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ABSTRACT  

 

In this paper an analytical approach is used to derive the exact solution of Euler equations 

governing the propagation of blast wave for one dimensional adiabatic flow with generalized 

geometries. Here it is assumed that the density ahead of the shock front varies according to a 

power of the distance from the source of the explosion. The effect of dust particles and the 

parameter of non-ideal ness on the radius of blast wave are analyzed. An analytical expression 

for the total energy carried by blast wave in non-ideal dusty gas is derived. The effect of 

spherically small solid particles present in dusty gas on the total energy carried by blast wave is 

also discussed.   
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1. Introduction 

Dusty gas is a mixture of gas and spherically small solid particles. The study of the effect of 

solid particles on the growth and decay process of strong shock wave yields interesting results 

applicable to problems arising in the area of astrophysical fluid. In cases when velocity of 

mixture is very high, the dust particles presented in the mixture behaves like a pseudo fluid. 

When a strong shock wave is propagated in a non-ideal  gas with dust particles, the radius of 

strong shock wave, the pressure, the density, the speed of shock wave and the energy carried by a 

strong shock wave change across the shock, and have a significant difference from those which 

arise when the strong shock wave passes through an ideal and dust-free gas. A variety of 

phenomenon occurs in astrophysical fluid where mass fraction of solid particles is very small in 

comparison to the gas particles such as supernova explosions, photo ionized gas, volcanic jets, 

solid particle motion in rocket exhaust etc. Also, a valid guess regarding the propagation of 

strong shock waves in a non-ideal dusty gas is very important for the design of warfare and 

operation of space vehicles. 

      When a large amount of energy is instantaneously released from a core, a disturbance in the 

medium is propagated headed by a compressive wave, called a blast wave. Such type of problem 

is formulated mathematically as a system of quasilinear hyperbolic system of partial differential 
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equations. To find the exact solution of the system of equations governing the blast wave 

problem is almost impossible. In past many attempts have been made to find the 

analytical/approximate analytical solution of governing system of the blast wave problem using 

physically relevant assumptions. Taylor (1950a, 1950b) estimated the relationship between the 

energy input of an extremely powerful explosion and the growth of the resulting fireball and a 

detailed analysis of Taylor’s work is presented by Sedov (1959). Singh et al.
 
(1984) studies the 

flow behind an attached shock wave in a radiating gas. Sachdev et al.
 
(2005) obtained the exact 

solutions of compressible flow equations in spherically symmetric coordinate system for 

ordinary gas. Murata (2006) have derived the exact solution for the one dimensional blast wave 

problem for ideal gas dynamics with generalized geometry. Singh et al.
 
(2011) studies the 

imploding of shocks in non-ideal magnetogasdynamics using similarity method. Singh et al.
 

(2012) studies the evolution and decay of acceleration waves in radiative magnetogasdynamics 

Singh et al.
 
(2012) obtained the quasi-similar solution of the strong shock wave problem in non-

ideal gas 

       Due to various important applications of blast wave theory, a continuous improvement in the 

field is desirable. Since blast wave caries gas and small dust particles, so the study of blast wave 

problem for non-ideal dusty gas is more realistic than the ordinary gas dynamic system. In the 

present paper, an attempt has been made to find the closed form solution of the system of 

equations governing the propagation of a blast wave in non-ideal dusty gas with generalized 

geometry. Here, it is assumed that the density ahead of the shock front varies according to power 

of the distance from the source of explosion. An expression for the total energy is also 

determined. 

 

2. Basic equations 

 
The governing equations describing a non-planar adiabatic non-ideal dusty gas flow are given as 

[6, 3] 
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where 0  , u and p are density, flow velocity and pressure of the non-ideal dusty gas 

respectively and 0,t x  .       
1/2

2 2

2 1 2/ 1c p          denotes the speed of 

sound in the non-ideal  dusty gas with 1 b   , 2 b  ,  1 pb b k   where b  is the Van der 

Waals excluded volume and /p sp gdk m m  is the mass fraction of solid particles in non-ideal  

dusty gas, where spm  and  gdm
 
are the masses of solid particles and non-ideal  dusty gas 

respectively. 0m  , 1 and 2 corresponds to the planar, cylindrically symmetric and spherically 

symmetric flows respectively. The specific heat of non-ideal dusty gas at constant pressure is 



given by  1pd p sp p pc k c k c   , where pc and spc stands for specific heat of gas and solid 

particle respectively. If vdc  denotes the specific heat of non-ideal  dusty gas at constant volume, 

the ratio of specific heats for dusty gas is given by S. I. Pai. (1977)   
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, where / (1 )p pk k   , /sp pc c  , /p vc c  , vc  specific heat of gas at 

constant volume. Equation of state for adiabatic non-ideal  dusty gas flow is given by Chadha 

and Jena (2014),
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, where  0 0/Z Z   denotes the volume fraction of 

small solid particle in the mixture and the subscript ' 0 ' denotes the value of physical entities in 

undisturbed region. The relation between entities Z and pk is given by Pai et al. (1980) as

/p spk Z  , where sp stands for density of solid particles in the mixture. Since mass fraction 

of solid particle must be constant in the equilibrium flow therefore /Z  = constant (say ), i.e. 
Z  .  

 
3. Boundary conditions   

Let R be the position of the shock front from the centre of explosion and is a function of time t , 

then the propagation velocity of shock front, s , is given by  

dR
s

dt
 .                                                                                                                                          (4) 

If ahead of shock front the undisturbed volume fraction of solid particles and density of the 

mixture are 0Z , 0 and pressure, density, velocity just behind the shock are p ,  ,u . Then we 

have the following Rankine-Hugoniot conditions across the shock front
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In the present problem, the undisturbed density 0   is taken to vary according to the power law 

of the radius of the shock front R after the explosion and is given as 

 

0 aR  ,                                                                                                                                    (8) 

 

where a  and   are constants. The constant  is to be determined later.  

 

4. Exact solution of the blast wave problem 

The expression for the pressure behind the shock front satisfying the RH conditions given by 

equations (5)–(7) is given as 
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By equation (8), equations (2) and (3), can be rewritten as 
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where 1  and 2  are given as 
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Combining (10) and (11) and after integration we have the resulting equation as,  
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where ( )f t  is  function of time only and and  are given as 
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Solving equations (11) and (13), we have 
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where  is  given as 
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Also 0( )f t f t  ,                                                                                                                     (16) 

where, 0f  is arbitrary constant and   is given as 
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Rankine- Hugoniot condition (5) yields the analytical expression for the radius of the shock front 

as 
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Rankine- Hugoniot condition (5) yields the following value of which is given as 
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Therefore, the solution of strong shock wave problem is given as 
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After determining the physical quantities density, velocity and pressure behind the shock front, 

we can also calculate the total energy E  (sum of kinetic and heat energy) within the blast wave in 

non-ideal  dusty gas at any time t  as [5] 
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6. Result and Discussion  

 

The effects of dust particles and non-idealness parameters on the radius of blast wave are shown 

in figures1- 5. The effect of volume fraction of the dust particles present in the gas on the radius 

of the blast wave in planer, cylindrical symmetric and spherically symmetric flows are shown in 

Figs.1-3. The values of the constants appearing in the computations are taken as: 

1.0  and 0.1pK  , and volume fraction 0 0.0, 0.01, 0.02, 0.04Z  .  

Here, 00.0, 0.0b Z  corresponds to the ordinary gas dynamics case and

00.02, 0.0b Z   corresponds to the dust free non-ideal gas. It is observed that an increase in the 

volume fraction of dust particles and non-ideal ness parameter causes to increase the radius of 

the blast wave for very short time and then decreases continuously. From Fig.2  and Fig.3 it is 

clear that the variation of radius of blast wave in planar and cylindrically symmetric flows have 

similar trend as in case of spherically symmetric flow but rate of variation is slowed down in 

planar case as compared to cylindrically symmetric and spherical symmetric flow. The rate of 

variation of radius in cylindrically symmetric flow is slowed down as compared to spherical 

symmetric flow. 

        The effect of mass fraction and specific heat of the dust particles present in the gas on the 

radius of the blast wave at constants
0 0.01Z  , 1.0  and 

0 0.01Z  , 1.0pK   in spherically 

symmetric flows are shown in Figs.4-5 respectively. Due to the similar behavior of solid 

particles in planar and cylindrically symmetric flow details are omitted. Since increment in the 

mass fraction of solid particles have very less effect on the value of volume fraction of solid 

particles but have sufficient effect on the value of  . So, an increment in mass fraction of solid 

particles causes to decrease the radius of blast wave for very short time and then increases 

continuously. Small change in the value of specific heat of dust particle does not have a visible 

effect on the radius of blast wave as shown in Fig.5 

 

The effects of volume fraction of the dust particles present in the gas and non-idealness 

parameter of gas on the energy carried by blast wave in spherically symmetric flows are shown 

in Fig.6. The values of the constants appearing in the computations are taken as: 

1.0  , 0.1pK  , 0.02b  and Volume fraction 0 0.0, 0.01, 0.02, 0.03,0.04Z   i.e. 0.01  and

0 0, 1, 2, 3, 4  . 

Here, it is observed that the increment in the volume fraction of dust particles and non-

idealness parameter causes the decrement of the energy carried by blast wave in non-ideal gas. 

The effects of mass fraction of the dust particles present in the gas on the energy carried by blast 

wave in spherically symmetric flows are shown in Fig.7. The values of the constants appearing 

in the computations are taken as: 

1.0  ,
0 0.01Z  , 0.02b  and mass fraction 0.1, 0.2, 0.3, 0.3,0.4pk  .   

It is observed that an increment in the mass fraction of dust particles causes to increase 

the energy carried by blast wave in non-ideal gas. Due to the similar effect of dust particles on 

the energy carried by blast wave details are omitted. 

 

 

 



5. Conclusion:  

 
In the present article the exact analytical solution for the problem of blast wave in a non-ideal 

dusty gas has been derived. The solution of Euler’s equation in a non-ideal dusty gas obtained 

here is a new one.  The behavior of variations of the radius of blast wave in the mixture of non-

ideal gas and small solid particles are similar to that as in an ideal and non-ideal gas whereas the 

behavior of energy in a non-ideal dusty gas are quite different to that of an ideal gas and are 

similar to that of a non-ideal gas. Here, it is observed that the solution of blast wave problem for 

adiabatic non-ideal dusty gas given by equation (18-20) reduces to the solution presented by 

Murata for 0b   .  
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Fig 1: Behavior of the radius of the Blast Wave for 2m  . 
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Fig 2: Behavior of the radius of the Blast Wave for 1m  . 

 

 
Fig 3: Behavior of the radius of the Blast Wave for 0m  . 

 

 

Fig 4: Behavior of the radius of the Blast Wave for 2m  
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Fig 5: Behavior of the radius of the Blast Wave for 2m  . 

 

Fig 6: Behavior of energy carried by the blast wave for 2m  . 
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Fig 7: Behavior of energy carried by the blast wave for 2m  . 
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