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State-space models are a strong framework in statistics for unraveling complicated 

and hidden processes in various datasets. These models offer a versatile way to 

identify temporal or sequential data, making them useful tools in disciplines ranging from 

economics to engineering to biology and beyond. Let us investigate the complexities of state-

space models, learning how they reveal expose hidden variables, improve forecasting, and 

revolutionize our understanding of dynamic systems. 

❖ Unveiling the State-Space Concept 

A state-space model's fundamental function is to depict how a system changes over 

time. The two essential elements that define its evolution are the "state" and the "observation." 

While the observation relates to the quantifiable results we can immediately perceive, the state 

represents the underlying, unobservable variables that determine the system's behavior. These 

models resemble a secret story that is being played out in the background, a story that state-

space models aim to reveal. 

A state space model (SSM) is a time series model in which the time series 𝑌𝑡 is 

interpreted as the result of a noisy observation of a stochastic process 𝑋𝑡. The values of the 

variables 𝑋𝑡 and 𝑌𝑡  can be continuous (scalar or vector) or discrete. SSMs belong to the realm 

of Bayesian inference, and they have been successfully applied in many fields to solve a broad 

range of problems. It is usually assumed that the state process 𝑋𝑡 is Markovian, i.e., 𝑋𝑡  depends 

on the history only through 𝑋𝑡−1, and 𝑌𝑡 depends only on 𝑋𝑡: 

𝑋𝑡 ~p(𝑋𝑡|𝑋𝑡−1) 

𝑌𝑡 ~p(𝑌𝑡|𝑌𝑡) 

❖ Components & Structures 

1. State Variables: 

State variables are an array of internal variables that describe a dynamic 

system's existing state. They represent the fundamental elements of the system, which 

are critical for predicting how it will behave over time but cannot be observed directly. 

A vector, often written as X(t), is used to represent state variables, where "t" stands for 

the current time step. The scale of the system being modeled determines how many 

state variables are needed. 

2. Observation / Measurement Variables: 

The measurable quantities or system outputs are known as observation 

variables. Unlike state variables, observation variables can be seen or measured 

immediately. They are typically denoted by a vector, typically written as Y(t), where 

"t" stands for the current time step. Depending on the information provided by the 

system in terms of measurements, the number of observation variables may change. 

3. Control Variables: 

Control variables are applied to a system as external inputs or control signals 

to modify its behavior. These inputs can be regulated or optimized by an outside agent 

to maintain system performance. Control variables are commonly expressed as a vector, 

u(t), where "t" stands for the current time step. 

4. System Dynamics Equations: 

The state variable evolution over time is described by the system dynamics 

equations. They stand in for the fundamental rules or precepts that direct how the system 
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behaves. According to the needs of the modeling, these equations are often differential 

equations, either in continuous-time or discrete-time form. 

5. Observation Equations: 

The state variables and the observation variables are related by the 

observation equations. They specify the mapping between the system's quantifiable 

outputs and the state variables. The measurement noise and uncertainties are also taken 

into consideration using observation equations. 

❖ Types of State Space Models 

There are two types of state space models (SSMs), depending on the linearity of their 

state and observation equations: 

1. Linear State Space Models (LSSMs) 

When the state and observation equations are written as linear functions of 

the state variables and observations, the resulting model is known as a linear state space 

model (LSSM). 

a. State Equation (State Transition Model): 

Xt = At * Xt-1 + Bt * ut + wt 

Where, 

Xt : At time t, the state vector represents the system’s hidden or unobservable 

variables 

At : A state transition matrix is a matrix that connects the state at time t to the 

state at time t-1. It captures the dynamics of the system 

Xt-1 : State vector at time t-1 

Bt : At time t, the control input matrix accounts for any external control or effect 

on the system 

ut : Control input vector at time t 

wt : Process noise represents the uncertainty or random fluctuations in the state 

transition process 

b. Observation Equation: 

Yt = Ct * Xt + vt 

Where, 

Yt : At time t, the observation vector represents the system’s measured or 

observed variables 

Ct : The observation matrix maps the state vector to the observation space. It 

expresses how the states are related to the observable quantities 

vt : Observation noise, which accounts for measurement errors and uncertainty 

in the observed data 

Key characteristics: 

• The linearity of the state and observation equations leads to closed-form 

solutions and effective computing. 

• LSSMs often assume Gaussian processes and observation noise, simplifying 

estimation and enabling the application of Kalman filters and smoothers. 

• The most well-studied SSM is the Kalman filter, for which the processes above 

are linear and the sources of randomness are Gaussian. Namely, a linear state 

space model has the form: 

𝑋𝑡+1 = 𝐺𝑋𝑡 + 휀𝑡+1 

𝑌𝑡 = 𝐻𝑋𝑡 + 𝜂𝑡 

• Here, the state vector 𝑋𝑡𝑅𝑟  is possibly unobservable and it can be observed 

only through the observation vector 𝑌𝑡 ∈ 𝑅𝑛. 
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• The matrices 𝐺 ∈ 𝑀𝐴𝑇𝑟(𝑅) and 𝐻 ∈ 𝑀𝐴𝑇𝑛,𝑟(𝑅)  are assumed to be known. For 

example, their values may be given by (economic) theory, or they may have 

been obtained through MLE estimation. 

• In fact, the matrices G and H may depend deterministically on time, i.e., G and 

H may be replaced by known matrices 𝐺𝑡 and 𝐻𝑡, respectively. 

• We also assume that the distribution of the initial value X1 is known and 

Gaussian. The vectors of residuals 휀𝑡 ∈ 𝑅𝑟  and  𝜂𝑡 ∈ 𝑅𝑛 satisfy 

E(휀𝜄휀𝑆
𝑇) = 𝛿𝑡𝑠𝑄, 

E(𝜂𝜄𝜂𝑆
𝑇) = 𝛿𝑡𝑠𝑅, 

• Where  𝛿𝑡𝑠 denotes Kronecker’s delta, and where Q and R are known positive 

definite (covariance) matrices. 

• We also assume that the components of 휀𝜄 and 𝜂𝑠 are independent of each other 

for all t and s. The matrices Q and R may depend deterministically on time. 

• The first of the equations is called the state equation, while the second one is 

referred to as the observation equation. Let T denote the time horizon. 

• Our broad goal is to make inferences about the statescaps 𝑋𝑡 based on a set of 

observations 𝑌1, …, 𝑌𝑡 . 
2. Nonlinear State Space Models 

Nonlinear State Space Models (NSSMs) express the state equation, 

observation equation, or both as nonlinear functions of state variables and observations. 

a. Nonlinear State Equation (State Transition Model): 

Xt = f (Xt-1, ut) + wt 

Where, 

Xt : At time t, the state vector represents the system’s hidden or unobservable 

variables 

f : The nonlinear state transition function describes how the state at time t is 

affected by the state at time t-1 and any control inputs ut 

Xt-1 : State vector at time t-1 

ut : Control input vector at time t 

wt : Process noise represents the uncertainty or random fluctuations in the state 

transition process 

b. Nonlinear Observation Equation: 

Yt = h (Xt) + vt 

Where, 

Yt : At time t, the observation vector represents the system’s measured or 

observed variables 

H : A nonlinear observation function maps the state vector to the observation 

space. It describes how the states are related to the observable quantities 

vt : Observation noise, which accounts for measurement errors and uncertainty 

in the observed data 

Key characteristics: 

• The model is more powerful and able to handle complex system interactions 

since at least one of the state or observation equations incorporates nonlinear 

functions. 

•  When estimating the states and parameters of NSSMs, numerical techniques 

like the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), or 

Particle Filter (PF) are frequently used. 



4 
 

•  To estimate the posterior distribution of states in NSSMs, particle filters are 

frequently used. This enables more accurate inference in non-Gaussian and 

highly nonlinear environments. 

•  NSSMs can model more real-world systems than LSSMs since linearity 

assumptions do not restrict them. 
 

import numpy as np 

import matplotlib.pyplot as plt 

from statsmodels.tsa.statespace.kalman_filter import KalmanFilter 

from statsmodels.tsa.statespace import tools 
 

# Generate synthetic data 

np.random.seed(0) 

n_samples = 100 

true_values = np.sin(np.linspace(0, 4 * np.pi, n_samples)) 

noisy_values = true_values + np.random.normal(0, 0.5, n_samples) 
 

# Define the state space model 

class SinStateSpace(KalmanFilter): 

    def __init__(self, endog): 

        super().__init__(k_states=2, k_obs=1) 
 

        self['design', 0, 0] = 1.0 

        self['transition', 0, 0] = 1.0 

        self['transition', 0, 1] = 1.0 

        self['selection', 0, 0] = 1.0 

        self['obs_intercept', 0, 0] = 0.0 

        self.initialize_known([0.0, 0.0], [[1.0, 0.0], [0.0, 1.0]]) 

        self.loglikelihood_burn = 1 
 

# Create the state space model 

model = SinStateSpace(noisy_values) 

# Fit the model 

results = model.smooth(noisy_values) 
 

# Plot the true values, noisy measurements, and smoothed estimates 

plt.plot(true_values, label='True Values') 

plt.plot(noisy_values, label='Noisy Measurements') 

plt.plot(results.filtered_state[0], label='Smoothed Estimates') 

plt.xlabel('Time Step') 

plt.ylabel('Value') 

plt.title('State Space Model Example') 

plt.legend() 

plt.show() 

Kalman Filter: 

• By predicting a joint probability distribution over the variables for each period of time, 

Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm used 

in statistics and control theory that uses a number of evaluations observed over time, such 

as statistical noise and other inaccuracies, to produce estimates of unknown variables that 

are typically more precise than those based on a single measurement alone. 
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• The filter is named after Rudolf E. Kálmán, who was one of the primary developers of 

its theory. 

• A system's state can be estimated more accurately using Kalman filtering than it would 

by using just one measurement by using the dynamic model of the system (such as 

physical laws of motion), known control inputs to the system, and multiple sequential 

measurements from sensors. It is a typical sensor fusion and data fusion algorithm as a 

result. 

• The accuracy of determining the system's state is constrained by a variety of reasons, 

including noisy sensor data, approximations in the equations that describe the system's 

evolution, and unaccounted-for external factors. 

• The uncertainty resulting from noisy sensor data and, to some extent, from unpredictable 

external influences is successfully handled by the Kalman filter. By averaging the 

system's anticipated state and the current measurement using a weighted average, the 

Kalman filter generates an estimate of the system's state. 

• Values with greater (i.e., smaller) estimated uncertainty are "trusted" more for the 

purpose of the weights. The weights are determined using the covariance, which is a 

metric for the predicted level of uncertainty in state prediction for the system. 

• A new state estimate that fits between the expected and measured states and has a better-

estimated uncertainty than each alone is the outcome of the weighted average. 

• Every time step, this process is repeated, with the updated estimate and its covariance 

influencing the prediction utilised in the subsequent iteration. 

• As a result, the Kalman filter operates recursively and calculates a new state using only 

the most recent "best guess" rather than the whole history of the system's state. 

• Important factors to take into account include the measures' current-state estimation and 

certainty grading. The gain of the Kalman filter is frequently used to describe the filter's 

response. 

• The Kalman gain, which can be "tuned" to obtain a certain performance, is the weight 

given to the measurements and current-state estimation. 

• With a high gain, the filter gives the most recent findings more weight and responds to 

them more quickly. The filter more closely resembles the model predictions when the 

gain is low. 

• At the extremes, a high gain near one will provide an estimated trajectory that jumps 

about more, whereas a low gain near zero will level out noise but reduce responsiveness. 

• The state estimate and covariances are coded into matrices due to the various dimensions 

required in a single set of computations when carrying out the actual calculations for the 

filter (as detailed below). 

• In any of the transition models or covariances, this enables the modeling of linear 

relationships between several state variables (such as location, velocity, and 

acceleration). Here's a basic example of how to implement a Kalman filter using Python 

and the filterpy library: 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Rudolf_E._K%C3%A1lm%C3%A1n
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import numpy as np 

from filterpy.kalman import KalmanFilter 

import matplotlib.pyplot as plt 
 

# Generate some synthetic data 

np.random.seed(0) 

n_samples = 100 

true_values = np.linspace(0.1, 10.0, n_samples) 

noisy_values = true_values + np.random.normal(0, 1, n_samples) 
 

# Initialize the Kalman filter 

kf = KalmanFilter(dim_x=2, dim_z=1) 

kf.x = np.array([0.0, 1.0])  # Initial state [position, velocity] 

kf.F = np.array([[1.0, 1.0], [0.0, 1.0]])  # State transition matrix 

kf.H = np.array([[1.0, 0.0]])  # Measurement matrix 

kf.P *= 1000.0  # Initial state covariance 

kf.R = 1.0  # Measurement noise covariance 

kf.Q = np.array([[0.001, 0.001], [0.001, 0.001]])  # Process noise covariance 
 

# Store the filtered results 

filtered_states = [] 

# Kalman filtering 

for z in noisy_values: 

    kf.predict() 

    kf.update(z) 

    filtered_states.append(kf.x[0])  # Estimated position 
 

# Plot the true values, noisy measurements, and filtered estimates 

plt.plot(true_values, label='True Values') 

plt.plot(noisy_values, label='Noisy Measurements') 

plt.plot(filtered_states, label='Filtered Estimates') 

plt.xlabel('Time Step') 

plt.ylabel('Value') 

plt.title('Kalman Filter Example') 

plt.legend() 

plt.show() 

• Before running the code, make sure you have the filterpy library installed in your Python 

environment: 

pip install filterpy 

Applications of State Space Model 

i. Control Engineering: 

SSMs are used by dynamic systems to simulate and predict behavior, 

allowing for the efficient implementation of control and feedback mechanisms. In fields 

like process control, robotics, and aerospace, they are essential. 

ii. Finance and Economics: 

Models using state spaces are crucial for simulating financial time series, 

asset pricing, and economic variables. Their use is necessary for risk management and 
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portfolio optimization. The ability to predict stock prices, interest rates, and economic 

indicators is another benefit. 

iii. Time Series Analysis: 

State space models are useful for studying time-varying data, such as 

variations in temperature, traffic patterns, and economic trends. They include 

prediction, computation of missing variables, and the discovery of underlying patterns. 

iv. Signal Processing 

SSMs are essential for generating trustworthy and beneficial information 

from unstable signals and observations in applications involving signal processing. 

Systems for communication, speech recognition, and image processing all make use of 

them. 

v. Ecology and Environmental Studies: 

State Space Models (SSMs) are used by scientists to study ecological 

systems, animal populations, and environmental variables. They aid in the analysis of 

species interaction dynamics, ecosystem modeling, and climate change. 

vi. Health and Medicine: 

Researchers utilize state space models to forecast disease transmission, 

optimize medication doses, and examine patient health trajectories in the fields of 

epidemiology, pharmacokinetics, and disease modeling. 

vii. Robotics and Autonomous Systems: 

SSMs are used by researchers in robotics for behavior strategy, mapping, and 

localization. They enable robots to locate themselves and navigate hazy and dynamic 

situations. 

viii. Economics and Finance: 

SSMs forecast economic indicators, model financial time series, and forecast 

asset values for use in economic analysis and decision-making. 


