
Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly Page 1

MODULE V

5.1 NETWORKED PROGRAMS

In this era of internet, it is a requirement in many situations to retrieve the data from web and to

process it. In this section, we will discuss basics of network protocols and Python libraries available

to extract data from web.

 HyperText Transfer Protocol (HTTP)

 HTTP (HyperText Transfer Protocol) is the media through which we can retrieve web- based data.

 The HTTP is an application protocol for distributed and hypermedia information systems.

 HTTP is the foundation of data communication for the World Wide Web.

 Hypertext is structured text that uses logical links (hyperlinks) between nodes containing text.

HTTP is the protocol to exchange or transfer hypertext.

 Consider a situation:

 you try to read a socket, but the program on the other end of the socket has not sent any data,

then you need to wait.

 If the programs on both ends of the socket simply wait for some data without sending

anything, they will wait for a very long time.

 So an important part of programs that communicate over the Internet is to have some sort of

protocol. A protocol is a set of precise rules that determine

 Who will send request for what purpose

 What action to be taken

 What response to be given

 To send request and to receive response, HTTP uses GET and POST methods.

NOTE: To test all the programs in this section, you must be connected to internet.

 The World’s Simplest Web Browser

 The built-in module socket of Python facilitates the programmer to make network connections and to

retrieve data over those sockets in a Python program.

 Socket is bidirectional data path to a remote system.

 A socket is much like a file, except that a single socket provides a two-way connection between

two programs.

 You can both read from and write to the same socket.

 If you write something to a socket, it is sent to the application at the other end of the socket.

 If you read from the socket, you are given the data which the other application has sent.

 Consider a simple program to retrieve the data from a web page. To understand the program given

below, one should know the meaning of terminologies used there.

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly Page 2

 AF_INET is an address family (IP) that is used to designate the type of addresses that your

socket can communicate with.When you create a socket, you have to specify its address

family, and then you can use only addresses of that type with the socket.

 SOCK_STREAM is a constant indicating the type of socket (TCP). It works as a file stream

and is most reliable over the network.

 Port is a logical end-point. Port 80 is one of the most commonly used port numbers in the

Transmission Control Protocol (TCP) suite.

 The command to retrieve the data must use CRLF(Carriage Return Line Feed) line endings, and

it must end in \r\n\r\n (line break in protocol specification).

 encode() method applied on strings will return bytes-representation of the string. Instead of

encode() method, one can attach a character b at the beginning of the string for the same effect.

 decode() method returns a string decoded from the given bytes.

Figure : A Socket Connection

 A socket connection between the user program and the webpage is shown in Figure below

 Now, observe the following program –

import socket

mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

mysock.connect(('data.pr4e.org', 80))

cmd='GET http://data.pr4e.org/romeo.txt HTTP/1.0\r\n\r\n'.encode()

mysock.send(cmd)

while True:

data = mysock.recv(512)

if (len(data) < 1):

break

print(data.decode(),end='')

mysock.close()

http://data.pr4e.org/romeo.txt

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 3

 When we run above program, we will get some information related to web-server of the website

which we are trying to scrape.

 Then, we will get the data written in that web-page. In this program, we are extracting 512 bytes

of data at a time. (One can use one‟s convenient number here). The extracted data is decoded and

printed. When the length of data becomes less than one (that is, no more data left out on the web

page), the loop is terminated.

 Retrieving an Image over HTTP

 In the previous section, we retrieved the text data from the webpage. Similar logic can be used to

extract images on the webpage using HTTP.

 In the following program, we extract the image data in the chunks of 5120 bytes at a time, store

that data in a string, trim off the headers and then store the image file on the disk.

import socket

import time

HOST = 'data.pr4e.org' #host name

PORT = 80 #port number

mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

mysock.connect((HOST, PORT))

mysock.sendall(b'GET http://data.pr4e.org/cover3.jpg HTTP/1.0\r\n\r\n')

count = 0

picture = b"" #empty string in binary format

while True:

data = mysock.recv(5120) #retrieve 5120 bytes at a time

if (len(data) < 1):

break

time.sleep(0.25) #programmer can see data retrieval easily

count = count + len(data)

print(len(data), count) #display cumulative data retrieved

picture = picture + data

mysock.close()

pos = picture.find(b"\r\n\r\n") #find end of the header (2 CRLF)

http://data.pr4e.org/cover3.jpg

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 4

print('Header length', pos)

print(picture[:pos].decode())

Skip past the header and save the picture data

picture = picture[pos+4:]

fhand = open("stuff.jpg", "wb") #image is stored as stuff.jpg

fhand.write(picture) fhand.close()

 When we run the above program, the amount of data (in bytes) retrieved from the internet is

displayed in a cumulative format.

 At the end, the image file „stuff.jpg‟ will be stored in the current working directory. (One has to

verify it by looking at current working directory of the program).

 Retrieving Web Pages with urllib

 Python provides simpler way of webpage retrieval using the library urllib.

 Here, webpage is treated like a file. urllib handles all of the HTTP protocol and header details.

 Following is the code equivalent to the program given above.

import urllib.request

fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt')

for line in fhand:

print(line.decode().strip())

 Once the web page has been opened with urllib.urlopen, we can treat it like a file and read through

it using a for-loop.

 When the program runs, we only see the output of the contents of the file.

 The headers are still sent, but the urllib code consumes theheaders and only returns the data to us.

 Following is the program to retrieve the data from the file romeo.txt which is residing at

www.data.pr4e.org, and then to count number of words in it.

import urllib.request

fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt')

counts = dict()

for line in fhand:

words = line.decode().split()

for word in words:

counts[word] = counts.get(word, 0) + 1

print(counts)

http://data.pr4e.org/romeo.txt%27)
http://www.data.pr4e.org/
http://data.pr4e.org/romeo.txt%27)

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 5

 Reading Binary Files using urllib

 Sometimes you want to retrieve a non-text (or binary) file such as an image or video file.

 The data in these files is generally not useful to print out, but you can easily make a copy of a

URL to a local file on your hard disk using urllib.

 Above, we have seen how to retrieve image file from the web using sockets.

 Now, here is an equivalent program using urllib.

import urllib.request img=urllib.request.urlopen('http://data.pr4e.org/cover3.jpg').read()

fhand = open('cover3.jpg', 'wb')

fhand.write(img)

fhand.close()

 Once we execute the above program, we can see a file cover3.jpg in the current working

directory in our computer.

 The program reads all of the data in at once across the network and stores it in the variable img

in the main memory of your computer, then opens the file cover.jpg and writes the data out to

your disk.

 This will work if the size of the file is less than the size of the memory (RAM) of your

computer.

 However, if this is a large audio or video file, this program may crash or at least run extremely

slowly when your computer runs out of memory.

 In order to avoid memory overflow, we retrieve the data in blocks (or buffers) and then write

each block to your disk before retrieving the next block.

 This way the program can read any size file without using up all of the memory you have in

your computer.

 Following is another version of above program, where data is read in chunks and then stored

onto the disk.

import urllib.request

img=urllib.request.urlopen('http://data.pr4e.org/cover3.jpg')

fhand = open('cover3.jpg', 'wb')

size = 0

while True:

info = img.read(100000) if

len(info) < 1:

break

size = size + len(info)

fhand.write(info)

http://data.pr4e.org/cover3.jpg%27).read()
http://data.pr4e.org/cover3.jpg%27)

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 6

print(size, 'characters copied.') fhand.close()

 Once we run the above program, an image file cover3.jpg will be stored on to the current

working directory.

 Parsing HTML and Scraping the Web

 One of the common uses of the urllib capability in Python is to scrape the web.

 Web scraping is when we write a program that pretends to be a web browser and retrieves pages,

then examines the data in those pages looking for patterns.

 Example: a search engine such as Google will look at the source of one web page and extract the

links to other pages and retrieve those pages, extracting links, and so on.

 Using this technique, Google spiders its way through nearly all of the pages on the web.

 Google also uses the frequency of links from pages it finds to a particular page as one measure of

how “important” a page is and how high the page should appear in its search results.

 Parsing HTML using Regular Expressions

 Sometimes, we may need to parse the data on the web which matches a particular pattern.

 For this purpose, we can use regular expressions. Now, we will consider a program that extracts

all the hyperlinks given in a particular webpage.

 To understand the Python program for this purpose, one has to know the pattern of an HTML file.

 Here is a simple HTML file –

<h1>The First Page</h1>

<p>

If you like, you can switch to the

 Second Page.

</p>

 Here,

<h1> and </h1>are the beginning and end of header tags

<p>and </p>are the beginning and end of paragraph tags

<a>and are the beginning and end of anchor tag which is used for giving links

href is the attribute for anchor tag which takes the value as the link for another page.

 The above information clearly indicates that if we want to extract all the hyperlinks in a webpage,

we need a regular expression which matches the href attribute. Thus, we can create a regular

expression as –

href="http://.+?"

 Here, the question mark in .+? indicate that the match should find smallest possible matching

string.

 Now, consider a Python program that uses the above regular expression to extract all hyperlinks

http://www.dr-chuck.com/page2.htm

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 7

from the webpage given as input.

import urllib.request import re

url = input('Enter - ') #give URL of any website

html = urllib.request.urlopen(url).read()

links = re.findall(b'href="(http://.*?)"', html)

for link in links:

print(link.decode())

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')

html = urlopen(url, context=ctx).read()

soup = BeautifulSoup(html, "html.parser")

tags = soup('a')

for tag in tags:

print('TAG:', tag)

print('URL:', tag.get('href', None))

print('Contents:', tag.contents[0])

print('Attrs:', tag.attrs)

The sample output would be –

Enter - http://www.dr-chuck.com/page1.htm

TAG: Second Page

URL: http://www.dr-chuck.com/page2.htm

Contents: Second Page

Attrs: {'href': 'http://www.dr-chuck.com/page2.htm'}

5.2 USING WEB SERVICES

 There are two common formats that are used while exchanging data across the web.

 One is HTML and the other is XML (eXtensible Markup Language).

 In the previous section we have seen how to retrieve the data from a web-page which is in the form

of HTML.

 Now, we will discuss the retrieval of data from web-page designed using XML.

 XML is best suited for exchanging document-style data.

 When programs just want to exchange dictionaries, lists, or other internal information with each

other, they use JavaScript Object Notation or JSON (refer www.json.org).

 We will look at both formats.

http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm
http://www.dr-chuck.com/page2.htm
http://www.dr-chuck.com/page2.htm%27
http://www.json.org/

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 8

 eXtensible Markup Language (XML)

 XML looks very similar to HTML, but XML is more structured than HTML. Here is a sample of

an XML document:

<person>

<name>Chuck</name>

<phone type="intl"> +1 734 303 4456

</phone>

<email hide="yes"/>

</person>

 Often it is helpful to think of an XML document as a tree structure where there is a top tag person

and other tags such as phone are drawn as children of their parent nodes.

 Figure is the tree structure for above given XML code.

 Parsing XML

Figure : Tree Representation of XML

 Python provides library xml.etree.ElementTree to parse the data from XML files.

 One has to provide XML code as a string to built-in method fromstring() of ElementTree class.

 ElementTree acts as a parser and provides a set of relevant methods to extract the data.

 Hence, the programmer need not know the rules and the format of XML document syntax.

 The fromstring() method will convert XML code into a tree-structure of XML nodes.

 When the XML is in a tree format, Python provides several methods to extract data from XML.

 Consider the following program.

import xml.etree.ElementTree as ET

#XML code embedded in a string format

data = '''

<person>

<name>Chuck</name>

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 9

<phone type="intl"> +1 734 303 4456

</phone>

<email hide="yes"/>

</person>'''

tree = ET.fromstring(data)

print('Attribute for tag email:', tree.find('email').get('hide'))

print('Attribute for tag phone:', tree.find('phone').get('type'))

The output would be –

Name: Chuck

Attribute for the tag email: yes Attribute for the

tag phone: intl

 When we run this program, it prompts for user input.

 We need to give a valid URL of any website. Then all the hyperlinks on that website will be

displayed.

 Parsing HTML using BeautifulSoup

 There are a number of Python libraries which can help you parse HTML and extract data from the

pages.

 Each of the libraries has its strengths and weaknesses and you can pick one based on your needs.

 BeautifulSoup library is one of the simplest libraries available for parsing.

 To use this, download and install the BeautifulSoup code from:

http://www.crummy.com/software/

 Consider the following program which uses urllib to read the page and uses BeautifulSoup to

extract href attribute from the anchor tag.

import urllib.request from bs4

import BeautifulSoup

import ssl #Secure Socket Layer

ctx = ssl.create_default_context()

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')

html = urllib.request.urlopen(url,context=ctx).read()

soup = BeautifulSoup(html, 'html.parser')

http://www.crummy.com/software/

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 10

tags = soup('a')

for tag in tags:

print(tag.get('href', None))

A sample output would be –

Enter - http://www.dr-chuck.com/page1.htm

http://www.dr-chuck.com/page2.htm

 The above program prompts for a web address, then opens the web page, reads the data and

passes the data to the BeautifulSoup parser, and then retrieves all of the anchor tags and prints

out the href attribute for each tag.

 The BeautifulSoup can be used to extract various parts of each tag as shown below –

from urllib.request import urlopen from bs4

import BeautifulSoup import ssl

ctx = ssl.create_default_context()

 In the above example, fromstring() is used to convert XML code into a tree.

 The find() method searches XML tree and retrieves a node that matches the specified tag.

 The get() method retrieves the value associated with the specified attribute of that tag. Each node

can have some text, some attributes (like hide), and some “child” nodes. Each node can be the

parent for a tree of nodes.

 Looping Through Nodes

 Most of the times, XML documents are hierarchical and contain multiple nodes.

 To process all the nodes, we need to loop through all those nodes.

 Consider following example as an illustration.

import xml.etree.ElementTree as ET

input = '''

<stuff>

<users>

<user x="2">

<id>001</id>

<name>Chuck</name>

</user>

<user x="7">

<id>009</id>

<name>Brent</name>

</user>

http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 11

</users>

</stuff>'''

stuff = ET.fromstring(input)

lst = stuff.findall('users/user')

print('User count:', len(lst))

for item in lst:

print('Name', item.find('name').text)

print('Id', item.find('id').text)

print('Attribute', item.get("x"))

The output would be –

User count: 2

Name Chuck

Id 001

Attribute 2

Name Brent

Id 009

Attribute 7

 The findall() method retrieves a Python list of subtrees that represent the user structures in the

XML tree.

 Then we can write a for-loop that extracts each of the user nodes, and prints the name and id,

which are text elements as well as the attribute x from the usernode.

 JavaScript Object Notation (JSON)

 The JSON format was inspired by the object and array format used in the JavaScript language.

 But since Python was invented before JavaScript, Python‟s syntax for dictionaries and lists

influenced the syntax of JSON.

 So the format of JSON is a combination of Python lists and dictionaries.

 Following is the JSON encoding that is roughly equivalent to the XML code (the string data)

given in the program of previous.

{

"name" : "Chuck",

"phone": {"type" : "intl", "number" : "+1 734 303 4456"}, "email": {"hide" : "yes"}

}

 Observe the differences between XML code and JSON code:

 In XML, we can add attributes like “intl” to the “phone” tag. In JSON, we simply have key-

value pairs.

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 12

 XML uses tag “person”, which is replaced by a set of outer curly braces in JSON.

 In general, JSON structures are simpler than XML because JSON has fewer capabilities than

XML.

 But JSON has the advantage that it maps directly to some combination of dictionaries and lists.

And since nearly all programming languages have something equivalent to Python‟s dictionaries

and lists

 JSON is a very natural format to have two compatible programs exchange data. JSON is quickly

becoming the format of choice for nearly all data exchange between applications because of its

relative simplicity compared to XML.

 Parsing JSON

 Python provides a module json to parse the data in JSON pages.

 Consider the following program which uses JSON equivalent of XML string written in previous

Section.

 Note that, the JSON string has to embed a list of dictionaries.

import json

data = ''' [

{ "id" : "001",

"x" : "2",

"name" : "Chuck" } ,

{ "id" : "009",

"x" : "7",

"name" : "Chuck"

}

]'''

info = json.loads(data) print('User count:',

len(info))

for item in info:

print('Name', item['name'])

print('Id', item['id'])

print('Attribute', item['x'])

The output would be –

User count: 2

Name Chuck

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 13

Id 001

Attribute 2

Name Chuck Id

009

Attribute 7

 Here, the string data contains a list of users, where each user is a key-value pair. The method

loads() in the json module converts the string into a list of dictionaries.

 Now onwards, we don‟t need anything from json, because the parsed data is available in Python

native structures.

 Using a for-loop, we can iterate through the list of dictionaries and extract every element (in the

form of key-value pair) as if it is a dictionary object. That is, we use index operator (a pair of

square brackets) to extract value for a particular key.

NOTE: Current IT industry trend is to use JSON for web services rather than XML. Because, JSON

is simpler than XML and it directly maps to native data structures we already have in the

programming languages. This makes parsing and data extraction simpler compared to XML. But

XML is more self descriptive than JSON and so there are some applications where XML retains an

advantage. For example, most word processors store documents internally using XML rather than

JSON.

 Application Programming Interface (API)

 Till now, we have discussed how to exchange data between applications using HTTP, XML and

JSON.

 The next step is to understand API. Application Programming Interface defines and documents

the contracts between the applications.

 When we use an API, generally one program makes a set of services available for use by other

applications and publishes the APIs (i.e., the “rules”) that must be followed to access the services

provided by the program.

 When we begin to build our programs where the functionality of our program includes access to

services provided by other programs, we call the approach a Service-Oriented

Architecture(SOA).

 A SOA approach is one where our overall application makes use of the services of other

applications.

 A non-SOA approach is where the application is a single stand-alone application which contains

all of the code necessary to implement the application.

 Consider an example of SOA: Through a single website, we can book flight tickets and hotels.

The data related to hotels is not stored in the airline servers. Instead, airline servers contact the

services on hotel servers and retrieve the data from there and present it to the user.

 When the user agrees to make a hotel reservation using the airline site, the airline site uses another

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 14

web service on the hotel systems to actually make the reservation.

 Similarly, to reach airport, we may book a cab through a cab rental service.

 And when it comes time to charge your credit card for the whole transaction, still other computers

become involved in the process. This process is depicted in Figure.

Figure : Server Oriented Architecture

 SOA has following major advantages:

 we always maintain only one copy of data (this is particularly important for things like hotel

reservations where we do not want to over-commit)

 the owners of the data can set the rules about the use of their data.

 With these advantages, an SOA system must be carefully designed to have good performance and

meet the user‟s needs. When an application makes a set of services in its API available over the

web, then it is called as web services.

 Google Geocoding Web Service

 Google has a very good web service which allows anybody to use their large database of

geographic information.

 We can submit a geographic search string like “Rajarajeshwari Nagar” to their geocoding API.

 Then Google returns the location details of the string submitted.

 The following program asks the user to provide the name of a location to be searched for.

 Then, it will call Google geocoding API and extracts the information from the returned JSON.

import urllib.request, urllib.parse, urllib.error

import json

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 15

serviceurl = 'http://maps.googleapis.com/maps/api/geocode/json?'

address = input('Enter location: ')

if len(address) < 1:

exit()

url = serviceurl + urllib.parse.urlencode({'address': address})

print('Retrieving', url)

uh = urllib.request.urlopen(url)

data = uh.read().decode()

print('Retrieved', len(data), 'characters')

try:

js = json.loads(data)

except:

js = None

if not js or 'status' not in js or js['status'] != 'OK':

print('==== Failure To Retrieve ====')

print(data)

print(json.dumps(js, indent=4))

lat = js["results"][0]["geometry"]["location"]["lat"]

lng = js["results"][0]["geometry"]["location"]["lng"]

print('lat', lat, 'lng', lng)

location = js['results'][0]['formatted_address']

print(location)

(Students are advised to run the above program and check the output, which will contain

several lines of Google geographical data).

 The above program retrieves the search string and then encodes it. This encoded string along with

Google API link is treated as a URL to fetch the data from the internet. The data retrieved from

the internet will be now passed to JSON to put it in JSON object format.

 If the input string (which must be an existing geographical location like Channasandra,

Malleshwaram etc!!) cannot be located by Google API either due to bad internet or due to

unknown location, we just display the message as „Failure to Retrieve‟.

 If Google successfully identifies the location, then we will dump that data in JSON object.

 Then, using indexing on JSON (as JSON will be in the form of dictionary), we can retrieve the

location address, longitude, latitude etc.

http://maps.googleapis.com/maps/api/geocode/json?%27

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 16

 Security and API Usage

 Public APIs can be used by anyone without any problem.

 But, if the API is set up by some private vendor, then one must have API key to use that API.

 If API key is available, then it can be included as a part of POST method or as a parameter on the

URL while calling API.

 Sometimes, vendor wants more security and expects the user to provide cryptographically signed

messages using shared keys and secrets.

 The most common protocol used in the internet for signing requests is OAuth.

 As the Twitter API became increasingly valuable, Twitter went from an open and public API to

an API that required the use of OAuth signatures on each API request.

 But, there are still a number of convenient and free OAuth libraries so you can avoid writing an

OAuth implementation from scratch by reading the specification.

 These libraries are of varying complexity and have varying degrees of richness.

 The OAuth web site has information about various OAuth libraries.

5.3 USING DATABASES AND SQL

 A structured set of data stored in a permanent storage is called as database.

 Most of the databases are organized like a dictionary – that is, they map keys to values.

 Unlike dictionaries, databases can store huge set of data as they reside on permanent storage like

hard disk of the computer.

 There are many database management softwares like Oracle, MySQL, Microsoft SQL Server,

PostgreSQL, SQLite etc.

 They are designed to insert and retrieve data very fast, however big the dataset is.

 Database software builds indexes as data is added to the database so as to provider quicker access to

particular entry.

 In this course of study, SQLite is used because it is already built into Python. SQLite is a C library

that provides a lightweight disk-based database that doesn‟t require a separate server process and

allows accessing the database using a non-standard variant of the SQL query language.

 SQLite is designed to be embedded into other applications to provide database support within the

application.

 For example, the Firefox browser also uses the SQLite database internally.

 SQLite is well suited to some of the data manipulation problems in Informatics such as the Twitter

spidering application etc.

 Database Concepts

 For the first look, database seems to be a spreadsheet consisting of multiple sheets.

 The primary data structures in a database are tables, rows and columns.

 In a relational database terminology, tables, rows and columns are referred as relation, tuple and

attribute respectively.

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 17

 Typical structure of a database table is as shown below.

 Each table may consist of n number of attributes and m number of tuples (or records).

 Every tuple gives the information about one individual.

 Every cell(i, j) in the table indicates value of j
th

 attribute for i
th

 tuple.

Tuple1

Tuple2

…………..

………….

Tuple_m

 Consider the problem of storing details of students in a database table. The format may look like –

Student1

Student2

…………..

………….

Student_m

 Thus, table columns indicate the type of information to be stored, and table rows gives record

pertaining to every student.

 We can create one more table say addressTable consisting of attributes like DoorNo,

StreetName, Locality, City, PinCode. To relate this table with a respective student stored in

studentTable, we need to store RollNo also in addressTable (Note that, RollNo will be unique for

every student, and hence there won‟t be any confusion).

 Thus, there is a relationship between two tables in a single database. There are softwares that can

maintain proper relationships between multiple tables in a single database and are known as

Relational Database Management Systems (RDBMS).

 Structured Query Language (SQL) Summary

 To perform operations on databases, one should use structured query language.

 SQL is a standard language for storing, manipulating and retrieving data in databases.

 Irrespective of RDBMS software (like Oracle, MySQL, MS Access, SQLite etc) being used, the

syntax of SQL remains the same.

 The usage of SQL commands may vary from one RDBMS to the other and there may be little

syntactical difference.

 Also, when we are using some programming language like Python as a front-end to perform

database applications, the way we embed SQL commands inside the program source-code is as

Attribute1 Attribute2 ……………… Attribute_n

V11 V12 ……………… V1n

V21 V22 ……………… V2n

……… ……. ……………… ……….

………… ………. …………….. ………..

Vm1 Vm2 …………….. Vmn

RollNo Name DoB Marks

1 Ram 22/10/2001 82.5
2 Shyam 20/12/2000 81.3

……… ……. ……………… ……….

………… ………. …………….. ………..

………….. ………. ……………. …………

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 18

per the syntax of respective programming language.

 Still, the underlying SQL commands remain the same. Hence, it is essential to understand basic

commands of SQL.

 There are some clauses like FROM, WHERE, ORDER BY, INNER JOIN etc. that are used with

SQL commands, which we will study in a due course.

 The following table gives few of the SQL commands.

Command Meaning

CREATE DATABASE creates a new database

ALTER DATABASE modifies a database

CREATE TABLE creates a new table

ALTER TABLE modifies a table

DROP TABLE deletes a table

SELECT extracts data from a database

INSERT INTO inserts new data into a database

UPDATE updates data in a database

DELETE deletes data from a database

 As mentioned earlier, every RDBMS has its own way of storing the data in tables. Each of

RDBMS uses its own set of data types for the attribute values to be used. SQLite uses the data

types as mentioned in the following table –

Data Type Description

NULL The value is a NULL value.

INTEGER The value is a signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes depending on

the magnitude of the value.

REAL The value is a floating point value, stored as an 8-byte floating point number

TEXT The value is a text string, stored using the database encoding (UTF- 8,

UTF-16BE or UTF-16LE)

BLOB The value is a blob (Binary Large Object) of data, stored exactly as it was

input

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 19

 Note that, SQL commands are case-insensitive. But, it is a common practice to write commands

and clauses in uppercase alphabets just to differentiate them from table name and attribute names.

 Now, let us see some of the examples to understand the usage of SQL statements –

 CREATE TABLE Tracks (title TEXT, plays INTEGER)

This command creates a table called as Tracks with the attributes title and plays

where title can store data of type TEXT and playscan store data of type INTEGER.

 INSERT INTO Tracks (title, plays) VALUES ('My Way', 15)

This command inserts one record into the table Tracks where values for the attributes

title and plays are „My Way‟ and 15 respectively.

 SELECT * FROM Tracks

Retrieves all the records from the table Tracks

 SELECT * FROM Tracks WHERE title = 'My Way‟

Retrieves the records from the table Tracks having the value of attribute title as „My

Way‟

 SELECT title, plays FROM Tracks ORDER BY title

The values of attributes title and plays are retrieved from the table

Tracks with the records ordered in ascending order of title.

 UPDATE Tracks SET plays = 16 WHERE title = 'My Way„

Whenever we would like to modify the value of any particular attribute in the table,

we can use UPDATE command. Here, the value of attribute plays is assigned to a

new value for the record having value of title as „My Way‟.

 DELETE FROM Tracks WHERE title = 'My Way'

A particular record can be deleted from the table using DELETE command. Here, the

record with value of attribute title as „My Way‟ is deleted from the table Tracks.

 Database Browser for SQLite

 Many of the operations on SQLite database files can be easily done with the help of software

called Database Browser for SQLite which is freely available from:

http://sqlitebrowser.org/

 Using this browser, one can easily create tables, insert data, edit data, or run simple SQL queries

on the data in the database.

 This database browser is similar to a text editor when working with text files.

http://sqlitebrowser.org/

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 20

 When you want to do one or very few operations on a text file, you can just open it in a text editor

and make the changes you want.

 When you have many changes that you need to do to a text file, often you will write a simple

Python program.

 You will find the same pattern when working with databases. You will do simple operations in the

database manager and more complex operations will be most conveniently done in Python.

 Creating a Database Table

 When we try to create a database table, we must specify the names of table columns and the type

of data to be stored in those columns.

 When the database software knows the type of data in each column, it can choose the most

efficient way to store and look up the data based on the type of data.

 Here is the simple code to create a database file and a table named Tracks with two columns in the

database:

Ex1.

import sqlite3

conn = sqlite3.connect('music.sqlite')

cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS Tracks')

cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)') conn.close()

 The connect() method of sqlite3 makes a “connection” to the database stored in the file

music.sqlite3 in the current directory.

 If the file does not exist, it will be created.

 Sometimes, the database is stored on a different database server from the server on which we are

running our program.

 But, all the examples that we consider here will be local file in the current working directory of

Python code.

 A cursor() is like a file handle that we can use to perform operations on the data stored in the

database. Calling cursor() is very similar conceptually to calling open() when dealing with text

files.

 Hence, once we get a cursor, we can execute the commands on the contents of database using

execute()method.

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 21

Figure : A Database Cursor

 In the above program, we are trying to remove the database table Tracks, if at all it existed in the

current working directory.

 The DROP TABLE command deletes the table along with all its columns and rows.

 This procedure will help to avoid a possible error of trying to create a table with same name.

 Then, we are creating a table with name Tracks which has two columns viz. title, which can take

TEXT type data and plays, which can take INTEGER type data.

 Once our job with the database is over, we need to close the connection using close()method.

 In the previous example, we have just created a table, but not inserted any records into it

 So, consider below given program, which will create a table and then inserts two rows and finally

delete records based on some condition.

Ex2.

import sqlite3

conn = sqlite3.connect('music.sqlite')

cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS Tracks')

cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)')

cur.execute(“INSERT INTO Tracks (title, plays) VALUES ('Thunderstruck', 20)”)

cur.execute(“INSERT INTO Tracks (title, plays) VALUES (?, ?)”, ('My Way', 15))

conn.commit()

print('Tracks:')

cur.execute('SELECT title, plays FROM Tracks')

for row in cur:

print(row)

cur.execute('DELETE FROM Tracks WHERE plays < 100')

cur.close()

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 22

 In the above program, we are inserting first record with the SQL command –

“INSERT INTO Tracks (title, plays) VALUES('Thunderstruck', 20)”

 Note that, execute() requires SQL command to be in string format. But, if the value to be store in

the table is also a string (TEXT type), then there may be a conflict of string representation using

quotes.

 Hence, in this example, the entire SQL is mentioned within double-quotes and the value to be

inserted in single quotes. If we would like to use either single quote or double quote everywhere,

then we need to use escape-sequences like \‟ or \”.

 While inserting second row in a table, SQL statement is used with a little different syntax –

“INSERT INTO Tracks (title, plays) VALUES (?, ?)”,('My Way', 15)

 Here, the question mark acts as a place-holder for particular value.

 This type of syntax is useful when we would like to pass user-input values into database table.

 After inserting two rows, we must use commit() method to store the inserted records permanently

on the database table.

 If this method is not applied, then the insertion (or any other statement execution) will be

temporary and will affect only the current run of the program.

 Later, we use SELECT command to retrieve the data from the table and then use for-loop to

display all records.

 When data is retrieved from database using SELECT command, the cursor object gets those data as

a list of records.

 Hence, we can use for-loop on the cursor object. Finally, we have used a DELETE command to

delete all the records WHERE plays is less than 100.

Let us consider few more examples –

Ex3.

import sqlite3

from sqlite3 import Error

def create_connection():

""" create a database connection to a database that resides in the memory"""

try:

conn = sqlite3.connect(':memory:')

print("SQLite Version:",sqlite3.version)

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 23

except Error as e:

print(e)

finally:

conn.close()

create_connection()

Few points about above program:

 Whenever we try to establish a connection with database, there is a possibility of error due to

non-existing database, authentication issues etc. So, it is always better to put the code for

connection inside try-except block.

 While developing real time projects, we may need to create database connection and close it

every now-and-then. Instead of writing the code for it repeatedly, it is better to write a

separate function for establishing connection and call that function whenever and wherever

required.

 If we give the term :memory: as an argument to connect() method, then the further operations

(like table creation, insertion into tables etc) will be on memory (RAM) of the computer, but

not on the hard disk.

Ex4. Write a program to create a Student database with a table consisting of student name and age.

Read n records from the user and insert them into database. Write queries to display all records and

to display the students whose age is 20.

import sqlite3 conn=sqlite3.connect('StudentDB.db') c=conn.cursor()

c.execute('CREATE TABLE tblStudent(name text, age Integer)')

n=int(input(“Enter number of records:”)) for i in range(n):

nm=input("Enter Name:")

ag=int(input("Enter age:"))

c.execute("INSERT INTO tblStudent VALUES(?,?)",(nm,ag))

conn.commit()

c.execute("select * from tblStudent ") print(c.fetchall())

c.execute("select * from tblStudent where age=20") print(c.fetchall())

conn.close()

In the above program we take a for-loop to get user-input for student‟s name and age. These data are

inserted into the table. Observe the question mark acting as a placeholder for user-input variables.

Later we use a method fetchall() that is used to display all the records form the table in the form of a

list of tuples. Here, each tuple is one record from the table.

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 24

 Three Kinds of Keys

Sometimes, we need to build a data model by putting our data into multiple linked tables and linking

the rows of those tables using some keys. There are three types of keys used in database model:

 A logical key is a key that the “real world” might use to look up a row. It defines the

relationship between primary keys and foreign keys. Most of the times, a UNIQUE constraint

is added to a logical key. Since the logical key is how we look up a row from the outside

world, it makes little sense to allow multiple rows with the same value in the table.

 A primary key is usually a number that is assigned automatically by the database. It generally

has no meaning outside the program and is only used to link rows from different tables

together. When we want to look up a row in a table, usually searching for the row using the

primary key is the fastest way to find the row. Since primary keys are integer numbers, they

take up very little storage and can be compared or sorted very quickly.

 A foreign key is usually a number that points to the primary key of an associated row in a

different table.

 Consider a table consisting of student details like RollNo, name, age, semester and address as

shown below –

RollNo Name Age Sem Address

1 Ram 29 6 Bangalore

2 Shyam 21 8 Mysore

3 Vanita 19 4 Sirsi

4 Kriti 20 6 Tumkur

 In this table, RollNo can be considered as a primary key because it is unique for every student in

that table. Consider another table that is used for storing marks of students in all the three tests as

below

RollNo Sem M1 M2 M3

1 6 34 45 42.5

2 6 42.3 44 25

3 4 38 44 41.5

4 6 39.4 43 40

2 8 37 42 41

 To save the memory, this table can have just RollNo and marks in all the tests. There is no need to

store the information like name, age etc of the students as these information can be retrieved from

first table. Now, RollNo is treated as a foreign key in the second table.

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 25

 Basic Data Modeling

 The relational database management system (RDBMS) has the power of linking multiple tables.

The act of deciding how to break up your application data into multiple tables and establishing the

relationships between the tables is called data modeling.

 The design document that shows the tables and their relationships is called a data model. Data

modeling is a relatively sophisticated skill.

 The data modeling is based on the concept of database normalization which has certain set of

rules.

 In a raw-sense, we can mention one of the basic rules as never put the same string data in the

database more than once. If we need the data more than once, we create a numeric key (primary

key) for the data and reference the actual data using this key.

 This is because string requires more space on the disk compared to integer, and data retrieval (by

comparing) using strings is difficult compared to that with integer.

 Consider the example of Student database discussed above.

 We can create a table using following SQL command –

CREATE TABLE tblStudent

(RollNo INTEGER PRIMARY KEY, Name TEXT, age INTEGER, sem INTEGER, address

TEXT)

Here, RollNo is a primary key and by default it will be unique in one table. Now, another take can

be created as –

CREATE TABLE tblMarks

(RollNo INTEGER, sem INTEGER, m1 REAL, m2 REAL, m3 REAL,

UNIQUE(RollNo,sem))

 Now, in the tblMarks consisting of marks of 3 tests of all the students, RollNo and sem are

together unique. Because, in one semester, only one student can be there having a particular

RollNo. Whereas in another semester, same RollNo may be there.

 Such types of relationships are established between various tables in RDBMS and that will help

better management of time and space.

 Using JOIN to Retrieve Data

 When we follow the rules of database normalization and have data separated into multiple tables,

linked together using primary and foreign keys, we need to be able to build a SELECT that

reassembles the data across the tables.

 SQL uses the JOIN clause to reconnect these tables. In the JOIN clause you specify the fields that

are used to reconnect the rows between the tables.

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 26

 Consider the following program which creates two tables tblStudent and tblMarks as discussed in

the previous section.

 Few records are inserted into both the tables. Then we extract the marks of students who are

studying in 6
th

 semester.

import sqlite3

conn=sqlite3.connect('StudentDB.db')

c=conn.cursor()

c.execute('CREATE TABLE tblStudent

(RollNo INTEGER PRIMARY KEY, Name TEXT, age INTEGER, sem

INTEGER, address TEXT)')

c.execute('CREATE TABLE tblMarks

(RollNo INTEGER, sem INTEGER, m1 REAL, m2 REAL, m3 REAL,

UNIQUE(RollNo,sem))')

c.execute("INSERT INTO tblstudent VALUES(?,?,?,?,?)",

c.execute("INSERT INTO tblstudent VALUES(?,?,?,?,?)",

c.execute("INSERT INTO tblstudent VALUES(?,?,?,?,?)",

INTO tblstudent VALUES(?,?,?,?,?)",

(1,'Ram',20,6,'Bangalore'))

(2,'Shyam',21,8,'Mysore'))

(3,'Vanita',19,4,'Sirsi')) c.execute("INSERT

(4,'Kriti',20,6,'Tumkur'))

c.execute("INSERT INTO tblMarksVALUES(?,?,?,?,?)",(1,6,34,45,42.5))

c.execute("INSERT INTO tblMarksVALUES(?,?,?,?,?)",(2,6,42.3,44,25))

c.execute("INSERT INTO tblMarksVALUES(?,?,?,?,?)",(3,4,38,44,41.5))

c.execute("INSERT INTO tblMarksVALUES(?,?,?,?,?)",(4,6,39.4,43,40))

c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(2,8,37,42,41))

conn.commit()

query="SELECT tblStudent.RollNo, tblStudent.Name, tblMarks.sem, tblMarks.m1,

tblMarks.m2, tblMarks.m3 FROM tblStudent JOIN tblMarks ON tblStudent.sem =

tblMarks.sem AND tblStudent.RollNo = tblMarks.RollNo WHERE tblStudent.sem=6"

c.execute(query)

Python Application Programming (18EC646) Module V

Dr Renuka sagar, Assoc Prof,BITM,Bly

Page 27

for row in c:

print(row)

conn.close()

The output would be –

(1, 'Ram', 6, 34.0, 45.0, 42.5)

(4, 'Kriti', 6, 39.4, 43.0, 40.0)

The query joins two tables and extracts the records where RollNo and sem matches in both the tables,

and sem must be 6.

