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Abstract The role of non-stop integral flow is studied in a lattice model by assuming
the lateral gap among the lattice sites. The proposed model is investigated theoreti-
cally as well as numerically. In theoretical evaluation, we derived the stableness cri-
terion and provided the relationship among sensitivity and other parameters. It’s far
located that similarly to attention of the gap space, the non-stop time of flow reduces
the congestion and the unstable region more reinforced via increasing the driver’s
memory time step.
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1 Introduction

To expose the traffic problems including intrinsic mechanism of traffic congestion,
commuting delay, traffic accidents and energy consumption, the modeling of traffic
flow has attracted a widespread interest of researchers in latest years. Most of the
traffic techniques especially recognition at the reproducing the flow-density-velocity
relationship and the phase transition of traffic flow from congested region to free
flow region with involving various factors of traffic [1-7]. Also, in order to reveals
the actual traffic conditions, a few research have been added to suppress the traffic
congestion. These days, the lattice hydrodynamic model which was firstly proposed
by Nagatani [8], stimulates a huge interest of many researchers.

As we understand, road condition performs an important function in traffic flow
which include narrow lane, curves, and bad road surface make drivers pay more atten-
tion on road conditions and decrease their velocity. One of the primary reason behind
traffic bottlenecks are due to bad road conditions. In this direction, car-following traf-
fic flow models were proposed through[9—11] with the aid of assuming that vehicles
travel in the center of the lane which can be stimulated directly by the only in front
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or behind and no passing is permitted on a single lane highway. By inspiring from
Refs.[9-11], the impact of lateral gap has been also studied in lattice model [12] and
it is determined that lateral separation performs a critical role in stabilizing the traffic
flows in lattice fashions

In real traffic, driver usually observe at the following in addition to the previous
vehicles at some point of driving on road. To deal with this phenomena, many lattice
models [13-22] had been found within the literature. Currently, to show the impact
of historical traffic information, Wang and Ge [23] proposed a lattice model via ac-
counting the backward looking and flow integral effect and it is observed that the
stable region enhances efficiently with consideration of these factors. Motivated from
this, Peng et al. [24] studied the flux difference memory integral effect in two-lane
lattice version and it’s far encountered that lane changing performs a vital function
in stabilizing the traffic congestion. The continuous memory of vehicles plays an
important role in traffic flow modeling and this effect becomes more prominent in
non-lane-based lattice model. However, the lateral separation distance of consecu-
tive automobiles has not been studied in driver’s continuous memory integral lattice
model.

The paper is prepared as follows: we study the lateral separations gap between
two consecutive automobiles and presented a lateral-gap-distance lattice model via
thinking about the effect of flow memory integral in section 2. In section 3, the
model’s stability condition is derived the usage of the linear stability theory. Then,
numerical simulation is completed out to validate the analytic outcomes and subse-
quently conclusion is given in final section.

2 Proposed Model

The lattice version of continuum model through considering the idea of car-following
model is

apj+po(pjvi—pj-1vj-1) =0, M

with the following flow evolution equation at site j

o (pjvi) = alpoV(pj+1) — pjv,l- 2

where a = % is the sensitivity; po is the average density; V(.) is the optimal velocity
function; p; and v; represent the density and velocity at site j at time #, respectively.
Furthermore, to include the lateral separation distance, Peng et al. [12] proposed a
lattice hydrodynamic model as follows

pj(t+1)—pj(t) +Tpo(pjv; —pj-1vj-1) =0 3)
pi(t+T)Wvi(t+7)=poV(pjs1,pj+2) + KG(AQj j41,200; j+2) “)

where K is the reactive coefficient to the function G(.), AQj j+1 = Pj+1Vj+1 — PjVjs
and AQj j42 = pj42vjy2 — p;jv; are the relative flows among site j & j+1 and j &
J+2, respectively. It’s far observed that the free region enhances with an increasing
the lateral separation distance of lane width and consequently, this element plays an
important role in stabilizing the traffic flow.
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As we recoinage, driver usually senses the traffic relative information at time # and
makes a decision to adjusts speed of his vehicle at later time, in taking this movement
there can be delay which influences the traffic. In this course, Gupta and Redhu [26]
proposed a hydrodynamics model by thinking about the driver’s anticipation effect
in sensing relative flux for two-lane system for a fixed delay and studied the impact
of driver’s expectation on traffic flow. But, it is obvious that the effect of continuous
memory has more prominent affects on traffic flow in comparison of fixed delay time
and it also investigated in many traffic flow models [23,27]. In literature, we studied
that road width performs an essential role in stabilizing the traffic congestion and it
will becomes more effective if driver could have the relative records of continuous
memory. But, the effect of non-stop memory integral has not been studied untill now.

Here, we are offering a lattice model by considering the continuous historical flux
information in term of integration between the time [t — Tp,¢] and the new evolution
is

t

pjt+T)vi(t+7) =polV(pjs1,0j+2)] +5 [ G(AQj41(5),AQ; j+2(5))ds (5)

-7

where Ty represents the historical integral time, x is the corresponding coefficient,
G(.) is given by

G(AQj j+1(5), A0 j+2(s) = (1 —=pj) A Q) j+1(s) +p; A Qj jr2(s) (6)

and
V(pjt1,pj+2) = VI(1 = pj)pjt1+pipj+2] (7)

LS; . . . .
where p; = Lsi is the parameter of lateral separation distance, LS; is the lateral
separation distance of sites j and j+ 1 and LS,,,, is the maximum lateral separation
distance. The term [/, G(AQj j41(5), AQ; j12(s))ds represents the continuous flux

difference information. The modified velocity function for non-lane-based model is

V(pji1,pj12) = ‘}Zﬂ{tanh[(l _Pj>Pj-il-1 it — é] thanh(é)} (8)

By taking the difference form of Eqgs. (1) and (5) and eliminating speed v;, the
density equation is obtained as

Pt +27) — pj(t+ 1)+ o5 [V(Pjs1, Pj+2) — V(). pj+1)] + TK[(1 = pj) (—pju1 (1) +
Pj+1(t—=10)+pj(t) = pj(t—10)) + pj(Pj+2(t) + pj+2(t — ) + pj+1(t) = pj+1(t — 7)) =0
&)

where 79 = kT, where 7y and k = 1,2,3--- represent the difference time step and
integer for the historical time considered.
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Fig. 1 Phase diagram in parameter space (p,a), for (a) k¥ = 0.1 and (b) k¥ = 0.3, respectively.

3 Linear stability analysis

To look the effect of memory flow integral in the proposed model, we assume the
steady-state solution of the homogeneous traffic flow as

pi(t) = po, vi(1) =V (po). (10)

where pg and V(po) represent the state of uniform traffic flow. Let y;(¢) be a small
perturbation to the steady-state density on site j. Then,

pj(t) =po+y;(t). (11)
Putting this perturbed density profile into Eq. (9) and linearizing it, we get
Yt +27) =yt +7) + V' (p0)[(1 = pj) (jr1 —¥i(0)) + pj(yjra = yjr1) ]+
TK[(L = pj)(=yje1 () +yjr1 (t = 70) +y;(t) = y;(t = %)) + pj(yj42(1) +yjs2(t — T0)
+¥j+1() =yj+1(t — 1)) =0 (12)
Substituting y; (1) = exp(ikj+zt) in Eq. (12), we obtain
&% — T tpgV! (po) (1= pj) (€ = 1) + p; ("™ — e %) + 7k[(1 — p;)
(_eik+eikfrgz+ 1 _eT()Z) —l—pj(ez’-k—&—ezik*roz—i—eik _eik*TOZ)} =0. (13)

Inserting z = z; (ik) 4z (ik)?... into Eq. (13), we will obtain the first-order and second-
order terms of the coefficient ik and (ik)?, respectively, we get

z21=—p3V'(po), (14)

31«- 2 2vl
= _7;‘ _Po’ o) z(pO)(1+2pj)+KT(). (15)
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Fig. 2 Space time evolution after time ¢ = 20000 for (a) p; =0, (b) p; = 0.1, (¢) p; = 0.2, and (d)
pj=0.3,fork=0.1.

When z; < 0, the uniform steady-state flow becomes unstable for long-wavelength
waves. For z > 0 the uniform flow becomes stable. Thus, the stability condition for
the steady-state is

1—|—2pj+2KTO

= . (16)
3p5V" (o)
The instability condition for the homogeneous traffic flow can be described as
142p;+2K7
> +2p j + 0 (17)

3pgV'(Po)

For k =0, and p; = 0, the above unstability criteria (Eq. 17) will becomes same as
that of Nagatani’s [8] model.

Figure 1 shows the phase digram in the parameter space (p,a) for different val-
ues of p;. It is clear form Fig. 1(a) that the amplitude of the neutral stability curves
decreases with an increases in the value of p; when k = 0.1. Further increase in the
value of K, stable region enhances with an increase in the value of p;. On comparing
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Fig. 3 Density profile at time ¢ = 20300 for (a) p; =0, (b) p; = 0.1, (¢c) p; = 0.2, and (d) p; = 0.3,
respectively for k = 0.1.

the results for k¥ = 01. and k¥ = 0.3, it is concluded that the stable region expands
with increase in the value of x which further enhances with the increment in the
value of p;. If we compare our result with the Peng et al. model [25] for ¥ = 0.1 it
is concluded the the stable region is more in proposed model which shows that the
continuous delayed of flow integral plays a effective role in stabilizing the traffic flow.

4 Numerical Simulation

In this section by using the periodic boundary conditions, we carried out the numer-
ical simulation to check the theoretical results. The initial conditions are adopted as
follows:

po:  j# % L1

pj(1)=p;j(0)=q po—0:j= 7

poto;j=75+1
where, o is the initial disturbance, L is the total number of sites taken as 100 and
other parameters are set as follows: 0 =0.1,7 = %

100
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Fig. 4 Space time evolution after time ¢ = 20000 for (a) p; =0, (b) p; = 0.1, (¢) p; = 0.2, and (d)
pj = 0.3, when k =0.3.

Fig. 2 represents the spatiotemporal evolutions of density waves at time ¢ =
20000s — 20300s for different values of p; when a = 1.7 and k¥ = 0.1. In the un-
stable region, the traffic jam appears in term of kink-antikink types of density wave
which arise at each site and propagates in the backward direction with time as shown
in the Figs. 2(a)-(c). For p; = 0.3, we enter into the stable region and the density
waves disappear and traffic flow becomes uniform. Fig. 3 shows the density profile
after a sufficiently long time ¢ = 20300 corresponding to panel of Fig. 2. It is clear
form the Figs. 3(a)-(c) that the amplitude of the kink-antikink density wave decreases
with increasing the value of p; and the flow becomes uniform for p; = 0.3.

Fig. 4 represents the spatiotemporal evolutions of density waves at time ¢ =
20000s — 20300s for different values of p; when a = 1.52 and k¥ = 0.3 and Fig. 5
shows the density profile after a sufficiently long time ¢+ = 20300 corresponding to
panel of Fig. 4. It is clear from the Fig. 4(a)-(c) that in the unstable region, the initial
disturbance converts into the density waves and these density waves dies out in the
free flow region as shown in Fig. 4(d). In the congested region, the deviation occurs
around the critical density as shown in Figs. 5(a)-(c) and this deviation disappears
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Fig. 5 Density profile at time + = 20300 for (a) p; =0, (b) p; = 0.1, (¢) p; = 0.2, and (d) p; = 0.3,
respectively for k = 0.3.

in Fig. 5(d). Therefore, we can conclude that the lateral separation distance plays a
prominent role in stabilizing the traffic flow.

On comparing the results for ¥ = 0.1 and k¥ = 0.3, it is conclude that the informa-
tion of continuous memory integral plays an important role in traffic flow theory and
its affect becomes more impressive in non-lane-based lattice hydrodynamic model.

5 Conclusion

A non-lane-based lattice hydrodynamic traffic flow model is proposed with consider-
ation of continuous flow integral effect. Through linear stability analysis, the stability
condition is derived to analyze the traffic congestion region. To validate the theoret-
ical results, numerical simulation is carried out with periodic boundary conditions.
For fix values of x, we studied the affect of lateral separation distance on traffic flow
and it is concluded that the coefficient of flow integral effect stabilizes the traffic flow
and this factor should be considered in traffic flow modeling.

100
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