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ABSTRACT

A nonlinear mathematical model is developed and analyzed in this research to explore the impacts of industrialization, population, and
primary-secondary toxicants on the depletion of forestry resources. It is assumed that primary toxicant is emitted into the environment
with a constant prescribed rate as well as its growth is enhanced by increase in population density and industrialization. Further, a part of
primary toxicant is transformed into secondary toxicant, which is more toxic, both affecting the resource and population simultaneously.
The nature and uniqueness of equilibrium, as well as the requirements for the existence of their local and global equilibrium points, have
all been proven by using the stability theory of differential equations. Numerical simulations are performed to analyze the dynamics of the
system using a fourth order Runge-Kutta method and determine the critical parameters that are responsible for depletion of forestry
resource.
Keywords: Resource-biomass, Population, Primary & Secondary Toxicants, Industrialization, Stability.
Mathematics Subject Classification (2010) 34D20 - 34D23 - 34D30

1. INTRODUCTION
The Environmental problems in India are growing rapidly. The WHO estimates that about two million people die prematurely
every year as a result of air pollution while many more suffer from breathing ailments, heart disease, lung infection and even cancer. Fine
particles or microscopic dust from coal or wood fires and unfiltered diesel engine are rated as one of the most lethal forms of air pollution
caused by industry, transport, household heating, cooking and ageing coal or oil-fired power stations.

Airborne pollutants can be classified broadly into two categories: primary and secondary. Primary pollutant are those that are emitted
into the atmosphere by the source such as fossil fuels combustion from power plant, vehicle engine and industrial production, by
combustion of biomass from agriculture and land clearing purpose, and by natural processes. Secondary pollutants are formed within the
atmosphere when primary pollutant reacts with sunlight, oxygen and water and other chemical present in the air. The question to what
extent primary and secondary air pollutants are relevant to atmospheric pollution and their effects on biological species and the quality of
the environment can be answered in a straight forward manner: atmospheric processes, including oxidation procedures, particle formation
and equilibria, determine the fate of primary emission and, in most cases, the secondary product of these processes are the more important
ones concerning their effects on human health and the quality of the environment. So, the pollutants in both of their forms are serious
threat for the survival of the resource biomass and exposed population and in order to regulate these pollutant wisely, we must assess the
risk of the resource biomass and population exposed to pollutants. Therefore, it is important to study the effects of pollutants on resource
dependent biological population by making use of mathematical models. So in this research an attempt is made to model the effect of
these environmental pollutants on resource dependent biological population.

In recent years, Freedman and Shukla [1] studied the effects of toxicants on a biological population and predator-prey system. They
showed that if the emission rate of the toxicants increases, the equilibrium level of population decreases, and the magnitude of which
depends on the influx and washout rates of the toxicant. Chattopadhyay [2] proposed a model to study the effect of toxic substances on a
two species competitive system. Shukla and Dubey [3] studied the effect of two toxicants on the growth and survival of biological species.
The survival (growth and existence) of a resource biomass dependent species in a forest habitat, which is depleted due to industrialization
pressure, has also been studied in [4, 5]. Shukla and Dubey [6] studied the depletion of a forestry resource in a habitat, which is caused by
an increase in population density and pollutant emission into the environment. Dubey et al. [7] studied the depletion of forestry resource
by population and population pressure augmented industrialization. They showed that if the growth of population is only partially
dependent on resource, still the resource biomass is doomed to extinction due to large population pressure augmented industrialization.
Dubey and Narayanan [8] studied the effects of industrialization, population and pollution on a renewable resource. Shukla et al. [9]
studied the effects of primary and secondary toxicants on renewable resources. In his study, the direct emission of primary toxicant is
considered, a part of which is transformed into secondary toxicant, but in real situation, level of toxicant increases into the environment by
increase in density of population and industrialization. Further Misra P. et al. [10] studied a mathematical model to study the optimal
harvest policy for toxicant effected forestry biomass . Constant introduction of toxicant into the environment and dynamic harvesting
effort of biomass with tax as control instrument have been taken Lata. K et al., [11] investigated the impact of industrialization on
forestry resources, assessing the effect of wood and non-wood based industries on the depletion of forestry biomass. It was discovered that
as the level of pollutants from wood and non-wood based businesses rises, the metabolism of forestry resources suffers due to the uptake
of these pollutants by the forestry resources. Mishra & Lata, [12] investigated the depletion and conservation of forestry biomass in the
presence of industrialization by assuming that industries migrate owing to forestry biomass availability and their expansion rises due to
forestry biomass availability. Further Verma V. & Singh V. [13] studied the impact of media campaign to conserve forestry resources and
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control population pressure. The study concluded that if we conserve forestry resources and promote public understanding of the value of
trees, we can protect them.

In view of above considerations, in this paper, a nonlinear mathematical model is proposed and analyzed for the survival of
resource dependent biological population in the presence of two toxicants (primary and secondary). It is assumed that density of primary
toxicant is enhanced by population and industrialization in the environment and the secondary toxicant is formed from it into the
environment which is more toxic. This situation is modeled by the system of five ordinary differential equations. Stability theory of
nonlinear differential equations and fourth order Runge-Kutta method are used to analyze and predict the behavior of the model.

2. MATHEMATICAL MODEL

We consider an ecosystem where the resource biomass is being depleted due to the pressure of industrialization, population,
primary-secondary toxicants in the environment. It is assumed that the dynamics of the resource biomass, population and industrialization
are governed by logistic type equations. It is also assumed that the growth rate of resource biomass decreases with increase in density of
population and industrialization while its carrying capacity decreases with increase in environmental concentration of primary-secondary
toxicant. It is further assumed that growth rate of population increases as the density of resource biomass and industrialization increases.
Also the growth rate of industrialization increases with increase in density of resource biomass and population. It is also considered that
the emission of primary toxicant into the environment is industrialization and population dependent and a secondary toxicant which is
transformed from the primary toxicant into the environment and is more toxic. It is assumed that the rate of transformation of secondary
toxicant is proportional to the environmental concentration of the primary toxicant. In view of these arguments, the system is assumed to
be governed by the following differential equations:
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B(0)>0,N(0)>0,P,(0)>0, P,(0)>0,1(0)>0.

In model (2.1), B is the density of resource biomass, N is the density of population, P, and P, are the densities of primary and
secondary toxicants into the environment. | is the density of industrialization. « is the depletion rates coefficients of the resource
biomass due to the industrialization and /£ is the corresponding growth rate coefficient of industrialization. The positive constant K is the
transformation rate coefficient of primary toxicant into secondary toxicant in the environment. y, and y, are the growth rate coefficients of
industrialization and population respectively due to their interaction. 1, is the intrinsic growth rate coefficient of
industrialization. a4, @, and g;, 3, are the depletion rate coefficients of primary and secondary toxicants due to resource biomass and
population respectively. 8, and &, are the natural washout rate coefficients of the primary and secondary toxicants respectively from the

environment .The constant 6 <1, is a fraction, which represent the magnitude of transformation of primary toxicant into secondary
toxicant.

In model (2.1), the function rg(N) denotes the specific growth rate of resource biomass which decreases as N increases.
Hence we take

rs(0)=rgo >0, g (N)<O forN 0. 2.2)

The function KB(Pl, Pz) represent the maximum density of resource biomass which the environment can support in the presence of
primary and secondary toxicants, and it also decreases as P, and P, increases. Hence we take

Kg(0,0)=Kgg >0, ww, ww for B, >0, P, >0. (2.3)

P, oP,

The function rp(B) denotes the growth rate coefficient of the population and it increases as the resource biomass density increases. Hence
we take

ro(0)=rog >0, 1o (B)=0 for B>O0. (2.4)
The function M (Pl, P2) represent the maximum density of population which the environment can support in the presence of primary and
secondary toxicants, and it also decreases as P, and P, increases. Hence we take



M(0,0)= M, >0, mw, Mw (2.6)
P, P,
forP, >0,P, >0.

The function Q(I, N) is the rate of introduction of toxicant into the environment which increases as | and N increase. Hence we take

Q(00)=Q, =0, anl’N)zo, 6Qg,\]N)2° for 120, N 20. @7)

Before analyzing the model we state and prove the following lemma corresponding to the region of attraction for solution of model (2.1).

Lemma (2.1): The set Q={B,N,P,P,,1):0<B<Kg;,0<N<N,,0<P+P,<Q,,0<I<L,}
is the region of attraction for all solutions of model (2.1) initiating in the interior of positive orthant, where

L., N, .
Qn :¥, §=min(6, + 9 - 6,5, ).
3. EQUILIBRIUM ANALYSIS
The system (2.1) may have eight nonnegative  equilibrium in  the B,N,R,P, I space  namely,

. B,.0)

'U)
I\J-U)

El(ovoy QO ’ HQOg 1Ojr E2 (0!01 QO ’ HQO g 1 LJ! EB (0’ N! Isll 52 !O)! E4 (0’ Nt! Igl! S21 -I:)’ E (é 0
0o+ 9 51(50"'9) 0o+ 9 é‘1(50"'9)

Ee(é, N,P,P, ,oj, E,(B.0,B,P,.T) E*(B*N*P*P,1%)
The existence of E; and E,, is obvious. We prove the existence of other equilibrium points.

Existence of E3(O, N, F~>l 52 ,0):

In this case, N, F~’1 and 52 are the positive solutions of the following equations:

N=M(P,P,) (3.1)

Q(O' N)_ 6Py —a; NP —gP, =0, (3.2)

0 9P, —6,P, — NP, =0. (3.3)
From equations (3.2) and (3.3), respectively we get

Q(O,N)
P=—"-"—+—="1(N), say, 3.4

LS +a,N+g 1(N). say (34)

and P, = Ogh(N) = f,(N), say. (3.5)
oy + foN

It is noted that from equation (3.4) and (3.5) that P, and P,, are the functions of N only. To show the existence of E;, we define a
function F,(N) from equation (3.1), after using (3.4) and (3.5) as follows

Fi(N)=N=M(f,(N), f,(N)) (3.6)
From equation (3.6), we note that

F(0)=-M(f,(0) f,(0)) <0.
Also from (3.6), we note that
FiNp)=Np =M (fi(Ny). £,(N ) > 0,

under the condition, N, —M(f,(N,,), f,(N,))>0, (3.7)
Thus there exists a root N in the interval 0< N < N,, given by
F(N)=o. (38)

Now, the sufficient condition for E3 to be unique is % > 0at N, where

E—l oM dfy d, . oM oM df, (3.9)
dN apl dN  dP, dN
F f f ~ ~ ~
From (3.9), we note that d— >0at N if ﬂd—+@d—2 1 with this value of N, value of P, and P, can be found from equation
dN OoP, dN 0P, dN

oM dfy om df,

(3.4) and (3.5) and is positive since
6P1 dN GPZ dN



Existence of E4(0, N, F~>1 52 , rj :

In this case N, Isl |52 and 1 are the solutions of the following equations:

rpoN
PO 4, 1=0 3.10
PO M(Pllpz) 7 ( )
Q(I,N)- 0P, —a,NP, —gP, =0, (3.11)
&P, — P — NP, =0, (3.12)
L 7N) ), say (3.13)
r
Using the value of 1, from equation (3.13) in equations (3.11) and (3.12) we obtain
Q(g:(N).N)
p=— 2 7 — g, (N) say, 3.14
1 Sy +aN+g gz( ) y (3.14)
&Q,(N)
P, =——"—~=04(N) say. 3.15
2 5, + AN gs(N), say (3.15)

It is noted from equations (3.13), (3.14) and (3.15) that |, P, and P,, are the functions of N, only. To show the existence of E,, we
define a function FZ(N) from equation (3.10), after using (3.13), (3.14) and (3.15) as follows

Fo(N)=raoN = (rpg + 729, (N )M (g (N), g5(N)) (3.16)
From equation (3.16), we note that

F(0)=—(rpg + 71 LM [go(l:r(;) ;fgo(l;(;))j <0.

Also from (3.16), we note that
Fo(Nim) = rpoNm = (o + 7191 (N )M (9 (N ), 93(N ) > 0.

under the condition, rpoNy > (reg + 7191 (Nm )M (92 (N, ) 93(N ) (3.17)
Thus there exists a root N in the interval 0 < N: <N, given by

Fz(ﬁj =0. (3.18)
Now, the sufficient condition for E, to be unique is (;% >0at l;l: where
o =10 LI M (g5 (M) g4 a0 ) 2+ 82 ) 319

F =
From (3.19), we note that C;—NZ >0at N, if

712 oM dg, oM dg,
—- L2222 M(g,(N N))- (V) [ Al n - Y N _
po . (92(N). 93(N))—(rpo + 7194 ( ))(ap1 aN +6P2 dNJ>0 (3.20)

With this value of N, value of I~, |5l and 52, can be found from equation (3.13), (3.14) and (3.15) and is positive since condition (3.20) is
satisfied.
Existence of Ej (é,o, P, P, ,0):

In this case B,P,,P, are the solutions of the following equations

B=Kg(P,P,) (3.21)
__Q _

P = 5 ieBig h(B), say, (3.22)
_ ah(B) _

P, = 5.2 fB- hy(B), say, (3.23)

It is noted from equations (3.22) and (3.23) that P, and P,, are functions of B only. To show the existence of Es, we define a function
F3(B) from equation (3.21), after using (3.22) and (3.23) as follows

Fs(B) =B-Kp '(hl(B)v h, (B)) (3.24)
From equation (3.24), we note that



_ Qo Qo
FS(O)_ KB{% +9 ,51(50 + Q)J <0

Also from (3.24), we note that
F3(Kgo )= Kgo — K (h(Kgg ) hy (Ko )) > 0, under the conditions

Ko > Kg (i (Kgo ) 2 (Ko ) (3.25)
Thus there exists a root B, in the interval 0< B < Kgo, given by
F(B)=o0. (3.26)

- . .. dF 5
Now, the sufficient condition for Eg to be unique is d_83 > 0at B, where

oy (Ko o o)

(3.27)
dB op, dB 0P, dB

From (3.27), we note that (iiiBS >0at B, if (6'(—3% +6K—B%J <1

oP, dB 6P, dB

With this value of B, value of P andP,, can be found from equations (3.22) and (3.23) and is npositive since

OKg dhy oK dhy | _,
op, dB 0P, dB

Existence of Es(é, N,P,P, ,O) :

In this case, B, N, P,, P, are the solutions of the following equations:

rgoB

rg(N)-—2—==0, (3.28)
° KB(Pl' PZ)

regN

rp(B)- —E2—~< =0, (3.29)
M(P,P,)

Q(0,N)—5oP, —,BP, —a, NP, —gP, =0, (3.30)
AP, —6,P, — B BP, — B,NP, =0. (3.31)

From the equation (3.30), we have
Q(.N) _4,(BN), say, (3.32)

! =50 +aoB+a,N+g
With this value of Py, and from the equation (3.31), we have
b _ & Q(.N)

2 (51 +ﬁlB+ﬁ2N) (50 +aB+a,N +9)
Using values of P, and P, from (3.32) and (3.33) in equations (3.28) and (3.29) respectively, we get
(rg0 — eaN XK go — Kgydy (B, N)— Ko, (B,N))—rgoB =0, (3.34)
(rpo + e BXMg — My d; (B,N)—M,d, (B, N))—rpN =0, (3.35)

=d,(B,N), say, (3.33)

From (3.34), we note that g—g >0, if

fso +rB(N{Km%+ Kgs aa%zj<0,and

od aod
oo (8} 05 (B r (V] Ky Sy ey 20

From (3.35), we note that 2—: <0, if

od od
p (B{Ml 6_81 +M, G_BZJ >1p;M(dy(B,N),d,(B,N)), and

od od



Thus the two isoclines (3.34) and (3.35) intersects at Band N provided

od od
fso +rB(N{KBlé—Bl+ K g —2j<0,

51K (dy(B,N).d, (B, N))+ rB(N{K81%+ Kg2 ad_Zj > 0.

rp(s{MF—duMza"—Z} oM (0 (BN ), 0, (B, N),

oB OB
ad od
log + 1o (B) My —=+M, —2 | > 0.
PO P( { 16N 2 6Nj

Using these values of Band N we get P, and P, from (3.32) and (3.33), respectively as follows

) = Q(O'N) , and
6g+ayB+a,;N+g
% Q(O.N)

P — .
? (51+,315+ﬂ2N)(50 +aB+a,N +9)

Existence of E, (B,O, P.P,, f):
In this case B,P,,P,, I are the solutions of the following equations

B g 3.36
feo Kg (P, Py) “ &30
_ _Q&(B)o) _
P = 51080 =¢,(B) say, (3.37)
_ e, (B) _
P, = 5efB es(B), say, (3.38)
| = L(1+ ?ﬁjzel(s), say. (3.39)
1

It is noted from equations (3.37), (3.38) and (3.39) that P,,P, and | are functions of B only. To show the existence of E,, we define a
function F(B) from equation (3.36), after using (3.37), (3.38) and (3.39) as follows

F5(B) = rgoB —(rgo —a®;(B))Kg (¢,(B), &5(B)) (3.40)
From equation (3.40), we note that

Fs(0)=—(rgo — aL)K,{

Also from (3.40), we note that
F5(K BO ) =rgoKgo — (rBO - ael(K BO ))KB (ez (K BO ) eS(KBO )) > 0.
under the conditions

o) mol)
50+9'51(50+9) I

raoKao > (fao — &1 (Ko ))Kg (€2 (Ko ) €5(Kgp)) (3.41)
Thus there exists a root Ig, in the interval 0< B < Kgg, given by
F,(B)=0. (3.42)

. . . dR -
Now, the sufficient condition for E; to be unique is d_E? > Oat B, where

dF oKy de oKy de
T =+ (B B (0) )] oS 0 | 3.43)

dF -
From (3.43), we note that d_I; > 0at B, if

, oKg de, 0Ky de
o0+ (B B (6) > (o -y (B)] Fe2- 2 4 o S ) (342
1 2



With this value of B, value of B, P, and I can be found from equations (3.37), (3.38) and (3.39) and is positive since condition (3.44) is

satisfied.
Existence of E*(B*,N*,P*, P,*,1%):
In this case, B*,N*, P*,P,*,1* are the solutions of following equations:

r.,B
N)-—2  __al =0,
rB( ) KB(Pl’PZ) “

oo N
B)—_—PO " | =
e TCRy A

Q(I,N)—6,P, —,BP, —a,NP, —gP; =0,
@Pl _51P2 _ﬂprz _,32 NPz =0,
From the equation (3.49), we have

' :rL(r1+ﬁB+72N)=Sl(B,N), say,
1

With this value of |, and from the equation (3.47) and (3.48), we have

(8 + B+ a,N +9) el
&9s,(B,N)

- = ByNa 1]

2 e pB e ppn) BN s

Using values of 1, P, and P, from (3.50), (3.51) and (3.52) in equations (3.45) and (3.46) respectively, we get
(rBO — g N _0"51(8, N))(KBO —Kpgi$; (B: N)_ Kszsz(Ba N))_ rgoB =0,
(rpo +rpsN +;/151(B, N))(Mo - M152(Bv N)_ M253(B, N))_ poN =0,

From (3.53), we note that z—: <0, if

a—2Kg(s,(B,N)s3(B,N))+(rg(N) "‘Sl(B'N))(Km%+KBza )+rso>o o
(r31+a jK (s,(B,N),55(B,N))+(rg (N)—as,(B N){KBlgS_N2+KBzz%j>O

From (3.54), we note that 3—’; >0, if

oS 0s 0S
(—rm—na—;jwsz(s,N>,s3<s,N>>+(rp<s>+nsl<s,N>{Ml o Mza;j L0, and

08 0s 0s
J’la_le(Sz(BnN)’Ss(B’N))_(rP(B)+7131(B’N){M1 GI\T M, 6[\7) fpo > 0.

Thus the two isoclines (3.53) and (3.54) intersects at B*and N * provided

0S oS oS
aa_BlKB(SZ(B'N)’S3(B’N))"’(rB(N)_aSl(B'N){KBl 682 Kg2 aBs)+rBo >0,

(1o 2 Rl N8 1 () (8. K 2+ iy 52 0,

oB 0B

[_ _— %)M(SZ(B, N)sa(BN))+ (1o (B) + 45,8, N))(Ml B2 i m, ‘353} 0

s 0s 08
718_’\}'\/'(32(8'N)’S3(B’N))_(rP(B)"'}/lsl(B’N){Ml 8[\7 M5 6N3j fpo > 0.

(3.45)

(3.46)

(3.47)
(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)
(3.54)



Using these values of B*and N * we get P, *, P, *and | * from (3.50), (3.51) and (3.52), respectively as follows

L 3 Q(s,(B,N).N) _ s, (B, N)
I_E(r1+ﬂ8+72N), 1_(50+alB+a2N+g)’ E _(51+ﬂ1|3+ﬂ2N).

4. STABILITY ANALYSIS

4.1 Local Stability
The local stability behavior of each equilibrium point can be studied by computing the corresponding variational matrix. From these
matrices we note the following.

1. E; is also a saddle point with stable manifold locally in the P, — P, plane and with unstable manifold locally in the B—N —1

space.
2. E,isasaddle point with stable manifold locally in the P, — P, — 1 space and with unstable manifold locally in the B—N plane.

3. E, isasaddle point with stable manifold locally in the N — P, — P, space and with unstable manifold locally inthe B—1 plane.
4. E, is a saddle point with stable manifold locally in the N—P, —P, —1 space and with unstable manifold locally in the B
direction.

5. Eg isasaddle point with stable manifold locally in the B — P, — P, space and with unstable manifold locally in the N —1 plane.

6. Eg is a saddle point with stable manifold locally in the B—N —P, —P, space and with unstable manifold locally in the |
direction.

7. E, is a saddle point with stable manifold locally in the B—P, —P, —1 space and with unstable manifold locally in the N
direction.

In the following theorem we show that E *is locally asymptotically stable:

Theorem 1: If the following inequalities hold
rgoB™

N *+o P *+ 8, P, *+ 1 * < ——————, 4.1
P1 1PL*+ 8P, *+ Kg (P P, %) (4.1)
(o1 B*+Qy - Py * 48P, * 47,1 * < —1PON" (4.2)
BL 2-0oh 2P 2 M(P* P’
K * *
o Tgg * — rooN *? +6y <—Q(I N ) (4.3)
Kg" (™, P,*) M “(P*, P,*) P
*
— B2 Kaz rgoB ** +— M, rpoN *2 < L2l , (4.4)
Kg" (P*, P,*) M“(P*, P*) P, *
nl>*
aB*+y,N*+Q, <1T. (4.5)

then E* is locally asymptotically stable.

Proof: If inequalities (4.1) — (4.5) hold, then by Gerschgorin’s theorem (Lancaster and Tismenetsky, 1985), all eigenvalues of V (E*)
have negative real parts and interior equilibrium E * is locally asymptotically stable.

4.2. GLOBAL STABILITY

Theorem 2: In addition to the assumption (2.2) — (2.7), let rg(N), rp(B), Kg(P,,P,), M(P,,P,) and Q(I,N) satisfy the conditions
oQ aQ

oK oK
0<-—B <k,,0<- Bskz,Os—@Smlos—ﬂsmz. (4.6)in
aPl 2 aPl ' P2

Q2 for some positive constants p;, p,, 3, P4, K1, Ko, Ko, Ky Mg, M|, m;, m, Then if the following inequalities hol

2 1 so po
+ <— , 4.7
vt 0 < R P MR~ P) (47)



KB (Pl*’ PZ*)

m

2
k
[alQm + IgoKgo K—12J <%r‘3—0(50 +g+aB*+a,N *), (4.8)

2
k 1 r
+rgKgy —2% | <=——L% (5, + SB*+5,N*), 4.9
[ﬂlQm 50Ks0 szJ Ko B By Ot ABT AN ) (4.9)
(fraff<t_Teo _h (4.10)
3 Kg(P*P*) L
2
v a,Qp Ny | <L TR0 (5 4o Bra,N¥) (4.12)
P4 +00m +1pg m2 4M(P*P*) ot g+abTaN7) .
h 1712
“
m, po
[ﬂsz"‘rPo anj <4W(51 +,BlB*ﬂ2N*), (4.12)
Ipo N
Pl To 4.13
b+ 72) 3M(P* P, %L’ (4.13)
(t)? < 3(51+/318*+ﬂ2N*)(50+g+alB*a2N*) (4.14)
I
p3° <%t1(50 +g+a,B*a,N*)I (4.15)

E * is globally asymptotically stable with respect to all solutions initiating in the positive orthant Q.
Proof: Consider the following positive definite function about E *

B NY 1 2 1 2 l
v(B,N,Pl,PZ,|)=(B—B*—B*|n§j+(N—N*—N*lnF}E(Pl—Pl*) +E(P2—P2*) +(|—|*—|*|nFj.

Differentiating V with respect to time t, we get

dv (B-B*)dB (N-N*)dN dP, dP, (1—1*\dl
— | | (R P ) (P = Py R | —— |
e e R R

dt B dt N dt
Substituting values of a8 : aN : ﬂ i) and w from the system of equation (2.1) in the above
dt dt dt dt dt

equation and after doing some algebraic manipulations and considering functions,

rs(N)-rg(N*)
A , N = N*,
ns(N)=1 N-N*
rg (N *), N = N*
(4.16)
% (B)-rp(B*) BeB*
np(B)=y B-B* (4.17)
re (B*), ,B=B*
Q(I7NI)_?£I*’N), ,| ¢|*’
’7Q1(|’N): " (4.18)
M, N
ol
1 B 1
KB(Pl’PZ) KB(PI*’PZ), ;Plipl*y
551('31! Pz): P —P~ (4.19)
) 1 aKB (Pl*7 PZ)’ 1 Pl — Pl**
K82 (Pl*’ Pz) Ry
1 1
Ko (P*.P) Kg(P*,Pp") P
$a(P*,P) = P, =P, * (4.20)
1 Ky (P*, P, *)

- , P, =P*
KBZ<P1*1 P, *) P, ’ ’



1 1

M(P.P,) M(P*Py) Py % P (4.21)
tp (P, Pp) = PR-P*
) 1 M (P>, P, *) b _px
2 ’ 11— 1
M (P1*1P2) 6P1
1 1
M(Pl*’PZ) M(P1*’P2*)
P, # P*,
tpo (P, P) = P,—P,* 2re (4.22)
1 M (P*,P, *) .
- 2 1 1P2:P2
M2(P*P,*) 0P,
Q(I*’N)_Q(I*'N *) N = N*
3 N-—N=* ’ ’ ’ (4.23)
77Q2(|*:N)—
aQ(1*,N *)
N = N*
oN '
we get
dv 1
T 2311(5 B ) +312(B B*)(N N*)_—azz(N N*)
1
:_Zall(B_B*)2+a13(B B*)( )——a33(P Pl)
1
:_Zan(B—B*) +al4(B B*)( )_—""44(P P, )
1
:—Zan(B—B*) +a15(B B*)( )_—ass(l I )
1 1
:_Zazz(N—N*)2+a23(N_N*)(Pl_Pl*)—Zasa(P P *)
1 1
:_Zazz(N_N*)szam(N—N*)(Pz_Pz )—5344<P P, )
— =2 (N =N (N =N (1= 1%)-Zags(1 - 1,
1
:_Zase(Pl_Pl*)+aa4(P1_P1*)(P2_Pz )——a44(P P, )
1
__ZaSS(Pl —P P ag (R - P %) (1 - 1%)-Zags(1 - 1%)°
where
'so M'eo
a, =—F————, a1, =1g(N)+7p(B), a,, =——————, a,3=-1pgN7p (P, P;),835 = Sy + 0 + 1 B*+a,N*,,
1 KB(Pl*’PZ*) 12 B( ) P 22 M (P, P,) 23 poNTp1(F1, ), 833 = Og 1 2

r
845 =- P ~goBEp (P, Py ), Ay, =- BiPy —TgoBEpy (P*,Py), a3, = 0, gy =61 + BiB*+B, N, 55 :_E7 ajs =—a+pf,
Qo4 =—Tpg NTPZ(PI** Pz)—ﬁz P8 =y1+72,83 = 77Q1(| ; N)
Then sufficient conditions for (:i_\t/ to be negative definite are that the following inequalities hold

2 1 2 1 2 1 2 1 2 1 2 1 2 1
ap <Zal1a221 813 <Zalla33l ayq <§ana44, a5 <5311355: asg <Zazzassl 8z <§azzaz14: azs <§azzass-

2 1 2 1
a3 <§aaaa44v ass <5333355- (4.24)

Now, from (4.6) and mean value theorem, we note that



e(N}<pi, |70 (B)< P2, |UQ1(I1NXSP3!|UQ2(I*’N1<:04'|TP1(P11P21<|\;an|

n

m k k
|7P2(P1*v P2)<—22, |§Bl(PllP2)S 12 , |§Bz(P1*: Pz)g 22
M n Km Km
Further, we note that the stability conditions (4.7)-(4.15) as stated in theorem 2, can be obtained by maximizing the left-hand side of

inequalities (4.24). This completes the proof of theorem 2.

(4.25)

5 NUMERICAL SIMULATIONS AND DISCUSSION
To facilitate the interpretation of our mathematical findings by numerical simulation, we integrated system (2.1) using fourth order
Runge-Kutta method. We take the following particular form of the functions involved in the model (2.1):

rB(N): rgo —reN, rP(B): Ipo +rp1B, KB(P1: Pz): Kgo —KgiP —Kgy Py,
M(P,P,)=My-M;P —M,P,, Q(I,N)=Qy +Q,1 +Q,N.

Now we choose the following set of values of parameters in model (2.1) and equation (5.1).
Fao =11, Iy =0.2, Kgg =12.2, Kg; = 0.1, Kgy =0.3, & = 0.01, fpy = 20, oy = 0.1, My =10, M; =0.1,M, =0.2, 5, =0.02,Q, =20, Q, =0.3,

Q,=0.2, 5, =14,01 =0.00L, &z, =0.08,g =5, =05, 5,=17, =06, B, =01 ,=9,1=5 #=0.1,7, =0.2, K, =0.001

(5.1)

k; =0.2,k, =0.04, m; =0.02,m, =0.01, M, =13, p, =02, p,=0.1 p;=1 p,=0.1 (5.2)
With the above values of parameters, we note that condition for the existence of E* are satisfied, and E * is given by
B*=0.6912, N*=10.3966, P*=1.2140, P,*=0.1272, 1*=6.6936. (5.3)

It is further noted that all conditions of local stability (4.1) — (4.5), global stability (4.7) — (4.15) are satisfied for the set of values of
parameters given in (5.2).

In fig. 1, the primary and secondary toxicants against time are plotted. It shows that as direct emission of toxicant i.e. Q,, increases both
primary and secondary toxicants into the environment increases rapidly. Also it has been taken in the model that emission of primary
toxicant is industrialization and population dependent so its growth rate increases with increase in parameters Q, and Q,, respectively,
which ultimately result in increase of secondary toxicant into the environment. This can be seen in figs. 2-3. Fig. 4, shows the dynamics of
resource-biomass for different values of <, w.r.t time t. This shows that density of resource-biomass decreases as ¢, increases. It is also
noted that the resource-biomass density initially increases w.r.t time t and after certain time it settle down to its steady state. Figs. 5-7,
show the effect of @forg =12 on the dynamics of resource-biomass, population and secondary toxicant w.r.t time t. From fig. 7, it is
obvious that as 4, increases secondary toxicant into the environment increases rapidly. From figs 5-6, we can infer that as the level of
secondary toxicant increases into the environment, densities of resource-biomass and population decreases.

Fig. 8, shows the dynamics of secondary toxicant for different values of g, with respect to time t. It is found that as g, rate of
transformation of primary toxicant to secondary toxicant, increases density of secondary toxicant increases into the environment. Also
table is formed for different values of gand @ =1, which shows resource-biomass, population, primary toxicant and industrialization
decreases while secondary toxicant increases. From the table we can infer that resource-biomass, population may driven to extinction if
rate of formation of secondary toxicant is large.

g Resource- POPULATION Primary Secondary Industrialization
Biomass(B) (N) Toxicant (P1) Toxicant (P2) 0]
0.5 9.6892 10.3788 1.5700 0.0329 6.6915
1 9.6861 10.3773 1.5204 0.0638 6.6912
5 9.6666 10.3684 1.2138 0.2547 6.6891
10 9.6511 10.3613 0.9694 0.4069 6.6874
15 9.6407 10.3566 0.8069 0.5082 6.6863

From figs. 9-10, we note that density of industrialization increases as gand y,, increases. Fig. 11, shows that density of population
increases as y, increases with time. Figs. 12-13, show the effects of Ky, and Kg,, on the dynamics of resource-biomass. In both cases

the density of resource-biomass increases initially then decreases for some time and finally obtain its equilibrium level. These figs also
show that primary pollutant has an adverse effect on the resource-biomass carrying capacity for a larger period than secondary toxicant.
Similar behavior can be seen in figs. 14-15, which is plotted between population and time for different values of
M, and M ,, respectively.

6. CONCLUSION
In this paper, a nonlinear mathematical model to study the effects of industrialization, population, primary—secondary toxicants on
depletion of forestry resource is proposed and analyzed. It is assumed that primary toxicant is emitted into the environment with a
constant prescribed rate as well as its growth is enhanced by increase in density of population and industrialization. Further, a part of
primary toxicant is transformed into secondary toxicant, which is more toxic, both affecting the resource and population simultaneously.
Criteria for local stability, instability and global stability are obtained by using stability theory of differential equation. It is found that if
the densities of industrialization and population increases, then the density of primary toxicant into the environment become very large



due to which the densities of resource biomass and population decreases & it settle down at its equilibrium level whose magnitude is
lower than its original carrying capacity. It is also found that due to high level of primary toxicant into the environment which led in large
transformation of secondary toxicant, which is more toxic, decreases the densities of resource biomass and population more than the case
of single toxicant. Further, it is noted that if these factor increases unabatedly, then resource biomass and population may be driven to

extinction.
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