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Abstract—The study of Magnetic Levitation systems(Maglev)
has gained significant attention due to their minimal friction and
energy-efficient attributes, which are deemed crucial factors. This
paper introduces a novel magnetic levitation system implemented
through the Simulink environment. The dynamics of Maglev
exhibit nonlinearity and high instability, which renders the task of
devising an appropriate control algorithm even more challenging.
The main goal of this research is to control the position of a
ferromagnetic ball within the airspace of the nonlinear system.
In this investigation, the suggested controller is formulated based
on the linear predictive model, derived by approximating the
system’s behavior around a known operational point. The efficacy
of the designed control approach is validated through simulation
levitation model. The performance of the suggested controller is
evaluated in comparison to an existing PID control method [1],
and it demonstrates superior results.

I. INTRODUCTION

Magnetic levitation systems hold practical significance
across diverse engineering applications. Examples include
their utilization in high-speed maglev passenger trains, bear-
ings designed for frictionless movement, elevating wind tunnel
models, isolating vibrations in delicate machinery, suspending
molten metal within induction furnaces, and raising metal
slabs during manufacturing processes. Depending on the origin
of levitation forces, maglev systems can be categorized as
either attractive or repulsive setups. Typically, these types
of systems exhibit instability when operated in open-loop
configurations and are characterized by complex nonlinear
differential equations, which introduce added challenges in
controlling them. As a result, a crucial attempt involves the
development of high-performance predictive controllers aimed
at effectively managing the position of the levitated object.

Recently, numerous studies have emerged in the literature
concerning the control of magnetic levitation systems. These
conventional practice involved linearizing the magnetic lev-
itation system at the equilibrium point using Taylor-series
expansion. Subsequently, controllers like the proportional-
integral-derivative (PID) [2] and linear-quadratic regulator
(LQR) [3] were designed. However, this linearization approxi-
mation method led to reduced robustness in magnetic levitation
control systems as certain nonlinear terms were overlooked.
The feedback linearization technique has found application
in devising control strategies for magnetic levitation systems
[4], [5]. This approach aimed to improve upon the drawbacks

of the approximation linearization method. The subsequent
adoption of the backstepping technique in controller design
[6], [7] marked a further step in this direction. In recent years,
more advanced control techniques have been designed to man-
age in Maglev system. These include robust-control, adaptive-
control, conventional control, or various combinations of these
techniques. Authors in [8] introduced a robust controller for
a nonlinear system (Maglev), enhancing robustness against
parametric uncertainties and unwanted disturbances. Similarly,
[9] put forth an advance disturbance observer based controller
to improved the forces involved in levitating and stabilizing
the Maglev vehicle system. In the reference [10], the authors
utilized an adaptive sliding mode control (SMC) law in
combination with a magnetic flux observer for Maglev. This
control strategy was applied to handle model uncertainties
and external disturbances, enhancing the system’s robustness
and stability. However, the challenge of chattering remained
a significant hurdle in SMC application. Subsequent efforts
explored intelligent control methods to tackle the intricate
nonlinearity of magnetic levitation systems. In the reference
[11], a novel fuzzy controller was presented for the levitation
system. This controller was built upon the Takagi-Sugeno
fuzzy model and incorporated a H∞ control law. The aim
was to improve the system’s robustness against parameter
perturbations and external disturbances, enhancing its overall
performance and stability. Building on this, an improved ap-
proach using a parallel-distributed compensation scheme was
presented [11], albeit with the challenge of establishing stable
fuzzy logic rules. In [12], a fuzzy neural network (NN) was
employed to emulate an adaptive observer, forming a control
framework for hybrid permanent magnet and electromagnet
Maglev transportation systems. This approach exhibited excel-
lent performance due to the model-free nature of NN. How-
ever, the methods mentioned earlier have certain limitations
when it comes to addressing constraints in the context of
magnetic levitation systems. These constraints pertain to real-
time requirements that ensure reliability [13], [14]. In the case
of Maglev trains, it’s essential to consider state constraints
such as the air gap, vertical-velocity, and acceleration to meet
the reliability criteria for aspects like ride comfort, energy
efficiency, and system implementation [15].

Model predictive controller (MPC) is a widely adopted
approach in industrial process control that excels in handling

.



both control and state constraints explicitly and optimally
[14]. Model Predictive Control (MPC) encompasses solving an
optimal control problem with a finite horizon that shifts as time
progresses [16]. This involves solving the control sequence
for the current situation online during each sampling moment,
with only the initial control element of the sequence being
employed [17]. Additionally, the present state variables of the
process are utilized as the starting point for the optimization
problem. MPC methods do have a computational cost, which
results from the ongoing need for online optimisation, which
is one of its limitations. This is a significant barrier for
fast-response systems and turns into a major problem for
MPC applications. In recent times, researchers have effectively
employed MPC across various domains. These include its
application in robotics [18], energy-efficient control of twin
rotor MIMO system [19], electrical vehicles [20] and power
system etc. The MPC approach has also been extended to
encompass magnetic levitation ball systems. In the paper [21],
a robust MPC was introduced for a second-order maglev
system. This controller was designed to handle both input
and output constraints, ensuring the stable and constrained
operation of the system. In this study, the model uncertainties
are effectively addressed through the utilization of the linear
matrix inequalities (LMI) technique. In the work presented in
[22], the authors developed an MPC controller for the maglev
system using a pre-identified state-dependent model based on
the autoregressive with exogenous variables (ARX) approach,
which was established through a set of radial basis function
neural networks (RBF NNs). Further, in [23], [24] the authors
introduced an explicit model predictive controller (EMPC) for
the magnetic levitation system. They strategically moved the
optimization process offline, aiming to improve real-time per-
formance while considering both input and output constraints.
They accounted for both input and output constraints for a
piece-wise affine (PWA) linear system. Moreover, authors in
[25] have introduced a nonlinear MPC (NMPC) approach to
the maglev system. This approach aimed to achieve high con-
trol performance by accurately predicting the nonlinear system
behavior. Nevertheless, the design complexity associated with
NMPC posed computational challenges greater than those of
linear MPC schemes, thus restricting the consideration of
control constraints to maintain real-time feasibility.

The primary aim of this research is to create a linear
model predictive control (MPC) technique designed specifi-
cally for a Maglev system. The proposed control approach
has been evaluated through simulations conducted on magnetic
levitation systems, employing three different input signals.
The simulation results demonstrate that the proposed control
algorithm exhibits superior tracking performance compared to
the existing control technique [1].

II. SYSTEM MODELING

Fig.1 depicts a schematic representation of a Maglev system
and the physical parameters are detailed in TABLE I. The
various mechanical parts and its motions can be anticipated
from this schematic diagram. The magnetic force balances the
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Fig. 1: Schematic diagram of the Maglev system

gravitational force exerted on the ferromagnetic ball during
the operation of the Maglev system. By altering the input
current, the magnetic force of the Maglev may be changed. As
a result, in the Maglev model, the magnetic force corresponds
to the square of the electromagnetic coil current. With the
aid of the controller, the system receives input from the coil
current to regulate the location of the iron ball. This force is
subsequently balanced within the airspace to meet the specified
requirements.

TABLE I: Maglev system parameters

Parameter Value Unit
β 5.64× 10−4 V m2

γ 0.31 V/A
α 2.48 V
i0 1 A
d0 20 mm
C 2.4× 10−6 Kgm5/s2

R 2 Ohm
L 15× 10−3 H

m = M
4

0.02985 Kg

A. STATE SPACE MODEL

The design and components of the magnetic levitation
system will be described in this section. The system consists
of four electromagnets that act as actuators to apply magnetic
forces for accurate position control. Additionally, there are
four Hall effect sensors integrated into the system to monitor
the position of the levitating plate. The setup also consists
of a sturdy square plate featuring four permanent magnets,
one at each corner. The electromagnets are 2 ohm internal-
resistance solenoid coils with a 15 mH rating. Linear radio-
metric Hall Effect sensors with a 50 V/T are used in Hall
effects experiments. The neodymium N52 disc magnets have
a 12.70 mm diameter and a 6.35 mm thickness, and they are
used as permanent magnets. The electromagnetic levitation
system model is illustrated in Fig.1, where R represents the
coil’s resistance, L signifies its inductance, v corresponds to
the voltage across the electromagnet, i represents the current
flowing through it, m indicates the mass of the levitating
system, g denotes the gravitational acceleration, d signifies



the vertical position of the ball measured from the bottom,
f denotes the force on the levitating system generated by
the electromagnet, and e stands for the voltage across the
Hall effect sensor. The force produced by the electromagnet
is mathematically expressed as:

Fmag = C
i(t)

d3
(1)

where d is the vertical position and C is a turn constant. From
(1) we got

Md̈ = mg − C i(t)
d3

(2)

where m is the mass of the levitating magnet and g is the grav-
ity of acceleration. The power supply and electromagnetic coil
can be related electrically by using the following expression:

v(t) = R.i(t) + L
di

dt
(3)

where R and L represent the resistance and inductance of the
electromagnet, respectively. Now, let’s consider the following
perturbations concerning changes in these parameters.

i(t) = i0 + ∆i(t) (4)
d(t) = d0 + ∆d(t) (5)
v(t) = v0 + ∆v(t) (6)

where the voltage needed to suspend the levitating plate at
do is called vo. Under this perturbation, it is possible to
linearize the dynamics (2) and (3) around an operational point
(i0; d0; v0) as

m∆̈d =

(
3Ci0
d40

)
∆d−

(
C

d30

)
∆i (7)

∆̇i =

(
R

L

)
∆i−

(
1

L

)
∆v (8)

The transfer function from ∆v to ∆d is obtained by removing
∆i in equation (8) and using Laplace transforms as

∆D(s)

∆V (s)
=

− g
R

v0

(Ls+R)(s2 − 3Ci0
md40

)
(9)

where ∆V (s) and ∆D(s) represent the Laplace transforms of
∆v(t) and ∆d(t), respectively. The output voltage of the Hall
sensor is as follows.

e(t) = α+
β

d2
+ γi(t) (10)

where α, β, γ are constant sensor parameters. Linearizing (10)
around e(t) = e0 + ∆e yields

e(t) =
2β

d3
∆d+ γ∆i (11)

where ∆e is the sensor voltage. We can determine the relation-
ship between the electromagnet voltage perturbation ∆V (s)
and the sensor voltage perturbation ∆E(s) by applying the
Laplace transform to equation (11) and utilizing I(s) =

∆V (s)/(Ls + R) from equation (3) and the representation
in equation (9). This relationship is expressed as follows:

∆E(s)

∆V (s)
=
γ(s2 − 3Ci0

md40
) + ( 2βRC

md60
)

(Ls+R)(s2 − 3Ci0
md40

)
(12)

After taking the second derivative of equation (7) and the first
derivative of equation (8), equation (12) can be transformed
into a state-space representation. Consequently, the linearized
model described in equation (12) can be represented in state-
space form as follows:ẋ1ẋ2

ẋ3

 =

 0 1 0
3Cm

i0
d40

0 −C
m

1
d30

0 0 −RL

x1x2
x3

+

0
0
1
L

u (13)

The measured system output (y) can be obtained by simplify-
ing Equation (11), where (∆e = y,∆d = x1, and∆i = x3).

y =
[
−2 β

d3 0 γ
] x1x2
x3

 (14)

By substituting system parameters in TABLE I into (12) we
get

G(s)H(s) =
20.66s2 + 61803

s3 + 132.5s2 − 1471s− 194900
(15)

Here are the numerical values of the state space equations:ẋ1ẋ2
ẋ3

 =

 0 1 0
1471 0 −9.81

0 0 −133

x1x2
x3

+

 0
0

66.66

u (16)

y =
[
−144 0 0.31

] x1x2
x3

 (17)

III. CONTROL DESIGN

A. PID control design

This section aims to illustrate the fundamental structure of
a PID controller in the context of closed-loop control for the
Maglev system, with the objective of maintaining the ball’s po-
sition at the desired level. In order to explain the PID controller
for a levitation system, it’s necessary to possess an appropriate
mathematical model of the Maglev system. It can be accom-
plished through the linearization of all of the elements of the
Maglev system. The transfer functions of the aforementioned
components, coupled with the PID controller, are presented
in Fig.2. Essentially, the controlled Maglev system operates
based on error detection. The difference between the reference
position and actual position is known as positional error e(t).
Subsequently, the PID controller intervenes to regulate this
error, enhancing the dynamic response and mitigating steady-
state error. The general form of this PID controller is expressed
as follows [26]:

u(t) = Kp

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ

)
+ Td

∂e(t)

∂t
(18)



where
u(t): This is the control signal or the output of the PID
controller that is applied as the input to the system being
controlled.
Kp: This is the proportional gain, a tuning parameter that
determines how much the controller responds to the current
error.
Ti: This is the integral time or reset time, another tuning
parameter that determines how aggressively the controller
eliminates the accumulated error over time.
Td: This is the derivative time or rate time, yet another tuning
parameter that determines how much the controller anticipates
future error based on the rate of change of the error.
e(t): This is the error signal, which is the difference between
the desired reference point and the actual output of the plant
being controlled.

Together, these parameters and the error signal allow the
PID controller to adjust the control output in order to minimize
the error and maintain the system at or near the desired
setpoint. The specific values of Kp, Ti, and Td are typically
determined through a tuning process to achieve the desired
control performance for a given system.

B. Model predictive control (MPC) design

This article describes how to create a linear MPC to increase
the precision of a Maglev system’s control design. Fig.3
depicts the fundamental block diagram of the MPC. Following
is a representation of the linear state-space model (discrete-
time) of the Maglev system:

x(τ + 1) = Apx(τ) + Bpup(τ),

y(τ) = Cpx(τ) +Dpup(τ), (19)

where x (τ) is a representation of the state vector at instant τ th.
Similar to this, at the τ th instant, y (τ) and up (τ) represent
output and control input of Maglev, respectively. A MPC
has a built-in model that predict the expected plant behavior
over a given prediction horizon, or Np. The optimal control
problem is online solved in MPC to identify the control input.
The projected output relies on the presumed input trajectory
up (τ + j |τ ) for j = 0, 1, ..., Np − 1. The core idea is to
select the input that yields the most accurate predictions [14].
In Fig.4, you can see the fundamental concept of linear MPC,
where Np represents the prediction horizon, and Nc is the
control horizon. At each time step k, MPC forecasts future
outputs over a predefined horizon, Np. These predicted outputs
y (τ + j |τ ) for j = 0, 1, ..., Np − 1, depend not only on past
outputs and control inputs but also on future control signals
up (τ + j |τ ) for j = 0, 1, ..., Np − 1.

If the relationship between input and output stays linear over
the specified time-frame, we can treat the optimization prob-
lem as a linear-quadratic one. Here’s how the state variables
within the prediction horizon are calculated:

x̂ (τ + 2 |τ ) = Ap (τ + 1 |τ ) x̂ (τ + 1 |τ )

+Bp (τ + 1 |τ ) ûp (τ + 1 |τ ) .

(20)

(20) can be represented as:

x̂ (τ + 2 |τ ) = Ap (τ + 1 |τ )Ap (τ |τ )x (τ)

+Ap (τ + 1 |τ )Bp (τ |τ ) ûp (τ |τ )

+Bp (τ + 1 |τ ) ûp (τ + 1 |τ ) ,

...
x̂ (τ +Np |τ ) = Ap (τ +Np − 1 |τ ) x̂ (τ +Np − 1 |τ )

+Bp (τ +Np − 1 |τ ) ûp (τ +Np − 1 |τ ) .

(21)

The control inputs undergo adjustments within the control
horizon interval, after which they remain constant.

ûp (τ + j |τ ) = ûp (τ +Nc − 1 |τ ) , (22)

Nc ≤ j ≤ Np − 1.
The connection between the inputs and the rate of change of
inputs is as follows.

ûp (τ + j |τ ) = up (τ − 1) +

Nc−1∑
j=0

∆ûpï (τ + j |τ ) (23)

j = 0, 1, ..., Nc − 1.

By substituting equation (23) into equation (22), the state
variable model can be represented as:

X (τ) = ZAp
(τ)x (τ) + ZBp

(τ)up (τ − 1)

+ZUp
(τ) ∆Up (τ) , (24)

where X (τ) =


x̂ (τ + 1 |τ )
x̂ (τ + 2 |τ )

...
x̂ (τ +Np |τ )

;ZBp
(τ) =


Z1,1 (τ)
Z2,1 (τ)

...
ZNp,1 (τ)

;

ZAp
(τ) =


Ap (τ |τ )

Ap (τ + 1 |τ |τ )Ap (τ |τ )
...

Np∏
j=1

Ap (τ +Np − j |τ )

 ,

SUp (τ) =


Z1,1 (τ) 0 · · · 0
Z2,1 (τ) Z2,2 (τ) · · · 0

...
...

. . .
...

ZNp,1 (τ) ZNp,1 (τ) · · · ZNp,Np
(τ)

; and

∆Up (τ) =


∆ûp (τ |τ )

∆ûp (τ + 1 |τ )
...

∆ûp (τ +Nc − 1 |τ )

.

Each elements of ZAp
(τ) and ZBp

(τ) are given as:
Z1,1 (τ) = Bp (τ |τ ) ,
Z2,1 (τ) = Ap (τ + 1 |τ )Bp (τ |τ ) + Bp (τ + 1 |τ ) ,
Z2,2 (τ) = Bp (τ + 1 |τ ) ,

ZNp,1 (τ) =
Np−2∑
l=0

(
Nc−1−l∏
j=1

Ac (τ +Np − j |τ )

)
Bp (τ + l |τ ) + Bp (τ +Np − 1 |τ ) ,
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Fig. 2: Magnetic levitation system with the PID controller
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ZNp,Nc
(τ) =

Np−2∑
l=Nc−1

(
Np−1−l∏
j=1

Ap (τ +Np − j |τ )

)
Bp (τ + l |τ ) + Bp (τ +Np − 1 |τ ).
The predicted system output can be defined as:

Y (τ) = ZCpX (τ) , (25)

where

Y (τ) =


ŷ (τ + 1 |τ )
ŷ (τ + 2 |τ )

...
ŷ (τ +Np |τ )

;

ZCp (τ) =


Cp (τ + 1 |τ ) · · · 0

0 · · ·
...

...
. . .

...
0 · · · Cp (τ +Np |τ )

 .
Furthermore, by substituting (24) into (25), the output equation

rearranged as follows.

Y (τ) = ZCp (τ)ZAp
(τ)x (τ) + ZCp (τ)ZBp

(τ)up (τ − 1)

+ZCp (τ)ZUp
(τ) ∆up (τ) . (26)

C. Objective function and constrains:

By minimizing the specified objective or cost function over
the prediction horizon Np, we can determine the optimal input
for the magnetic levitation system.

J (τ) =

Np∑
j=1

e(τ + j)
T
δ (j) e (τ + j) (27)

+

Nc∑
j=1

[∆ûp (τ + j − 1)]
T
λ (j) [∆ûp (τ + j − 1)],

where e (τ + j) = [r (τ + j)− ŷ (τ + j |τ )]. The constraints
are as follows:

ymin ≤ ŷ (τ + j |τ ) ≤ ymax, j = 1, 2, ..., Np,,

upmin ≤ ûp (τ + j − 1 |τ ) ≤ upmax, j = 1, 2, ..., Nc,,

∆upmin ≤ ∆ûp (τ + j − 1 |τ ) ≤ ∆upmax, j = 1, 2, ..., Nc,,

In this context, r symbolizes the future inputs of the system,
δ(j) stands for the error weighting matrix, and λ (j) signifies
the control weighting matrix. Furthermore, the cost function
can be articulated as follows:

J (τ) = E(τ)
T
QE (τ) + ∆Up

T (τ)R∆Up (τ) , (28)

where

E (τ) = [Zr (τ)− Y (τ)]; Zr (τ) =


r (τ + 1)
r (τ + 2)

...
r (τ +Np)

;

Q =


δ(1) 0 · · · 0

0 δ(1) · · · 0
...

...
. . .

...
0 0 · · · δ(Np)

 ;

R =


λ(1) 0 · · · 0

0 λ(1) · · · 0
...

...
. . .

...
0 0 · · · λ(Nc)

 .



TABLE II: Controller parameters

Controller Parameter Value

MPC

Np 20
Nc 10

δ (j)

[
1 0
0 5

]
λ (j) 0.002I2×2

Ts 0.01s
umin −2.5v
umax 2.5v

PID Kp 10
Ki 4
Kd 0.2

The linear quadratic function can be derived by substituting
equation (26) into equation (28) as follows:

J (τ) =
1

2
∆Up

T (τ)H (τ) ∆Up (τ)

+∆Up
T (τ)G (τ) + c(τ), (29)

where

H (τ) = 2
(
ZTUp

(τ)ZTCp
(τ)QZCp

(τ)ZUp
(τ) +R

)
,

G (τ) = −2ZTUp
(τ)ZTCp

(τ)QE (τ) ,

c (τ) = ET (τ)QE (τ) ,

E (τ) = Zr (τ)−ZCp
(τ)ZAp

(τ)x (τ)

−ZCp
(τ)ZBp

(τ)up (τ − 1) .

To maintain control stability during each sampling period, the
optimization problem for the proposed adaptive MPC includes
additional input and output constraints.

IV. RESULTS AND DISCUSSION:

In this research, a linearized model of the magnetic levita-
tion system was created using the MATLAB Simulink plat-
form, with parameters set to their nominal values as detailed
in TABLE I. The initial state variable value for the system was
set to zero. Controller parameters for both the proposed MPC
algorithm and the PID controller are provided in TABLE II.
The controller’s performance was assessed through simulations
using two different reference signals.

1) Case1: In this scenario, a desired step input signal with
an amplitude of 0.3mm is applied to the Maglev model. Fig.5
provides a simulated comparison between the proposed MPC
and the existing PID controller [1] for step signal tracking.
Additionally, Fig.6 displays the control inputs generated by
both the proposed MPC and the existing PID controller.
These results illustrate that the proposed MPC surpasses the
performance of the existing control algorithms in terms of
regulation response, convergence speed, and minimal steady-
state error [1].

2) Case2: In Figure 7, the Maglev system’s response to
a square wave reference signal with an amplitude of 0.3mm
and a period of 50s is shown. This square wave input is used
to evaluate the controller’s ability to handle abrupt changes in
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Fig. 6: Control input for step signal

the input signal direction. As demonstrated in Figure 8, the
MPC exhibits significantly improved performance compared
to the existing PID controller [1].
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Fig. 7: Square response

Table III tabulates the comparative tracking results of the
proposed MPC with the existing controllers developed in
[1]. As can be observed from Table III, the proposed MPC
gives 44.70%, 62.25% and 65.92% lower RMSE, ISE and
IAE values as compared to PID [1] control algorithm for
case 1. While for case2, it gives 4.04%, 7.88% and 51.02%
lower RMSE, ISE and IAE values as compared to PID [1]
respectively. Furthermore, Table III shows that the suggested
MPC is more energy-efficient than the controllers developed
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Fig. 8: Control input for square signal

in [1]. The proposed MPC provides 11.2% lower ‖u‖2 value
for case 1 and 35.76%, lower ‖u‖2 value for case 2 of PID
[1] controller, respectively.

TABLE III: Performance analysis for both the cases

Control
Action

Performance Specification
Mp RMSE ISE IAE TV ‖u‖2

Case 1

MPC 12.49 0.094 62.07 209.8 3.49 201.9
PID [1] 44.4 0.170 168.9 855.1 4.7 227.4

Case 2

MPC 24.66 0.095 906.7 2.4e03 30.8 323.8
PID [1] 69.7 0.09 984.3 4.9e03 402.5 504.05

V. CONCLUSION

The paper presents a linear model predictive control (MPC)
algorithm developed for a highly nonlinear Maglev system. To
ensure a fair comparison, an existing PID control algorithm
with parameters matching those in [1] has been implemented.
The efficacy of the proposed control algorithm is validated
through simulations using three different reference signals.
The simulation results demonstrate that the proposed controller
outperforms the existing control algorithm [1] in terms of
achieving the desired trajectory tracking.
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