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Abstract: 
Tetrahydrobenzo[b]pyrans, a class of highly valuable heterocyclic compounds, have garnered substantial consideration due to their different medicinal properties and synthetic versatility. Their structural features make them promising candidates for drug development, agrochemicals, and materials science. Now a day, the application of nanocatalysts in organic synthesis has emerged as a powerful and eco-friendly strategy, significantly enhancing reaction efficiency and selectivity. This review provides inclusive analysis of the latest progressions and preparation procedures of Tetrahydrobenzo[b]pyrans utilizing nanocatalysts. Discussion incorporates numerous nanocatalyst types, including metal nanoparticles (MNPs), metal oxides, metal-organic frameworks (MOFs), and organic-inorganic hybrids, highlighting their unique characteristics and catalytic performance. The synthetic routes reviewed herein incorporate both conventional and green chemistry approaches, underscoring the growing emphasis on sustainable practices in chemical synthesis. The review delves into the synthesis of tetrahydrobenzo[b]pyrans through diverse catalytic transformations, such as multi-component reactions, cycloadditions, and cascade reactions. The role of nanocatalysts in facilitating these transformations is meticulously examined, with an emphasis on their ability to accelerate reaction kinetics, enhance yield, and promote regio-selectivity and stereo-selectivity. Moreover, mechanistic insights into the catalytic processes are discussed, shedding light on the underlying interactions between the nanocatalysts and reactants. Additionally, the review highlights the importance of nanocatalyst stability and recyclability, critical factors for supportable synthesis.
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Introduction 
An environmental and operative synthesis of 4H-pyrans with diverse applications in ecology, pharmacology, and optics has been successfully developed. This synthesis employs silica nanoparticles as a mild, neutral, and reusable promoter. The Multicomponent reaction (MCRs) have demonstrated great potential, environmentally approachable implements in synthetic as well as medicinal chemistry [1]. The flexibility and atom-economic nature of MCRs allow them to continue concluded a series of reaction stabilities, resulting in desired invention. The catalyst's characteristics significantly influence the yield, selectivity, and applicability of the reactions. Therefore, the quest for a cost-effective, mild, recyclable, and versatile catalyst for MCRs residues an important focus of research [2]. Polyfunctionalized 4H-pyrans are particularly intriguing because of their pharmacological and biological activity [3]. These derivatives have shown promise biological agent, and more [4,5]. The pharmacological applications of 4H-pyrans containing heterocyclic molecules are also on the rise, with potential uses in treating neurodegenerative diseases like Alzheimer's, schizophrenia, and myoclonus. Additionally, certain 4H-pyrans containing heterocyclic molecules have demonstrated utility as photoactive things [7]. Given the wide range of applications, researchers have explored various approaches, as like microwave and ultrasonic irradiation, for synthesizing the 4H-pyran unit [8]. 
Polyfunctionalized 4H-pyran scaffold have gained important kindness among synthetic chemists due to their remarkable biological and pharmacological activities [9]. These molecules exhibit diverse applications, functioning as anticoagulants, anticancer agents, anti anaphylactics and more [10]. Typically, the preparation of 4H-pyrans involves the use of malononitriles and stimulated methylene compounds with the attendance of the organic [11]. Furthermore, recent studies have revealed their potential medicinal applications in treating Parkinson’s disease, AIDS-connected dementa, schizophrenia, and myoclonus [12]. These versatile heterocycles also find uses in greasepaints, dyes, decomposable agrochemicals, and photoactive constituents [13]. Significant efforts have been dedicated to synthesizing pyran derivatives due to their wide-ranging applications. Various catalysts, such as β-cyclodextrin, TEBA, N-methylmorphine, Et3N, I2, organocatalyst, DBU, KF/basic Al2O3, ionic liquid, and NaBr, have been recently reported for these syntheses [14-23]. Although these methods offer certain benefits, they also suffer they also suffer from disadvantages as like extended reaction time, unacceptable yields, high costs, harsh response circumstances, and the use of ecologically poisonous reagents [24]. Synthetic strategies involving MCRs have proven to be valuable tools for rapidly introducing and developing molecular diversity [25]. MCRs enhance competence by combining several operations by combining several operational steps without the need to isolate intermediates or alter reaction conditions [26,27]. As a result of their merging and output, MCRs have garnered significant consideration from the combinatorial chemistry community [28]. Today, nanoparticles are used in a variety of processes beyond MCRs [29,30], including organic synthesis [31-34]. 
Subhash Banerjee approach:

Subhash Banerjee et. al. proposed an environmentally friendly and practical approach to synthesize 4H-pyrans containing heterocyclic molecules aniline derivatives with antimicrobial uses has been successfully established. This method utilizes slight and neutral silica nanoparticle as silica nanoparticles reusable promoter, as illustrated in scheme 1. The 4H-pyrans containing heterocyclic molecules are efficiently synthesized through a multicomponent reaction involving an aldehyde, malononitrile, and ethyl acetoacetate. This reaction can be carried out at reflux temperature or rt. In an alternative approach, polysubstituted anilines are obtained via a four component reaction involving ketone substituted aldehydes malononitrile in ethanol  Additionally, the catalyst is highly operative in the synthesis of polysubstituted aniline with moderate with better yield (52-65%). This SiO2 NP catalyst offers several advantages over traditional catalysts: it is mild, neutral, cost-effective, and environmentally friendly. Furthermore, ongoing research aims to explore SiO2 NPs' potential as catalysts in other multicomponent reaction that lead to biologically active compounds [35].
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Scheme 1. Tetrahydrobenzo[b] pyrans derivatives. 
H. Valizadeh approach:

H. Valizadeh et. al. stated herewith, a facile and effective method has been developed comprising ZnO nanoparticles as a reusable catalyst in [bmim]BF4 (as shown in scheme 2) [36]. This procedure proposal numerous advantages over existing methods, counting higher yields, cost-effectiveness, ready availability of the catalyst, stability for storage, and ease of recycling for multiple cycles while maintaining consistent activity. Additionally, the procedure provides benefits such as great yields, small reaction times, and environmentally friendly.
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Scheme 2. Preparation of pyran with [bmim]BF4
Pranabes Bhattacharyya approach:

Pranabes Bhattacharyya et. al. stated a green and greatly effective protocol was devised for pyran synthesis by employing multicomponent reaction. This reaction involved substituted aldehyde, malononitrile, and diketone, with the catalyst being nanostructured ZnO in an aqueous alcoholic medium (as shown in scheme 3). Furthermore, an eco-friendly approach for synthesizing 3,4-dihydropyridin-2-one was also established. This method involved pyran derivatives in water using p-Toluenesulfoni acid. Both of these novel synthetic protocols displayed excellent tolerance to outstanding yield of the desired molecules [37].
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Scheme 3. Synthesis of pyran derivatives by using nono ZnO.
Mithu Saha approach:
Mithu Saha and colleagues introduced a new method for the synthesis of pyran scaffold. This method involves ligand-free Palladium nanoparticles as catalysts, enabling Konevenagel condensation monitored by Michael addition in a one-pot reaction (depicted in scheme 4). The key benefits of this technique include it is ease, little catalyst filling, price helpfulness and ease of handling. Furthermore, the Palladium nanoparticles can be reused up to more than three times deprived of any damage of activity. The researchers characterized the Palladium nanoparticles using residue X-ray diffraction (XRD) and transmission electron microscopy. This innovative technique allows the synthesis of extremely functionalized compounds using  readily available starting materials [38].
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Scheme 4. Synthesis of pyran by using palladium NPs.
Javad Safaei-Ghomi approach:
Javad Safaei-Ghomi and colleagues have introduced an effectual and versatile approach for synthesizing polyfunctionalized 4H-pyrans. The use of SnCl2/nano SiO2 as a green and recyclable catalyst, as shown in scheme 5, is a key aspect of this method. The benefits of this approach comprise great yields, less reaction time, , simple workup and the catalyst’s cost-effectiveness and easy availability [39].
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Scheme 5. SnCl2/nano SiO2 catalyzed synthesis of polyfunctionalized 4H-pyrans.
Omid Goli-Jolodar approach:

Omid Goli-Jolodar et. al. reported that C4(DABCO-SO3H)2.4Cl, a nano bronsted acidic catalyst, was effectively utilized synthesis of 4-H pyrans. This synthesis encompassed various compounds, notably spirooxindole pyran and bis-pyrans in an aqueous medium, as shown in scheme 6. The method demonstrated numerous profits, as like mild reaction condition, clean reaction, less reaction time, and good yield. Additionally, the use of an affordable and nano-sized catalyst further contributes to the appeal and practicality of this methodology [40].
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Scheme 6. Synthesis of pyran with C4(DABCOSO3H)2.4Cl in water.
Hamid Reza Saadati-Moshtaghin approach:

Hamid Reza Saadati-Moshtaghin et. al. mentioned attractive catalyst comprising silica coated magnetite nanoparticles (H2PO4-SCMNPs) for the synthesis of biologically and pharmacologically active pyran derivatives under solvent free  condition (as depicted in scheme 7). The benefits accessible by this procedure against beforehand described method can be concise as; the catalyst is very cheap, attractively distinguishable and recyclable. Moreover, the protocol is ecologically kind and the acceptable yield of product (60-95%) sideways with little reaction time is among other benefit (15 min) [41].
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Scheme 7.  Preparation of tetrahydrobezo[b]pyrans.
Dawood Elhamifar approach:
Dawood Elhamifar et. al. stated a new magnetic iron oxide based phenylsulfonic acid nanocatalyst (Fe3O4@Ph-SO3H) with a core-shell structure was successfully made and utilized for the eco-friendly synthesis of tetrahydrobezo[b]pyrans. The synthesis of Fe3O4@Ph-SO3H involved modifying attractive Fe3O4 core with 1,4-bis(triethoxysilyl)benzene (BTEB), tracked by sulfonation of aromatic ring (as depicted in scheme 8). Various techniques, including TGA, FTIR, PXRD, SEM, TEM, VSM, and EDX were working to illustrate the Fe3O4@Ph-SO3H nanocatalyst. The green synthesis of tetrahydrobezo[b]pyrans was carried out efficiently in water as solvent, employing ultrasonic conditions at room temperature. The nanocatalyst demonstrated excellent performance, good product yield in short reaction times. Moreover, the nanocatalyst's recoverability, reusability, and toughness were investigated underneath the reaction conditions, confirming its practical applicability [42].
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Scheme 8.  Preparation of tetrahydrobezo[b]pyrans by using Fe3O4@Ph-SO3H.
Mohammad Ali Zolfigol approach:

Mohammad Ali Zolfigol et al synthesized1-methylimidazolium tricyanomethanide {[HMIM]C(CN)3}NPs and successfully utilized to synthesized tetrahydrobenzo-[b]-pyran derivatives under the solvent-free conditions at ambient temperature, [as depicted in scheme 9]. Expeditious synthesis and excellent yield are the striking features of this protocol [43].
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Scheme 9: Synthesis of (4) using substituted aldehyde, dimedone, malononitrile, and {[HMIM]C(CN)3} as a nanocatalyst.
Mohammad Ali Zolfigo approach:

M. A. Zolfigo et al has successfully demonstrated an expeditious method to synthesize tetrahydrobenzo[b]pyran derivatives. This novel approach involves the condensation of dimedone, substituted aldehydes, and malononitrile, utilizing {[4,4′-Bipyridine]-1,1′-diium tricyanomethanide} ({[4,4’-BPyH][C(CN)3]2}) as a ecofriendly, and mild catalyst. The entire process is carried out at ambient temperature without solvent, as depicted in scheme 10 [44]. 
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Scheme 10: Synthesis of (4) using substituted aldehyde, dimedone, malononitrile, and {[4,4’-BPyH][C(CN)3]2} as a nanocatalyst.
Fariba Heidarizadeh approach:
Fariba Heidarizadeh and colleagues prepared MnFe2O4@SiO2@NHPhNH2-phosphotungstic acid through the interaction between diamine-modified silica-coated manganese ferrite nanoparticles and H3PW12O40. The produced nanoparticle were utilized to synthesize tetrahydrobenzo-[b]-pyran compounds using ultrasonic irradiation methods, as illustrated in scheme 11. This approach presents numerous benefits, such as significant yield, short reaction durations, convenient catalyst recovery, and the ability to reuse the catalyst [45].
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Scheme 11: Synthesis of (4) using substituted aldehyde, dimedone, malononitrile, and diamine-based silica coated manganese ferrite nanoparticles.
Behrooz Maleki approach:

Behrooz Maleki et al have made a significant contribution by developing a novel SO3H dendrimer functionalized magnetic nanoparticles (Fe3O4@D-NH-(CH2)4-SO3H) and successfully utilized to synthesize highly substituted pyrans and polyhydroquinolines utilizing one-pot multicomponent approach, [as depicted in scheme 12]. Rapid process, excellent yields, simple workup, and purification of process are the striking feature of this protocol [46].
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Scheme 12: Synthesis of (4) using substituted aldehyde, dimedone, malononitrile, and Fe3O4@D-NH-(CH2)4-SO3H nanocatalyst.

Taiebeh Tamoradi approach:

T. Tamoradi et al presented a comprehensive study on the fabrication of Europium (Eu) which was supported on silica-modified core-shell CoFe2O4 magnetic nanoparticles functionalized with iminodiacetic acid. The team successfully showcased a well-defined procedure to synthesize one-pot multicomponent synthesis of tetrahydrobenzo[b]pyran compounds, employing ethanol as the reaction medium, and achieving good to excellent yields (as illustrated in scheme 13). Remarkably, the catalyst's magnetic nature allows for convenient separation and reusability up to six consecutive cycles in the reaction, with negligible activity loss [47].
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Scheme 13: Synthesis of (4) using substituted aldehyde, dimedone, malononitrile, and Eu(III)/IDA/CPTS/CoFe2O4 as a nanocatalyst.
Fatemeh Adibian approach:

F. Adibian et al have made a significant contribution by developing, magnetic multi-walled carbon nanotubes (MMWCNTs) that have been functionally enhanced with polyamidoamine (PAMAM) dendrimers and subjected to modification through butyl sulfonate. The synthesized nanocomposite (MMWCNTs-D-(CH2)4-SO3H) was successfully utilized to synthesize tetrahydrobenzo[b]pyran via the reaction of dimedone, different aldehydes, and malononitrile, as depicted in scheme 14 [48].
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Scheme 14: Synthesis of (4) using substituted aldehyde, dimedone, malononitrile, and MMWCNTs-D-(CH2)4-SO3H as a nanocatalyst.
Esmayeel Abbaspour-Gilandeh approach:

Esmayeel Abbaspour-Gilandeh et al in their scholarly work synthesized Zr@IL-Fe3O4 MNPs and effectively showcased the catalytic utility of Zr@IL-Fe3O4 MNPs in the synthesis of highly substituted pyran derivatives. This was accomplished through a one-pot three component condensation of 4 hydroxycoumarin/dimedone, malononitrile, and arylaldehydes under solvent-free conditions. This new methodology demonstrated some important features, including short reaction times, excellent yields, lower loading of the catalyst, easy work-up, and recyclability of the catalyst, as illustrated in Scheme 15 [49].
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Scheme 15: Synthesis of (4) using substituted aldehyde, dimedone, malononitrile, and Zr@IL-Fe3O4 MNPs.

Geetika Patel approach:

Geetika Patel et al. conducted a study wherein they reported the manufacture of Co3O4 nanoparticles by disintegration of CoCl2.6H2O in an alkaline medium, utilizing the co-precipitation technique. This nanomaterial was successfully employed for synthesizing tetrahydrobenzo[b]pyran derivatives, resulting in remarkably high yields, as illustrated in scheme 16. The findings of this research hold significant importance in the realm of scientific and academic exploration [50].
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Scheme 16: Synthesis of (4) using substituted aldehyde, dimedone, malononitrile, and Co3O4 nano-flake as a nanocatalyst.

Conclusion:

In conclusion, the applications of tetrahydrobezo[b]pyrans and their derivatives in various fields, including medicinal chemistry and materials science, are explored. The potential of nanocatalysts to tailor the synthesis of tetrahydrobezo[b]pyrans for specific applications is emphasized, illustrating the versatility of this approach. This review underscores the significant contributions of nanocatalysts in the synthesis of tetrahydrobenzo[b]pyrans and their derivatives. The eco-friendly nature, enhanced catalytic activity, and potential for tailored synthesis make nanocatalysts indispensable tools in modern organic chemistry. As research in this area continues to evolve, the reviewed methodologies are anticipated to inspire further innovations in the synthesis of tetrahydrobezo[b]pyrans and expand their utility in diverse scientific and industrial applications.
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