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Non-stop integral flow in lateral gap distance lattice model
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Abstract The role of non-stop integral flow is studied in a lattice model by assuming
the lateral gap among the lattice sites. The proposed model is investigated theoreti-
cally as well as numerically. In theoretical evaluation, we derived the stableness cri-
terion and provided the relationship among sensitivity and other parameters. It’s far
located that similarly to attention of the gap space, the non-stop time of flow reduces
the congestion and the unstable region more reinforced via increasing the driver’s
memory time step.
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1 Introduction

To expose the traffic problems including intrinsic mechanism of traffic congestion,
commuting delay, traffic accidents and energy consumption, the modeling of traffic
flow has attracted a widespread interest of researchers in latest years. Most of the
traffic techniques especially recognition at the reproducing the flow-density-velocity
relationship and the phase transition of traffic flow from congested region to free
flow region with involving various factors of traffic [1–7]. Also, in order to reveals
the actual traffic conditions, a few research have been added to suppress the traffic
congestion. These days, the lattice hydrodynamic model which was firstly proposed
by Nagatani [8], stimulates a huge interest of many researchers.
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As we know, road conditions have a crucial role in traffic flow. For example,
restricted lanes, curves, and poor road surface cause drivers to pay greater attention
to road conditions and slow down. Poor road conditions are a major cause of traffic
jams. In this direction, car-following traffic flow models were proposed through[9–
11] with the aid of assuming that vehicles travel in the center of the lane which can
be stimulated directly by the only in front or behind and no passing is permitted on
a single lane highway. By inspiring from Refs.[9–11], the impact of lateral gap has
been also studied in lattice model [12] and it is determined that lateral separation
performs a critical role in stabilizing the traffic flows in lattice fashions

In real traffic, driver usually observe at the following in addition to the previous
vehicles at some point of driving on road. To deal with this phenomena, many lattice
models [13–22] had been found within the literature. Currently, to show the impact
of historical traffic information, Wang and Ge [23] proposed a lattice model via ac-
counting the backward looking and flow integral effect and it is observed that the
stable region enhances efficiently with consideration of these factors. Motivated from
this, Peng et al. [24] studied the flux difference memory integral effect in two-lane
lattice version and it’s far encountered that lane changing performs a vital function
in stabilizing the traffic congestion. Vehicle continuous memory is useful in traffic
modelling, and the effect is amplified in non-lane-based lattice models. However, the
lateral separation distance of consecutive autos has not been examined in the driver’s
continuous memory integral lattice model.

In section 2, we explore the lateral separations gap between two consecutive autos
and offer a lateral-gap-distance lattice model while considering the effect of flow
memory integral. In Section 3, the model’s stability condition is established using
linear stability theory. The numerical simulation is then completed in order to verify
the analytic results, and the conclusion is stated in the concluding part.

2 Proposed Model

The lattice version of continuum model through considering the concept of car-
following model is

∂ts j + s0(s jv j − s j−1v j−1) = 0, (1)

with the given flow evolution equation at site j

∂t(s jv j) = a[s0V (s j+1)− s jv j]. (2)

where a = 1
τ

is the sensitivity; s0 is the average density; V (.) is the optimal velocity
function; s j and v j denote the density and velocity at site j at time t, respectively.
Furthermore, to include the lateral separation distance, Peng et al. [12] proposed a
lattice hydrodynamic model as follows

s j(t + τ)− s j(t)+ τs0(s jv j − s j−1v j−1) = 0 (3)
s j(t + τ)v j(t + τ) = s0V (s j+1,s j+2)+κG(△Q j, j+1,△Q j, j+2) (4)

where κ is the reactive coefficient to the function G(.), △Q j, j+1 = s j+1v j+1 − s jv j,
and △Q j, j+2 = s j+2v j+2 − s jv j are the relative flows among site j & j+ 1 and j &
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j+2, respectively. It’s far observed that the free region enhances with an increasing
the lateral separation distance of lane width and consequently, this element plays an
important role in stabilizing the traffic flow.

As we know, a driver often observes traffic relative information at time t and de-
cides to modify the speed of his vehicle at a later time; nevertheless, this movement
can cause a delay that effects the traffic. In this course, Gupta and Redhu [26] pre-
sented a hydrodynamics model for detecting relative flux for a two-lane system with
a fixed delay and explored the effects of driver expectation on traffic flow. However,
it is clear that the effect of continual memory has a greater impact on traffic flow than
fixed delay time, and this has been examined in many traffic flow models [23,27].
In literature, we studied that road width performs an essential role in stabilizing the
traffic congestion and it will becomes more effective if driver could have the relative
records of continuous memory. But, the effect of non-stop memory integral has not
been studied untill now.

Here, we are offering a lattice model by considering the continuous historical flux
information in term of integration between the time [t − τ0, t] and the new evolution
is

s j(t + τ)v j(t + τ) = s0[V (s j+1,s j+2)]+κ

∫ t

t−τ0

G(△Q j, j+1(s),△Q j, j+2(s))ds (5)

where τ0 represents the historical integral time, κ is the corresponding coefficient,
G(.) is given by

G(△Q j, j+1(s),△Q j, j+2(s) = (1− p j)△Q j, j+1(s)+ p j △Q j, j+2(s) (6)

and

V (s j+1,s j+2) =V [(1− p j)s j+1 + p js j+2] (7)

where p j =
LS j

LSmax
is the parameter of lateral separation distance, LS j is the lateral

separation distance of sites j and j+1 and LSmax is the maximum lateral separation
distance. The term

∫ t
t−τ0

G(△Q j, j+1(s),△Q j, j+2(s))ds represents the continuous flux
difference information. The modified velocity function for non-lane-based model is

V (s j+1,s j+2) =
vmax

2

{
tanh

[ 1
(1− p j)s j+1 + p js j+2

− 1
sc

]
+ tanh

( 1
sc

)}
(8)

By taking the difference form of Eqs. (1) and (5) and eliminating speed v j, the
density equation is obtained as

s j(t +2τ)− s j(t + τ)+ τs2
0[V (s j+1,s j+2)−V (s j,s j+1)]+ τκ[(1− p j)(−s j+1(t)+

s j+1(t − τ0)+ s j(t)− s j(t − τ0))+ p j(s j+2(t)+ s j+2(t − τ0)+ s j+1(t)− s j+1(t − τ0))] = 0
(9)

where τ0 = kτ , where τ0 and k = 1,2,3 · · · represent the difference time step and
integer for the historical time considered.
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Fig. 1 Phase diagram in parameter space (s,a), for (a) κ = 0.1 and (b) κ = 0.3, respectively.

3 Linear stability analysis

To look the effect of memory flow integral in the proposed model, we assume the
steady-state solution of the homogeneous traffic flow as

s j(t) = s0, v j(t) =V (s0). (10)

where s0 and V (s0) represent the state of uniform traffic flow. Let y j(t) be a small
perturbation to the steady-state density on site j. Then,

s j(t) = s0 + y j(t). (11)

Putting this perturbed density profile into Eq. (9) and linearizing it, we get

y j(t +2τ)− y j(t + τ)+ τs2
0V ′(s0)[(1− p j)(y j+1 − y j(t))+ p j(y j+2 − y j+1)]+

τκ[(1− p j)(−y j+1(t)+ y j+1(t − τ0)+ y j(t)− y j(t − τ0))+ p j(y j+2(t)+ y j+2(t − τ0)

+ y j+1(t)− y j+1(t − τ0))] = 0 (12)

Substituting y j(t) = exp(ik j+ zt) in Eq. (12), we obtain

e2τz − eτz+τs2
0V ′(s0)[(1− p j)(eik −1)+ p j(eik−τ0z − e−τ0z)]+ τκ[(1− p j)

(−eik + eik−τ0z +1− eτ0z)+ p j(e2ik + e2ik−τ0z + eik − eik−τ0z)] = 0. (13)

Inserting z= z1(ik)+z2(ik)2... into Eq. (13), we will obtain the first-order and second-
order terms of the coefficient ik and (ik)2, respectively, we get

z1 =−s2
0V ′(s0), (14)

z2 =−3τz2
1

2
−

s2
0V ′(s0)

2
(1+2p j)+κτ0. (15)
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(a) (b)
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Fig. 2 Space time evolution after time t = 20000 for (a) p j = 0 , (b) p j = 0.1, (c) p j = 0.2, and (d)
p j = 0.3, for κ = 0.1.

When z2 < 0, the uniform steady-state flow becomes unstable for long-wavelength
waves. For z2 > 0 the uniform flow becomes stable. Thus, the stability condition for
the steady-state is

τ =−
1+2p j +2κτ0

3s2
0V ′(s0)

. (16)

The instability condition for the homogeneous traffic flow can be described as

τ >−
1+2p j +2κτ0

3s2
0V ′(s0)

. (17)

For κ = 0, and p j = 0, the above unstability criteria (Eq. 17) will becomes same as
that of Nagatani’s [8] model.

Figure 1 shows the phase digram in the parameter space (s,a) for different val-
ues of p j. It is clear form Fig. 1(a) that the amplitude of the neutral stability curves
decreases with an increases in the value of p j when κ = 0.1. Further increase in the
value of κ , stable region enhances with an increase in the value of p j. On comparing
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Fig. 3 Density profile at time t = 20300 for (a) p j = 0 , (b) p j = 0.1, (c) p j = 0.2, and (d) p j = 0.3,
respectively for κ = 0.1.

the results for κ = 01. and κ = 0.3, it is concluded that the stable region expands
with increase in the value of κ which further enhances with the increment in the
value of p j. If we compare our result with the Peng et al. model [25] for κ = 0.1 it
is concluded the the stable region is more in proposed model which shows that the
continuous delayed of flow integral plays a effective role in stabilizing the traffic flow.

4 Numerical Simulation

In this portion, we applied periodic boundary conditions to run a numerical simu-
lation to validate the theoretical conclusions. The initial conditions are adopted as
follows:

s j(1) = s j(0) =


s0; j ̸= L

2 ,
L
2 +1

s0 −σ ; j = L
2

s0 +σ ; j = L
2 +1

where, σ is the initial disturbance, L is the total number of sites taken as 100 and
other parameters are set as follows: σ = 0.1,τ = 1

a .
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(a) (b)
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Fig. 4 Space time evolution after time t = 20000 for (a) p j = 0 , (b) p j = 0.1, (c) p j = 0.2, and (d)
p j = 0.3, when κ = 0.3.

The dynamical changes of density waves at time t = 20000s−20300s for numer-
ous values of p j when a = 1.7 and κ = 0.1 are shown in Fig. 2. The traffic congestion
develops in the unstable zone in the form of kink-antikink types of density waves
that arise at each site and propagate in the backward direction over time, as seen in
Figs. 2(a)-(c). We enter the stable region when p j = 0.3, and the density waves dissi-
pate and the traffic flow turns uniform. The density profile after a suitably long time
t = 20300 is shown in Fig.3, which corresponds to the panel in Fig.2. The intensity
of the kink-antikink density wave diminishes as the value of p j grows, and the flow
becomes uniform at p j = 0.3.

Figure 4 depicts the spatiotemporal evolutions of density waves at time t = 20000s−
20300s for various values of p j when a = 1.52 and κ = 0.3, and Figure 5 depicts the
density profile at a sufficiently long period t = 20300 corresponding to panel of Fig.
4. The initial disturbance turns into density waves in the unstable region, as shown
in Fig.4(a)-(c), and these density waves fade out in the free flow region, as seen in
Fig.4(d). The deviation occurs around the critical density in the crowded zone, as il-
lustrated in Figs.5(a)-(c), and this deviation disappears in Fig. 5(d). As a result, we
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Fig. 5 Density profile at time t = 20300 for (a) p j = 0 , (b) p j = 0.1, (c) p j = 0.2, and (d) p j = 0.3,
respectively for κ = 0.3.

may deduce that the lateral separation distance plays an important role in traffic flow
stabilisation.

When the results for kappa = 0.1 and kappa = 0.3 are compared, it is concluded
that the information of continuous memory integral plays a vital role in traffic flow
theory, and its influence is more pronounced in non-lane-based lattice hydrodynamic
models.

5 Conclusion

A non-lane-based lattice traffic flow model is proposed with consideration of contin-
uous flow integral effect. Through linear analysis, the condition of stability is derived
to analyze the traffic congestion region. To validate the theoretical results, simulation
is carried out with periodic boundary conditions. We investigated the effect of lateral
separation distance on traffic flow for fixed values of kappa and concluded that the
coefficient of flow integral effect stabilises the traffic flow and that this factor should
be addressed in traffic flow modelling..
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