
CHAPTER 2 

INTRODUCTION TO MACHINE LEARNING (Part 2) 

2.1. Unsupervised Learning 

Unsupervised learning is also known as Knowledge Discovery . It is a machine learning 

technique in which model are not providing any type of training to learn from data. It  mainly 

deals with the unlabeled data and try to discover itself  similarities and differences on the bases 

of patterns ,trend and in their relationship. Unlike in Supervised learning where , model on the 

bases of trained algorithms known about both input and its corresponding output .Where as in 

Unsupervised Learning ,input are known by model and model has to discover output.   

Unsupervised Machine Learning  is the process of training /teaching a model to use unlabeled, 

 unclassified data and enabling the algorithm to analysis pattern, feature, trend and relationship 

on that data without supervision. 

For example: 

In unlabeled dataset ,there is an image of both cow and goat and model has to recognize it. 

 

 

 

 

 

 

 

 

 

Figure1: Image of Both Cow and Goat 



Hence , model first start it by discovering hidden pattern  and trend ,and classify to categorize 

them in two classes, in one  class it put images of cow and in second class it put images of goat. 

 

2.1.1 Types of unsupervised learning techniques: 

1. Clustering: 

Clustering algorithm form cluster based on data point  by discovering patterns,  features 

,variation  or trend, which share common characteristics feature or attribute from a collection of 

uncategorized data in it. 

 

                     

                Sample                                                                 Cluster / Group 

 

                                                         Figure 2: Clustering                

From the above figure it is clear that ,there is sample which is a collection of uncategorized data 

that is., collection of various variety of potatoes which is clustered into similar variety of 

potatoes. 

Common clustering algorithms include: 

A. K-means: 

It is a partition-based clustering method that aims to divide data points of unlabeled data set into 

K distinct clusters /group, where K is a user-defined parameter representing the number of 



clusters / group. Its goal is to determine the similarities and dissimilarities within the given 

cluster/group. 

 

 

 

 

 

 

 

Figure 3: K-means Clustering 

The above figure represent a cluster of apple, this cluster is further cluster into K cluster on the 

bases of quality like color ,shape and size. So here, the value of K is 4. 

 

A. Hierarchical clustering:    

 It is also known as hierarchical cluster analysis or HCA , this is tree-shaped structure  

known as the 'Dendrogram'. In dendrogram, individual data points are located at the 

bottom of  it, while the largest clusters, which include all the data points, are located at 

the top of it. 

There are two types of hierarchical Clustering: 

 

A. Agglomerative Clustering :     

It is also known as the bottom-up approach or hierarchical agglomerative clustering 

(HAC) where each data are treated  as a singleton cluster at the outset and then 

successively a large cluster of many different things which are collected or brought 



together are further cluster into pairs of clusters until all clusters have been merged 

into a single cluster that contains all data. 

 

 

 

 

 

 

 

 

                

                                                                        

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Agglomerative Clustering 

 

I. Divisive clustering :   

It is also known as a top-down approach. In this method a cluster that contains 

the whole data are farther split into clusters  recursively until individual data have 

been split into singleton clusters. 
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Figure 5: Divisive clustering 

 

B. Density-based spatial clustering of applications with noise (DBSCAN): 

 

 In 1996 .it was introduced by Martin Ester, Hans-Peter Kriegel, Jörg Sander, and 

Xiaowei Xu .It is used for clustering data points based on their density distribution in 

a feature space. Mainly it can identify clusters of arbitrary shapes and enable to 

handle noisy data effectively . DBSCAN works by defining two key parameters: ε 

(epsilon) and MinPts. 

 ε (epsilon) : It is the radius that determines the neighboring  distance  around 

each data point. 



 MinPts : It is the minimum number of data points which is present  within ε 

distance. 

The DBSCAN algorithm can classify data points into three categories: 

 

 Core Points: Data points that are within ε distance of neighboring points and  have at 

least MinPts . 

 Border Points: Data points that are within ε distance of a core point but do not have 

enough neighbors to be core points themselves. 

 Noise Points: Data points that are not within ε distance of any core point and do not have 

enough neighbors to form a cluster. 

DBSCAN has various applications in data analysis, including spatial data analysis, 

anomaly detection, image processing, and customer segmentation. 

 

C. Mean Shift :     

 It is also known as the Mode-seeking algorithm .Mean-shift clustering is a non-

parametric, density-based clustering algorithm that can be used to  group similar data 

points together into clusters without the need for labeled data.  It is particularly useful 

for datasets where the clusters are in distinct shapes and are not well-separated by 

linear boundaries, or  when similar data points of unlabeled data set are not cluster in 

same cluster and the number of clusters is not known beforehand. 

Steps in Mean Shift clustering algorithm are as follows: 

 

Kernel and Bandwidth Selection:  

 The algorithm begins with the selection of a kernel function and a bandwidth 

parameter whereas the kernel function determines the weight or influence of 

neighboring data points in density estimation, and the bandwidth sets the size of the 

neighborhood used to calculate the density. 

 

Data Point Initialization: 

 It initialize all data points as potential cluster centers. 



 

Mean Shift Vector Computation: 

 For each data point, the algorithm computes a mean shift vector that points towards 

the region of highest density. This vector is calculated by taking  average weight of  

the data point which connects to its neighbors, while the weights are determined by 

the kernel function and bandwidth parameters. 

 

Update Data Points: 

 Shifting the data points in the direction of their corresponding mean shift vectors. 

 

Convergence:  

The mean shift vector computation are repeated and updates data point until 

convergence is achieved.  

 

Clustering:   

 The final clusters represent the groups of common data points based on density. 

E. Gaussian Mixture Model (GMM):    

It is a probabilistic model used for clustering data into multiple groups or clusters. 

 Where in each cluster,  the data points are generated from a Gaussian distribution, 

 and the overall data distribution is a combination of these Gaussian distributions. GMM  find the 

parameters that include the means, variances, and mixing coefficients of the Gaussian 

components 

 by using the Expectation-Maximization (EM) algorithm. 

In a one dimensional space, the probability density function of a Gaussian distribution is given 

by:  

 



 

 

where μ is the mean and σ2 is the variance.But this would only be true for a single variable.  

In the case of two variables, the probability density function would be given by: 

 

where x is the input vector, μ is the 2D mean vector, and Σ is the 2×2 covariance matrix. 

The GMM clustering process works in the following steps: 

1. Initialization: Choose initial values for the means, variances, and mixing coefficients of the 

Gaussian components. 

2. Expectation-Maximization (EM) algorithm:The EM algorithm consists of two steps: 

a. Expectation step (E-step): It calculates the probability of each data point belonging to each 

cluster based on the current parameter estimates. 

b. Maximization step (M-step): It updates the parameters of the Gaussian distributions to 

maximize the likelihood of the data given the estimated probabilities from the E-step. 

Iteration: Repeat the E-step and M-step until convergence, it means that when the model 

parameters stop changing significantly. 

Assign clusters: After convergence, assign each data point to the cluster with the highest 

probability. 

GMM can handle complex and overlapping clusters and can also estimate the probability that a 

data point belongs to a particular cluster or not. GMM is determining the optimal number of 

clusters (components), using model selection techniques such as the Bayesian Information 



Criterion (BIC) or the Akaike Information Criterion (AIC) to compare models with different 

numbers of components and choose the one that best fits the data. 

G. Spectral Clustering :     

    It first convert the data points into a graph representation and then perform clustering on this 

graph. The graph is  constructed based on pair-wise similarity or distance measures between data 

points. In graph it representation nodes as the data point  and the similarity between the data 

points are represented by an edge. 

The steps involved in Spectral Clustering are as follows: 

1. Construct the Affinity Matrix: To constructed it take a given a dataset with n data points, 

represent the pairwise similarity between the data points. The similarity can be measured using 

various distance metrics (e.g., Euclidean distance, cosine similarity, or Gaussian kernel) based on 

the characteristics of the data in the particular domain. 

 

2. Graph Representation: The above matrix is then treated as the adjacency matrix of a 

weighted graph. In the graph each data point corresponds to a node  and the edge weights 

represent the distance between the similar points. 

 

3. Graph Partitioning: The graph  partition is into k disjoint clusters or subgraphs by 

optimization. This is often done by finding the k smallest eigenvectorsof the Laplacian matrix of 

the graph. 

 

4. Forming Clusters: The k eigenvectors obtained from the above graph are arranged as rows in 

a new matrix.This are treated as new data points in a higher-dimensional space. Finally, 

traditional k-means clustering techniques  are applied to these new data points to form the final 

clusters. 

 

2.Dimensionality Reduction:    



Dimensionality reduction is a fundamental technique in unsupervised learning that aims to 

reduce the number of features or variables in a dataset without the lost of its relevant information 

. The primary goal is to simplify the data representation, making it more manageable and easier 

to analyze, visualize, or process, and enable to reveal patterns, structures, or clusters within the 

data, making it easier to understand and explore. 

There are two main approaches to dimensionality reduction in unsupervised learning: 

Feature Selection: It select a subset of the relevant original features from the dataset while 

discarding the rest or unused features. Common methods which include is information gain, 

mutual information, and statistical tests like chi-squared test or t-test. 

Feature Extraction: Unlike feature selection, it transforms the original features into a lower-

dimensional space using various mathematical techniques. Now the new set of features are 

known as latent variables or components, which are more informative and compact 

representation. 

 PCA and Auto – encoder are  the popular techniques for feature extraction : 

I). Principal Component Analysis(PCA): This technique was introduced by 

the mathematician Karl Pearson in 1901. It mapped the data of higher 

dimensional space into the data of lower dimension space and the variance of 

the data in the lower dimensional space should be maximum.  (PCA) is a 

statistical procedure that uses an orthogonal transformation that converts a set 

of correlated variables into a set of uncorrelated variables. It is used to 

examine the interrelations among a set of variables. It is also known as a 

General Factor. analysis where regression represent a line of best fit. 

 (PCA) is used to reduce the dimensionality of a data set by finding a new set of 

variables that should be smaller than the original set of variables, without the lost 

of its relevant information , and useful for the regression and classification of data. 
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Figure 6: Principal Component Analysis(PCA) 

The following steps of PCA (Principal Component Analysis) are: 

 

Step 1: Standardization 

First, we need to standardize our dataset to ensure that each variable has a mean of 0 and 

 a standard deviation of 1. 

 

                               Z = X-µ / ϭ         

Here, 

µ  = {µ1, µ2, ……….  , µm} 

µ  = The mean of independent features  .    

ϭ = The standard deviation of independent features   .  

ϭ =  { ϭ1 , ϭ2 , …….,ϭm} 

 

Step 2: Covariance Matrix Computation 

It measure the strength of joint variability between two or more variables, representing 

how much they change in relation to each other. To find the covariance we can use the 

formula: 



                                   Cov (x1 ,x2) = ∑i
n

=1  (x1i  x1) (x2i   x2)  / n-1. 

         The value of covariance can be positive, negative, or zeros. 

            Positive: As the x1 increases  then x2 also increases. 

Negative: As the x1 increases  then x2 also decreases. 

Zeros: No direct relation for zero. 

 

Step 3: Compute Eigenvalues and Eigenvectors of Covariance Matrix to Identify 

Principal Components 

Let A be a square nXn matrix and X be a non-zero vector for which λ, for some scalar 

values λ then λ is known as the eigenvalue of matrix A and X is known as the eigenvector 

of matrix A for the corresponding eigenvalue. 

                          A X = λ X    

It can also be written as  : 

                   AX – λ X   = 0 

                   (A – λ I) X =0  

 

where I is the identity matrix of the same shape as matrix A. And the above conditions 

will be true only if   (A – λ I) will be non-invertible (i.e. singular matrix). That means, 

                                          |(A – λ I)| =0 

From the above equation , we can find the Eigen values and then corresponding 

eigenvector can be found. 

 

II). .Auto-encoders:    



Auto-encoders belong to the family of neural network architectures that determines how the 

nodes are inter-connected, how the information flows within the network, and how the network 

performs various specific tasks in ML, that includes classification, regression ,trends, feature or 

pattern recognition .The network  are designed to learns from receive input data, include an 

efficient feature or pattern from  data, extract its essential characteristics and transform it into 

compressed version of given original input data ,while  Principle Component Analysis (PCA) 

finds the directions along which you can project the data that cover maximum data points or 

variance. 

Steps in Auto-encoders are as follows: 

 

1. Encoding level: Input data is fed into  encoder network ,which usually has several hidden 

layers. Each layer  reduces the rest of the input data, preserving higher characteristics and 

patterns.  

2.  Decoding level:  

The coded representation is then passed through the decoding network, , the purpose of which is 

to create original input data. The  architecture of the decoder is usually symmetric or mirror 

image with respect to the encoder. 

3.  Loss of function: The difference between the original input and the reconstructed input is  

measured by a loss function such as mean square error (MSE) or binary cross entropy. The 

purpose of the network is to minimize this loss, to learn to create a patterns, but to provide an 

accurate representation of the input data.  

The types of auto-encoders in unsupervised learning are: 

A. Vanilla Auto-encoder : This is the basic form of Auto Encoder, which consists of an 

encoder and a decoder. Its purpose is to study data entry negotiation. The encoder 

reduces the dimensionality of the input  and the decoder reconstructs the original input. 

It is trained to minimize restructuring. 

B. Sparse Auto-encoders: In  sparse auto-encoders, the encoder is encouraged to learn 

different notations. This means that only a small number of neurons in the hidden layer 

are activated simultaneously, can make information encoding more efficient .  



Sparseness can be accomplished by various techniques such as normal operation or 

fines. 

C. Noise Canceling Auto-encoders: Noise canceling auto-encoders are trained to 

reproduce clean data from noisy devices. During the training, the network took 

corrupted versions of the login and training to recreate the original, clean data. This 

helps auto-encoders learn dynamic features and filter out noise. 

D. Contractive Auto-encoder: 

The Contractive auto-encoder adds a loss penalty that prevents the encoder  from detecting 

minor changes. This empowers learning agent   to capture more important features and 

reduce the impact of random noise. 

E. Variational Auto-encoder (VAE): VAE is a design that models data distribution as well 

as learning the fit of data. They use a probabilistic encoder and decoder to learn the 

hidden area where data can be sampled and reproduced. 

 

3. Anomaly Detection:   

In the context of machine learning, anomaly detection refers to the process of identifying 

patterns or data items in data that differ from expected behavior or patterns. These 

differences are often called anomalies, outliers, innovations, or exceptions. Vulnerability 

detection has many applications in many fields such as finance, cybersecurity, 

manufacturing, healthcare, and more. 

 

Anomaly detection in machine learning works like this: 

 

Data collection and preprocessing: The first step is to collect and prepare the data for 

analysis. This includes cleaning the data, handling incomplete results, and converting the 

data into a suitable format for further processing. 

Feature selection and engineering: Selection or engineering of related features that capture 

data features. This step is important because the quality of features can affect the 

performance of malicious detection algorithms. 

 



Defining Normal Behavior: Diagnosing abnormal behavior requires understanding what is 

causing the behavior. This can be done in many ways, including statistical methods, expert 

knowledge, and even learning from historical data. 

 

Choose an anomaly detection method: There are several methods for detecting anomalies, 

each with advantages and disadvantages. 

Some of the methods are: 

 

Statistical method: This method involves measuring the distance between points of points or 

other central measurements. Examples include z-scores, modified z-scores, and Mahalanobis 

distance. 

 

Machine Learning Techniques: Supervised and unsupervised machine learning algorithms 

can be used. Unsupervised techniques such as split forest, single class SVM, and k-means 

clustering can be effective. 

 

Deep Learning: Deep neural networks can be used for abnormal detection through training 

models to reproduce original models. 

The content of data containing construction errors is considered unreliable. 

 

Time Series Analysis: Special techniques such as autoregressive integral moving average 

(ARIMA) or exponential smoothing can be used for time dependent data. 

 

Consolidation: Combining multiple detection vulnerabilities can improve detection overall. 

 

Training and evaluation: If machine learning is used, the algorithm will be trained on 

ordinary data. Use labeled or unlabeled data to evaluate the performance of algorithms based 

on whether the issue is audited. 

Personal Choices: Set a threshold to determine what's wrong. Data points or patterns below 

this threshold are considered normal and data points or patterns above this threshold are 



declared abnormal. Thresholds can be set manually or selected according to measurement 

parameters. 

 

Reporting and Monitoring: Once a vulnerability detection system is established, it should 

be regularly monitored and updated to reflect changing data patterns. At the same time, new 

vulnerabilities may arise and the system must be able to catch them. 

Dealing with False Positives and False Negatives: A false positive test can be false positive 

(data always marked negative) or negative (no false positives). It is important to balance 

these variations and is often used privately. 

 

In a nutshell, anomaly detection in machine learning involves identifying different patterns or 

themes in data. The choice of technique depends on the nature of the data, the availability of 

data to be recorded, and the desired balance between good and bad. It's important to tailor the 

process to a specific problem and refine it as data evolves. 

 

4. Association Rule Mining:      

 

Association rule mining is a technique used in machine learning and data mining to find 

relationships or relationships between items in big data. This technique is particularly useful 

in market basket research, where the goal is to identify patterns in consumer behavior. 

 

The association mining policy works like this: 

 

Data collection and progression: The first step is to collect transaction data, which usually 

includes a list of products purchased on each exchange. For example, in a retail environment, 

every transaction will be a customer's shopping cart with many items. 

 

Item Frequency Calculation: Calculate the frequency of each item in the database. 

This includes counting how often each product appears on the market. 

 



Support Threshold Setting: Set the support threshold that represents the minimum change 

frequency or percentage this is important. This threshold helps filter out less popular items. 

Support is an important part of the collective mining policy that determines which items will 

be considered "parties" and therefore used to establish organizational rules. Support for a 

product is defined as the proportion of the market in which the product is available. Initial 

support helps evaluate less useful items as useful or interesting. 

 

Support configuration in mining policy attribution works like this: 

 

Contribution Ratio: For each product (portfolio), Support is calculated by dividing the 

number of products with products from all industries in the dataset. 

 

Support (item X) = (number of changes with X) / (total number of changes) 

 

Starting point: Choose a support point based on experience names, data attributes, and the 

desired balance between sensitivity and specificity. 

This threshold represents the minimum support level at which an item should be considered 

multiple times. 

 

A lower value causes more objects to be considered more often, which leads to more 

convergence. 

 

A higher setting will result in fewer items being evaluated more often and therefore fewer 

rules, but these rules will be more important and more enforceable. 

 

Filter rare items: All items with an incentive value higher than the selection are considered 

active items. Substances with stimulus values below the threshold were considered rare and 

excluded from further analysis. 

Create join rules: Create join rules from active items based on metrics such as confidence and 

increment. These codes represent relationships between items that appear frequently in the 

dataset. 



 

It is important to remember that the choice of support depends on the specific purpose of the 

analysis, the nature of the data, and the insight you seek. There is no one-size-fits-all 

approach to setting thresholds; It is an iterative process, often with testing and evaluation. 

 

If the threshold is set too high, you will not see interesting but rare patterns in your data. On 

the other hand, if the threshold is set too low, you may encounter too many active items and 

associated rules; some of these may not be important or interesting. 

 

You can consider the following steps to help build an appropriate backing: 

 

Start with a very high starting point to get a small amount of important product and code. 

Gradually lower the threshold and monitor changes in products and policies 

Use process visualization to understand the distribution of support benefits and their 

relationship to very active products. 

Consider registration information and the benefits of policy making. 

After all, finding the right balance between support and understanding is the key to 

successful joint mining policy. 

 

Create Timeline Items: Check for items that meet the support criteria. These items are 

called active items. 

Favorite items represent combinations of items that often occur together in a document. 

 

Create Association Rule: Create association rules from active objects. Association rules are 

expressions of the form "If X then Y"; where X is a set of objects (called antecedents) and Y 

is another object (called antecedents). These rules capture the relationship between what 

tends to be shared in a business. 

 Let's look at a simple example of creating join rules using the Apriori algorithm. In this 

example we will consider sales data that includes commercial buyers. The aim is to identify 

common rules that define the relationship between different objects. 

 



Dataset, discount, document code, transaction ID, Items to buy 

-------------------------------- 

1 bread, milk 

2 breads, diapers, Beer, eggs 

3 Milk, diapers, beer, coke 

4 Bread, milk, diapers, beer 

 

Active items: {bread, diapers}, {diaper, beer}, {diaper, coke} 

 

Create association rules: 

 

We create association rules from active elements. 

 

Association rule: {bread} -> {diaper} 

Association rule: {diaper} -> {beer} 

Association rule: {diaper} -> {cola} 

Evaluation and pruning rule: 

 

Every trust We calculate the rule based on association rules and pruning with a minimum 

confidence threshold. 

 

trust({bread} -> {diaper}) = support({bread, diaper}) / support({bread}) = 60% / 80% = 75% 

trust 

({diaper} -> { beer }) = support({diaper, beer}) / support({diaper}) = 40% / 80% = 50% 

confidence({diaper} -> {cola}) = support({diaper, Coke}) / Support ({ Diapers }) = 40% / 

80% = 50% 

Trimmed Association rule: {Bread} -> { Diapers} 

 

Result: 

 



In this example, we use the Apriori algorithm to create organization rules . We found that the 

{Bread} -> {Diaper} rule is reliable enough and useful in decision making. 

 

Note that this example is simple and real-world data can contain many additional objects and 

relationships. 

It also includes additional steps such as the organization's policy design, evaluation of 

additional indicators (eg leverage, leverage) and identification of top-level items. 

 

Policy Analysis: Evaluates shared policies against a variety of metrics, including: 

 

Support: Percentage of businesses with both prior revenues and results. 

Reliability: The percentage of transactions that contain both the history and the result. 

Lift: Specifies whether a prefix can form a prefix. Removal > 1 indicates a good relationship. 

Pruning and Selection: Codes that meet certain conditions (such as minimum trust or support 

thresholds) are chosen logically and usefully. 

 

Interpretation and Practice: Interpretation of the rules set by the organization can provide 

business perspective. 

For example, in the retail environment these rules can drive sales or implement marketing 

strategies. 

 

Visualization and Reporting: The results of corporate policy mining can be visualized 

using tools such as graphs or tables, making it easier for stakeholders to understand and 

follow the findings. 

 

Continuous Analysis: Attribution mining is an iterative process. As new data becomes 

available, the analysis can be repeated to reveal changing patterns and trends. 

 

It's worth noting that enterprise policy mining can suffer from the "curse" when dealing with 

large files or large objects. 



To solve this problem, techniques such as Apriori algorithm, FP-growth algorithm, and Eclat 

algorithm have been developed to efficiently search for active objects and generate relevant 

rules. 

 

Association rule mining in general is an important technique for discovering hidden patterns 

and relationships in business data and has applications in many fields beyond market sales, 

including professional, medical and fraudulent. 

5. Generative Models: 

 

Generative models are a class of machine learning models that aim to learn and model the 

consequences of the distribution of given data. This model can create a new data model that 

resembles the original data and captures the existing structure and structure in the data. The 

design can be used for image design, text design, data augmentation, detection, etc. It has 

many uses, including 

 

There are many types of designs, and each has its own methods and features. Here are some 

similarities: 

 

A.Auto-encoder: The Auto-encoder is a type of neural network consisting of an encoder and 

a decoder. 

The encoder maps the input data to the lower level data source, while the decoder maps the 

hidden data source back to the original data source. Variable auto-encoder (VAE) is a special 

type of auto-encoder that combines distributions to create data that resembles the distribution 

of the original data. 

 

B. Variable Auto-encoders (VAE): 

VAEs are modular designs that combine auto-encoders with modular designs. They learn to 

encode information into a distribution in the hidden space and allow new information to be 

generated by sampling from this distribution. VAEs provide a way to generate new 

knowledge while exploring gaps in distributed knowledge. 

C. Generative Contention Networks (GAN): 



GANs have two neural networks: a generator and a splitter. The generator creates a new data 

model while the operator tries to separate the actual data from the data generated by the 

generator. The two networks are trained inconsistently, causing machine learning to produce 

data that is difficult for a human to distinguish from real data. 

 

D. Pixel CNN and Pixel RNN: 

These models focus on generating data point by point, pixel by pixel. Pixel CNN 

(Conditional Neural Network) and Pixel RNN (Recurrent Neural Network) are models that 

generate images to match the order of pixels. 

They learn to estimate the value of each pixel based on previously created pixels, making the 

image consistent and realistic. 

Pixel CNN (Pixel Conditional Neural Network) and Pixel RNN (Pixel Recurrent Neural 

Network) are well-known algorithms for image processing. They are part of a family of 

models called autoregressive models that sequentially generate data one item at a time when 

conditioned to prebuilt items. Pixel CNN and Pixel RNN have the unique ability to create 

pixel-by-pixel images in an integrated and structured way while preserving fine details. 

 

Pixel CNN and Pixel RNN work by modeling the distribution of each pixel based on 

previously generated pixels. This allows them to capture the progress of neighboring pixels 

and create images with local consistency. 

Here is a brief summary of Pixel CNN and Pixel RNN: 

 

Pixel CNN: 

Pixel CNN is introduced as a model that predicts the distribution of the current pixel 

according to the values of its left neighbors and top. It uses a mask to ensure that the model is 

based only on previous pixels. 

 

Pixel CNN main features: 

 



 Masked Convolution: At each layer of the model, a convolution filter is applied to the 

input image. However, because the filters are masked, the estimate is based on previous 

pixels only. This avoids looking at future pixels that haven't been rendered yet. 

autoregressive rendering: Pixel CNN renders the image autoregressively, starting from the 

left corner, line by line and pixel by pixel. 

individual pixel values: Pixel CNN typically models the distribution of discrete pixel values 

using the soft-max activation of the output layer for each pixel. 

 Pixel RNN: The Pixel RNN takes the autoregressive concept one step further by using a 

convolutional neural network (RNN) to model the progression of pixels. Pixel RNN uses 

RNN layers to capture the distribution instead of using layers like Pixel CNN. 

 

 Pixel RNN key features: 

 

Linear LSTM and Crossed BiLSTM: Pixel RNN uses two types of RNN: linear LSTM and 

diagonal BiLSTM (BiLSTM). 

Line LSTMs reproduce pixels line by line, while crossover BiLSTMs capture long-range 

dependence of crossover images. 

Autoregressive Generation: Similar to Pixel CNN, Pixel RNN automatically generates 

images regressively, allowing each pixel to be estimated based on previous pixels. The 

Pixel CNN and Pixel RNN do well in rendering tasks, creating consistent and visually 

appealing images. However, they also have limitations such as being slow due to their poor 

flexibility and inability to design universal models as well as other designs such as 

productive competitor networks (GANs) or variable auto-encoders (VAEs). 

 

These models paved the way for advances in design and inspired later models that combined 

their strengths with other techniques to create beautiful images. 

 Solved Pixel CNN and Pixel RNN example in Machine Learning 

Of course! Let's see how Pixel CNN and Pixel RNN create images with simple examples. In 

this example we will use a 3x3 grayscale image with pixel values ranging from 0 to 255. 

 

Dataset: 



Consider a small grayscale image: 

 

Image: 

----- - -- ---- 

100 150 200 

50 120C 14080 4 Pixels 4 44 

Masked Convolutions: In Pixel CNN, masking is used to ensure that each pixel estimate is 

based only on previous pixels. Let's say we have a 3x3 convolution filter. 

 

For pixel position (120), the filter will cover: 

 

Filter: 

------- 

* * * * 

* X * 

* * * 

Prediction: Model, Left and upper neighbors ( Conditional distribution of pixel position 120 

for values 100 and 150). Determine the distribution approximated using the Soft-max 

technique and the sample pixel values of this distribution. 

Pixel RNN: 

 

Linear LSTM: Pixel RNN uses RNNs to capture pixel dependencies. We use linear LSTMs 

for simplicity. The pattern is created line by line, starting from the left pixel. 

Autoregressive Generation: The LSTM row for each row limits the prediction of each pixel 

to the pixels previously generated in that row. Let's say we create a second row: 

 

The first pixel (50) is approaching the top pixel (100). 

To the second pixel 120, the top and left pixels 100 and 50 are approximated. 

The third pixel 180 approaches the top and left pixels 150 and 120. 

Diagonal BiLSTM: Pixel RNN also uses Diagonal BiLSTM to detect diagonal lines. 

These LSTMs capture long-term trends in images. 



 

Creation process: 

 

Pixel CNN: 

 

Start with a blank image. Using the 

estimated distribution, construct the middle pixel (120) from the top and left pixels (100 and 

150). Section 

Continue rendering other pixels 

Pixel RNN: 

 

Create first pixel row from pixels: 50, 120, 180. 

Create the second row using the LSTM cold row of pixels created in the first row: 80, 110, 

220. 

Note: In practice, Pixel CNN and Pixel RNN models have more layers and use more 

methods to solve many problems. This example shows the basics of how this model can be 

used to create autoregressive graphs. 

 

Pixel CNN and Pixel RNN both generate sequences of images, preserving the local 

population. They can render interconnected graphs, but due to their autoregressive nature, 

they may be slower than other designs and are less capable of capturing spherical models. 

 

E. Normalization Flow: The Normalization Flow is a method designed to transform 

simple distributions, such as the Gaussian distribution, into a smoother 

distribution that matches the data distribution. They contain a set of dynamic 

variables that allow them to model the distribution of complex data and build 

good models. 

Transformer-based models: Models such as the GPT (Generative Pre-trained Transformer) 

family are designed for language processing but can also be used for text. They use self-

monitoring techniques to capture long-term prospects in the data and establish 

communication and key points. 



 

F. Boltzmann Machines: 

Boltzmann machines are a class of probabilistic generative models used to model binary data 

and learn the fundamental distribution of data. Constrained Boltzmann Machines (RBMs) are 

a popular alternative for learning representation and data modeling. 

 

Structured models are especially useful where data generation, augmentation, or simulation is 

required. 

They can generate new data that can be used for education, testing or research. They also 

play an important role in tasks such as transformations, data connections and even creative 

ideas. 

Boltzmann machines (BM) are a class of structural models that model combinations of 

binary variables. They are introduced as power-based models that aim to capture the basic 

structure of the data and examine the evolution of variables. Boltzmann machines can be 

used for many tasks such as minimization, custom learning and coordinate filtering. 

 

The following are important terms and concepts related to Boltzmann Machines: 

 

 Nodes (Neurons): 

Boltzmann Machines consist of a group of nodes where each node represents a binary 

variable. Nodes are divided into visible volumes and hidden volumes. 

Visible classes correspond to visible data, while hidden classes capture hidden properties. 

 

 Links (Edges) and Weight: There are links between 

nodes and each link has a weight. Weight determines the strength of interaction between 

nodes and affects the probability of the model's distribution. 

 

 Strong Power: The Boltzmann Machine uses a power-based model approach. 

The power function provides a power value for each visible and hidden 

configuration. 

The energy function defines the relationship of a configuration to model parameters. 



 

 Probability Distributions: The probability distribution of the Boltzmann 

machine is defined using a power function. The probability of a given 

configuration is proportional to the negative of its energy. The Boltzmann 

distribution is often used to generate useful values. 

 

 Education and Training: 

Learning in Boltzmann mechanics involves adjusting the weights to fit the training data. 

However, making the most of training data directly is difficult due to the interaction between 

hidden and visible units. Markov Chain Monte Carlo (MCMC) methods such as Gibbs 

sampling are often used for training. 

 

G. Gibbs Sampling: 

Gibbs sampling is a technique used in Boltzmann machine learning. It includes updating the 

status of visible and hidden units while keeping other units stable. This method helps to 

estimate the distribution of the sample for the data distribution. 

Gibbs sampling is a Markov Chain Monte Carlo (MCMC) technique often used in machine 

learning and statistics to estimate random variables, especially when direct sampling is 

difficult or difficult. It is commonly used when you want to create a model from a 

multivariate distribution or calculate the expectation of that distribution. 

 

Gibbs Sampling works like this: 

 

 Markov Chain Introduction: 

Markov Chain is a sequence of variables in which each variable depends only on the 

previous variable. Gibbs sampling works in the framework of Markov chains. 

 

 Destination Distribution: 

Suppose you have more than one distribution (usually in common form) and you want to 

sample from it. However, sampling directly from this distribution may not be possible or 

difficult. 



 

 Initialization: 

Initializes with an initial value for each variable in the distribution. These initial results may 

be arbitrary or based on an opinion. 

 

 Iterative Sampling: 

With each iteration, you update the value of one variable while keeping the value of another 

variable. Systematically select the variables to be updated and sample their new values from 

the distributions of the other variables against their current values. 

 Conditional Sampling: The main idea of Gibbs sampling is to adjust one variable 

each time based on the current value of another variable. This includes adjusting the 

values of other variables and sampling from the distribution of variables obtained 

using Bayes' theorem. 

 

 Stationary Distribution: 

From time to time, as the iterations progress, the Markov chain approaches the stationary 

distribution. In the context of Gibbs sampling, the target distribution you want to predict is a 

fixed distribution. 

 

 Multiple Chains and Aging: 

Multiple independent Gibbs sampling chains are usually run from different initializations to 

achieve convergence. In addition, an "aging" period is often used to allow the chain to 

stabilize before samples are collected for analysis. 

 

 Collected models and estimates: 

Models aggregated from the Markov chain after addition can be used to estimate from the 

marginal many variables of interest, such as expectations, variances or distributions. 

 

Gibbs sampling is particularly useful when sampling from shared distributions with high 

spatial distributions, complex dependencies, or difficult normalization. It is a versatile 



technique that can be used for many things, including Bayesian statistics, image modeling, 

machine learning, and more. 

 

It is important to note, however, that Gibbs sampling may have limitations for similar 

relationships, such as slow correlations and sensitivity to order changing with updating. 

As such, it often requires careful attention and care to make sure it works properly. 

Let's see Gibbs Sampling example in Machine Learning. We will consider a situation where 

we want to sample from both sides of the joint using Gibbs sampling. 

 

 Example problem: Sampling from a Bivariate Gaussian Distribution 

 

Suppose we have a Bivariate Gaussian Distribution with the following parameters: 

 

 Mean Vector: 

 μ = [2, 3] : Co-variable   [0.5, 2]] 

 

Our aim is to sample from this distribution using Gibbs sampling. 

 

Gibbs Sampling Steps: 

 

 Initialization: 

We start with the initial values of two variables, let's say x = 0 and y = 0. another variable. 

We are changing the x and y variables. 

 

. Update x, given y: 

We start with the conditional distribution P(x) 

Yes). This distribution is a univariate Gaussian distribution with mean μ x y and variance 

σ^2xy; where : 

        μ x y = μ x + Σ x y * (y – μ y) / Σ y y  

          and σ^2xy = Σ x x - Σxy^2 / Σ y y. 

 



Given x update: 

We sample new y values from the conditional distribution P (y x). This distribution is also 

inverse Gaussian with mean μ y x and variance σ^2y. 

x, where 

       μ y x = μ y + Σ y x * (x – μ x) / Σ x x 

          and σ^2 y x = Σ y y – Σ y x^2 / Σ x x. 

 

Iterations: 

For some iterations we repeat the iterative process. The samples obtained from this process 

are transferred to the common target. 

Example procedure: 

 

Let's run a few Gibbs sampling examples: 

 

Initial values: x = 0, y = 0 

 

Iteration 1: 

 

x update to y: Example from P (G x y = au ) section). Update y to 

x: Sample y (Gaussian distribution) from P (y x = 0).  

. Update x to Y: model x from P(x) 

y from the previous iteration). Section 

Update y, given x: example y from P (y x from previous iteration). 

Repeat for more. 

 

Result: 

 

After running Gibbs Sampling for a sufficient number of iterations, the sample collection 

converges to a bivariate Gaussian distribution defined by the mean vector and covariance 

matrix. 



This example shows the basic steps for Gibbs sampling from a simple distribution. In 

practice, Gibbs sampling can be applied to various distributions and dimensions to estimate 

their covariance and to estimate the range of interest. 

 

H. Restricted Boltzmann Machine (RBM): The RBM is a variant of the Boltzmann 

machine where there is no connection (visible-visible or hidden connection) 

between nodes in the same layer. This limitation facilitates training and enables 

better learning. 

 

Applications: 

Boltzmann machines and RBMs have been used in a variety of tasks, including collaborative 

filtering, recommendation, graph learning, and regression. They can capture interactions in 

data and learn meaningful representations. It is worth noting that training 

 

Boltzmann machines can be expensive, especially for large datasets and deep models. 

For this reason, they are often combined with other techniques such as pre-training, 

optimization, and hybrid models. 

 

In general, Boltzmann machines and their variants provide a probabilistic framework for data 

distribution models and learning properties of complex data. Although somewhat influenced 

by recent developments such as deep neural networks, they are still valid in some cases and 

provide insight into the fundamentals of design patterns and unsupervised learning. 

 

6. Embedding: 

In machine learning, "embedding" refers to the process of representing categorical or discrete 

variables (such as words or objects) as a continuous field. This change allows machine 

learning algorithms to process these changes more efficiently by capturing the relationships 

and emotions between them. Embeds are widely used in many tasks, particularly in natural 

language processing (NLP) and recommendation systems, where they have proven very 

effective. 

 



Here are some important terms related to embedding in machine learning: 

 Word embedding: 

In NLP, the word embedding is used to represent words as density vectors in a vector space. 

Words with similar meaning or meaning are adjusted to cover vectors in that space. 

Popular word insertion methods include Word2Vec, GloVe, and Fast-Text. 

 

 Asset Embeds: Similar to the term Embeds, entity embeds represent entities (eg, 

users, objects) in a persistent environment. These embeds can capture relationships 

between organizations and can be used in the approval process and information 

applications. 

 Embedding layer: 

In neural networks, the embedding layer is used to learn embedding directly from data during 

training. These layers specify logical parameters (for example, word indexes) for continuous 

vector representation. Layers are often used in network models such as convolutional neural 

networks (RNNs) and Transformers. 

 Dimensions: 

The dimensionality of the embedding is an important parameter. Too low dimensionality 

causes data loss, too high dimensionality causes overfitting. Choosing the right size is often 

done by trial. 

 

 Pre-Trained Placements: 

Pre-Trained Placements are trained on large corps and are useful for transferring knowledge 

from one task or field to another. For example, embeds can be customized for a specific task. 

 Embedding Similarity: 

Embedding similarity can be measured using cosine similarity, Euclidean distance, or other 

distance metrics. Similar burials should have a small distance between them. 

 

 Visualization:  

The can use size reduction techniques such as t-SNE or PCA to visualize the image in 

a lower dimension. This can help to understand the relationships captured by the 

insertions. 



 

 Interpolation and Analogy: 

Insertions often reveal interesting things. 

For example, you can create new insertions that capture semantic transformations by 

interpolating between two word insertions. An example can be made by adding/removing 

vector variables. 

 

 Infrequent Introduction to Dense Vectors: 

Embedding are particularly useful for handling categorical variables of great importance. 

They transform sparse single-bit encoded inputs into dense vectors. 

 

 Transfer Learning: 

Integrating learning from one project to another is beneficial, allowing learning to be 

transferred with minimal documentation and improved performance. 

Embedding play an important role in representing and understanding complex data and 

improve the performance of machine learning models in many applications. 

 

7. Density Estimation: 

       Density estimation is an important concept in engineering and statistics that involves 

estimating the length (PDF) of different models or datasets. The PDF explains the result of the 

difference between the two variables. Density estimation is used to understand data distribution, 

analyze data, make predictions, and create new data models. It has applications in many areas 

such as anomaly detection, clustering, classification and modeling. 

 

There are many methods for density estimation, and each has its own methods and properties: 

 

i. Histogram: 

 The histogram divides the data into boxes and counts the number of data text content 

in each section. 



The height of each bin represents an estimate of the intensity of the range. When the histograms 

are flat, the size should be chosen carefully to avoid smoothing or over-smoothing. 

 

ii. Kernel Density Estimate (KDE): 

KDE uses a kernel function (eg Gaussian) between each data point to generate a density 

estimate. 

Write the nuclei to construct the population rate function. KDE provides better representation of 

data distributions than histograms. 

 Let's look at an example of Kernel Density Estimation (KDE) in machine learning. KDE is a 

method for estimating the probability density function of a continuous variable based on a set of 

data points. In this example we will use KDE to estimate the probability distribution for one-

dimensional data. 

Example problem: Probability estimation using KDE 

Suppose we have data on the test scores of students in a class. 

We want to use KDE to estimate the distribution of test scores. 

Dataset: 

Exam Scores: [70, 75, 85, 90, 78, 82, 88, 92, 80, 85, 95, 70, 744 KDE4 process: 

Select kernel : . Function that can be used to generate a smoothed estimate of 

possible speed. An alternative is the Gaussian (normal) kernel. 

Select Bandwidth: 

Specify the Bandwidth parameter, which determines the width of the kernel function and 

controls the level of smoothing. Smaller bandwidths result in more detailed but less noisy data, 

while larger bandwidths result in better but less accurate predictions. 

Core Placement: 

For each data center, place the core in the middle of the point based on core options and 

bandwidth. 



Kernel Contribution: 

Calculates the contribution of each kernel to the density index of different points in the range of 

data values. 

 

Total Contributions: 

Adds the contributions of all cores to get the final KDE estimate of the possible rate function. 

KDE Example: Let's estimate the probability distribution of test scores using a Gaussian kernel 

with a bandwidth of 5. 

Calculation: 

Suppose we want to estimate the density of a point x = 80. 

We will insert a Gaussian kernel into each data point and calculate their contribution at x = 80. 

Contribution to the kernel: weighted by Gaussian between data points, where bandwidth is 

affected and Gaussian width is affected. 

calculates the contribution of all cores to get the estimated speed at x = 80. 

Result: 

KDE estimate of probable speed at 

x = 80 The mathematical value represents the estimated probability based on a score around 80 

of the given data. 

Note that this is a simple example. 

In practice, you will use libraries or programs that use KDE to perform calculations efficiently 

and accurately. KDE is especially important when you want to see the distribution of data, 

especially when the data does not follow the distribution. 

iii. Parametric Methods: 

Parametric methods assume a certain functional form of the fundamental distribution (eg 

Gaussian, Exponential). 



The parameters of the selected distribution were estimated from the data to fit the proposed 

distribution. Examples include Gaussian mixing models (GMMs) and exponential families. 

 

iv. Nonparametric method:  

The nonparametric method does not assume a specific distribution and provides more 

flexibility. In addition to KDE, other non-parametric methods include Parzen 

Windows, nearest neighbor method, and local polynomial regression. 

 

v. Mixture Models: Mixture models combine several simple distributions 

(mixtures) to model complex data distributions. 

An example is GMM, where all components are Gaussian. Expectation maximization (EM) 

algorithms are often used for parameter estimation in mixed models. 

 

vi. Neural Density Estimation: 

Deep learning like normalized flow and variable auto-encoders learns complex maps from 

simple distributions like Gaussian distributions to Desired data distributions. 

These methods allow for faster prediction and can also be used for general models. 

 

a. Bayesian Methods: 

Bayesian methods take preconceptions about a distribution, combine them with observed data, 

and estimate the posterior distribution. Bayesian density estimation is particularly important 

when given prior knowledge. 

 

Density estimation is used in several ways: 

 



a. Impaired detection: Low-probability erroneous data is generally 

considered improbable. 

b. Clusters: High-density areas may indicate clusters or clusters in the data. 

c. Classification: Density estimation can aid classification tasks by 

comparing the densities of different units. 

d. Generative Modeling: Density estimation methods can be used to model 

underlying data distributions and create new data models. 

The selection of the appropriate density estimation method depends on the characteristics of the 

data, the level of smoothness required, and the complexity of the classification model. 

Let's use Bayesian linear regression to understand a simple example of the Bayesian approach to 

machine learning. 

In this example, we will use Bayesian inference to estimate the parameters of the linear 

regression model and their uncertainties. 

Example Problems: Bayesian Linear Regression 

Suppose we have a data pair (x, y) where x represents the input and y represents the target 

variable. We want to fit a linear regression model to the data and estimate the parameters of the 

regression line (slope and intersection) using Bayesian methods. 

Model: 

A linear regression model is defined as: 

y = w * x + b + ε 

where: 

y is the target variable.  

w is the slope (weight) parameter. 

ε is a loud sound.  

Previous classification: 

We will use Gaussian as w and b parameters: 



w ~ N(0, 1) 

b ~ N(0, 1) 

Suppose Well: 4th noise ε Gaussian follows the distribution: 

 

ε ~ N(0, σ^2) 

Purpose: 

Our goal is to estimate the last of the w and b parameters, which gives the observed data 

distribution. 

Bayesian Inference Steps: 

i. Previous distribution: 

Provide a Gaussian priority for parameters w and b. 

ii. Probability:  

Defines probability based on Gaussian noise assumption. 

iii. Back Distributions: 

Use Bayes' theorem to calculate the final distributions of w and b based on data and priority. 

 

iv. Parameter Estimation: Estimate the posterior distribution using methods such as 

Markov Chain Monte Carlo (MCMC) or regression. 

 

v. Sampling operation: 

Let's use a simple dataset with three definitions: 

Dataset: [(1, 2), (2, 4), (3, 5)] 

Noise ^ variance 2 Let's assume that = 0.1. 

We will use MCMC to sample from the next post. 



vi. Result: After running the MCMC sampling procedure, we get samples from the final 

distribution for w and b. This model provides information about the uncertainty of 

measurement. 

For example we will get the following distribution: 

Back distribution for  code 

w: N(1.7, 0.3). 

In this example, we use the Bayesian approach to estimate the parameters of the linear regression 

model. Bayesian inference allows us to combine prior knowledge, measure uncertainty, and 

provide a better understanding of the measured parameters. 

Note that this example is simple and real applications will contain more models and data. 


