph which alternatively stand as defining properties. One additional notion
introduced - ‘External Edge Connectivity’ of each edge, further simplify identity of
Eulerity of line graph and dual graph of a given graph. Application of this new notion
is tested and generalized to be applicable on any graph.
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