Banach Fixed Contraction Mapping Theorem in Vector S-metric Spaces

Pooja Yadav¹ and Mamta Kamra (Supervisor)²

¹Research Scholar, Department of Mathematics, Indira Gandhi University, Meerpur, Rewari, Haryana-122502, India,

poojayadav.math.rs@igu.ac.in

²Professor, Department of Mathematics, Indira Gandhi University, Meerpur, Rewari, Haryana-122502, India,

mkhane ja 15@gmail.com

Abstract

We demonstrate the Banach contraction mapping theorem on vector S-metric space. We also give an example to explain our results. **Keywords:** Vector metric space, Riesz space, Vector S-metric space.

1 Introduction

Banach Contraction Principle(BCP) was derived firstly by S. Banach [2] in 1922. It has a vital role in fixed point theory and became very famous due to iterations used in the theorem. Many researchers are proving new results in various generalizations of metric spaces. S-metric space is one of the generalizations in metric spaces. In 2012, S-metric space was defined by Sedghi et al.[7]. We start with some definitions and results for vector S-metric spaces.

Definition 1.[4] On a set C, a relation \leq is a partial order if it follows the conditions stated below:

- (a) $\eta_1 \preceq \eta_1$ (reflexive)
- (b) $\eta_1 \leq \eta_2$ and $\eta_2 \leq \eta_1$ implies $\eta_1 = \eta_2$

(anti - symmetry)

(c) $\eta_1 \leq \eta_2$ and $\eta_2 \leq \eta_3$ implies $\eta_1 \leq \eta_3$

(transitivity)

 $\forall \eta_1, \eta_2, \eta_3 \in \mathbf{C}$.

The set $\hat{\mathbf{C}}$ with partial order \leq is known as partially ordered set (poset). A partially ordered set (\mathbf{C}, \leq) is called linearly ordered if for $\eta_1, \eta_2 \in \mathbf{C}$, we

have either $\eta_1 \leq \eta_2$ or $\eta_2 \leq \eta_1$.

Definition 2.[4] Let C be linear space which is real and (C, \leq) be a poset. Then the poset (C, \leq) is said to be an ordered linear space if it follows the properties mentioned below:

- (a) $p_1 \leq p_2 \Longrightarrow p_1 + p_3 \leq p_2 + p_3$
- (b) $p_1 \preceq p_2 \Longrightarrow \omega p_1 \preceq \omega p_2$

 $\forall p_1, p_2, p_3 \in \mathbf{C} \text{ and } \omega > 0$

Definition 3.[4] A poset is called lattice if each set with two elements has an infimum and a supremum.

Definition 4.[4] An ordered linear space where the ordering is lattice is called vector lattice.

Definition 5.[4] A vector lattice V is called Archimedean if $inf\{\frac{1}{m}\vartheta\} = 0$ for every $\vartheta \in V^+$ where

$$V^+ = \{ \vartheta \in V : \vartheta \succeq 0 \}.$$

Definition 6.[3] Let V be vector lattice and \Re be a nonvoid set. A function $d: \Re \times \Re \to V$ is called vector metric on \Re if it follows the conditions stated below:

(a) $d(\hbar_1, \hbar_2) = 0$ iff $\hbar_1 = \hbar_2$

(b) $d(\hbar_1, \hbar_2) \preceq d(\hbar_1, \hbar_3) + d(\hbar_3, \hbar_2)$

 $\forall \hbar_1, \hbar_2, \hbar_3 \in \Re$

The triple (\Re, d, V) is called vector metric space.

Definition 7.[8] Let \Re be a nonvoid set. A function $S : \Re \times \Re \times \Re \to [0, \infty)$ is calles S-metric on \Re if it follows the below conditions :

- (a) $S(\flat_1, \flat_2, \flat_3) \succeq 0$,
- (b) $S(b_1, b_2, b_3) = 0$ iff $b_1 = b_2 = b_3$,
- (c) $S(\flat_1, \flat_2, \flat_3) \preceq S(\flat_1, \flat_2, \alpha) + S(\flat_2, \flat_2, \alpha) +$

$$S(\flat_3, \flat_3, \alpha),$$

for all $\flat_1, \flat_2, \flat_3, \alpha \in \Re$.

The pair (\Re, S) is known as S-metric space.

Now, vector valued S-metric space is defined as follows:

Definition 8. Let V be vector lattice and \Re be a nonvoid set. A function $S: \Re \times \Re \times \Re \to V$ is called vector S-metric on \Re that satisfies the conditions mentioned below:

- (a) $S(\flat_1, \flat_2, \flat_3) \succeq 0$,
- (b) $S(b_1, b_2, b_3) = 0$ iff $b_1 = b_2 = b_3$,
- (c) $S(\flat_1, \flat_2, \flat_3) \preceq S(\flat_1, \flat_2, \alpha) + S(\flat_2, \flat_2, \alpha) +$

 $S(\flat_3, \flat_3, \alpha),$

for all $b_1, b_2, b_3, \alpha \in \Re$. The triplet (\Re, S, V) is called vector S-metric space.

Example 1 Let \Re be a nonvoid set and V be a vector lattice. A function $S: \Re \times \Re \times \Re \to V$ is defined by

$$S(\flat_1, \flat_2, \flat_3) = |(\flat_1, \flat_3)| + |(\flat_2, \flat_3)| \quad \forall \flat_1, \flat_2, \flat_3 \in \Re$$

then the triplet (\Re, S, V) is vector S-metric space.

Definition 9. A sequence $\langle \vartheta_n \rangle$ in vector S-metric space (\Re, S, V) is called V-convergent to some $\vartheta \in V$ if there is a sequence $\langle \mu_n \rangle$ in V satisfying $\mu_n \downarrow 0$ and $S(\vartheta_n, \vartheta_n, \vartheta) \leq \mu_n$ and denote it by $\mu_n \xrightarrow{S,V} \vartheta$.

Definition 10. A sequence $\langle \vartheta_n \rangle$ in vector S-metric space (\Re, S, V) is known as V-Cauchy sequence if there is a sequence $\langle \mu_n \rangle$ in V satisfying $\mu_n \downarrow 0$ and $S(\vartheta_n, \vartheta_n, \vartheta_{n+q}) \leq \mu_n$ holds for all q and n.

Definition 11. If each V-Cauchy sequence in \Re is V-converges to a limit in \Re then vector S-metric space (\Re, S, V) is called V-complete.

Lemma[8] For vector S-metric space (\Re, S, V) ,

$$S(\vartheta, \vartheta, \mu) = S(\mu, \mu, \vartheta) \quad \forall \mu, \vartheta \in \Re.$$

2 Main Results

Theorem 1 Let (\Re, S, V) be a vector S-metric space which is complete and V be Archimedean. Suppose the mappings $f : Y \to Y$ satisfies

$$S(f\hbar, f\hbar, f\vartheta) \preceq qS(\hbar, \hbar, \vartheta) \quad \forall \hbar, \vartheta \in \Re$$

where $q \in [0,1)$ is constant. Then f has fixed point in \Re which is unique and for any $\vartheta_0 \in \Re$, iterative sequence $\langle \vartheta_m \rangle$ defined by $\vartheta_m = f \vartheta_{m-1}$, for all $m \in \mathbb{N}$, V-converges to fixed point of f.

Proof Let $\vartheta_0 \in \Re$ and sequence $\langle \vartheta_m \rangle$ defined by $\vartheta_m = f \vartheta_{m-1}$ for $m \in \mathbb{N}$. Then we have

$$S(\vartheta_m, \vartheta_m, \vartheta_{m+1}) = S(f\vartheta_{m-1}, f\vartheta_{m-1}, f\vartheta_m)$$

$$\preceq qS(\vartheta_{m-1}, \vartheta_{m-1}, \vartheta_m) \preceq$$

$$\ldots \preceq q^m S(\vartheta_0, \vartheta_0, \vartheta_1)$$

Thus for $m, p \in \mathbb{N}$

$$S(\vartheta_m, \vartheta_m, \vartheta_{m+p}) \leq 2S(\vartheta_m, \vartheta_m, \vartheta_{m+1}) + 2S(\vartheta_{m+1}, \vartheta_{m+1}, \vartheta_{m+2}) + \cdots + S(\vartheta_{m+p-1}, \vartheta_{m+p-1}, \vartheta_{m+p}) \\ \leq 2S(\vartheta_m, \vartheta_m, \vartheta_{m+1}) + 2S(\vartheta_{m+1}, \vartheta_{m+1}, \vartheta_{m+2}) + \cdots + 2S(\vartheta_{m+p-1}, \vartheta_{m+p-1}, \vartheta_{m+p}) \\ \leq 2(q^m + q^{m+1} + \cdots + q^{m+p-1}) \\ S(\vartheta_0, \vartheta_0, \vartheta_1) \\ \leq 2q^{m+p-1}(1 + q + q^2 + \cdots) \\ S(\vartheta_0, \vartheta_0, \vartheta_1) \\ \leq 2\frac{q^{m+p-1}}{1 - q}S(\vartheta_0, \vartheta_0, \vartheta_1).$$

 $\langle \vartheta_m \rangle$ is a V-Cauchy sequence because V be Archimedean. Then by V-completeness of \Re , there exist $\vartheta \in \Re$ such that $\vartheta_m \xrightarrow{S,V} \vartheta$. So there exist $\langle b_m \rangle$ in V such that $b_m \downarrow 0$ and $S(\vartheta_m, \vartheta_m, \vartheta) \preceq b_m$. Since

$$S(f\vartheta, f\vartheta, \vartheta) \leq 2S(f\vartheta_m, f\vartheta_m, f\vartheta) + \\S(f\vartheta_m, f\vartheta_m, \vartheta) \\\leq 2qS(\vartheta_m, \vartheta_m, \vartheta) + \\S(\vartheta_{m+1}, \vartheta_{m+1}, \vartheta) \\\leq 2qb_m + b_{m+1} \\\leq 2(q+1)b_m,$$

 $then \; S(f\vartheta, f\vartheta, \vartheta) = 0, \; i.e. \; f\vartheta = \vartheta.$

We can also verify the following theorem as above.

Theorem 2 Let (\Re, S, V) be a vector S-metric space which is complete and V be Archimedean. Suppose the mappings $f : \Re \to \Re$ satisfies

$$S(f\hbar, f\hbar, f\vartheta) \preceq \{a_1 S(\hbar, \hbar, f\hbar) + a_2 S(\vartheta, \vartheta, f\vartheta) \\ + a_3 S(\hbar, \hbar, f\vartheta) + a_4 S(\vartheta, \vartheta, f\hbar) \\ + a_5 S(\hbar, \hbar, \vartheta)\}$$

for all $\hbar, \vartheta \in \Re$, where a_1, a_2, a_3, a_4 and a_5 are positive and $a_1 + a_2 + a_3 + a_4 + a_5 < 1$. Then f has fixed point in \Re and for any $\vartheta_0 \in \Re$, iterative sequence $\langle \vartheta_m \rangle$ defined by $y_m = f \vartheta_{m-1}, m \in \mathbb{N}$, V-converges to fixed point of f.

Example 2 Let $V = \mathbb{R}^2_+$ with coordinatewise ordering and let

$$\Re = \{(0,\vartheta) \in \mathbb{R}^2 : 0 \leq \vartheta \leq 1\} \cup$$
$$(\vartheta,0) \in \mathbb{R}^2 : 0 \leq \vartheta \leq 1\}.$$

The mapping $S: \Re \times \Re \times \Re \to V$ is defined by

$$S((\hbar, 0), (\hbar, 0), (\vartheta, 0)) = \left(\frac{4}{3}|\hbar - \vartheta|, |\hbar - \vartheta|\right)$$

$$S((0, \hbar), (0, \hbar), (0, \vartheta)) = \left(|\hbar - \vartheta|, \frac{2}{3}|\hbar - \vartheta|\right)$$

$$S((\hbar, 0), (\hbar, 0), (0, \vartheta)) = \left(\frac{4}{3}\hbar + \vartheta, \hbar + \frac{2}{3}\vartheta\right)$$

Then \Re is vector S-metric space which is complete.

References

- Aliprantis C. D., Border K. C., Infinite Dimensional Analysis, Verlag, Berlin, 1999.
- [2] Banach S., Sur les operations dans les ensembles abstraits el leur application aux equations integrals, Fund. Math., 3 (1992), 133–181.
- [3] Cevik C., Altun I., Vector metric spaces and some properties, Topal. Met. Nonlin. Anal; 34(2), 375-382, 2009.
- [4] Kamra M., Kumar S., Sarita K., Some fixed point theorems for self mappings on vector b-metric spaces, Global Journal of Pure and Applied Mathematics 14(11), 1489-1507, 2018.
- [5] Kim J. K., Sedghi S., Gholidahneh A., Razaee M. M., Fixed points theorems in S-metric spaces, East Asian Math. J. 32(5), 677 - 684, 2016.
- [6] Prudhvi K., Fixed point theorems in S- metric spaces, Universal Journal of Computational Mathematics 3(2), 19-21, 2015.

- [7] Sedghi S., Shobe N., Aliouche A., A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik 64, 258-266, 2012.
- [8] Shahraki M., Sedghi S., Aleomraninejad S. M. A., Mitrovic Z. D., Some fixed point results on S-metric spaces, Acta Univ. Sapientiae, Mathematica, 12(2), 347-357, 2020.
- [9] Yao J., Yang L., Common fixed point results in S-metric spaces, Journal of Advances in Applied Mathematics, Vol.4, No.2, 2019.