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Abstract: -  

In 1995, the concept of (𝜅, 𝜇)-contact Riemannian manifolds was introduced by Blair, 

Koufogiorgos, and Papantoniou [5]. Subsequently, a comprehensive investigation into the 

classification of contact metric (𝜅, 𝜇)-spaces was conducted by Boeckx, E. [7] in 2000. Blair 

explored the (𝜅, 𝜇)-nullity condition in the context of contact Riemannian manifolds and 

provided various motivations for its study. The current paper focuses on the examination of 

flatness conditions concerning the ℳ-projective curvature tensor within the framework of 

(𝜅, 𝜇)-contact Riemannian manifolds. 

1. Introduction- 

In 1958, Boothby and Wong first introduced the concept of odd-dimensional manifolds with 

contact and almost contact structures, primarily approaching it from a topological perspective. 

Subsequently, in 1961, Sasaki and Hatakeyama re-examined these structures using tensor 

calculus techniques. 

Alternatively, in the work of Pokhariyal and Mishra, a tensor field 𝑊∗ is introduced on a 

Riemannian manifold as 

                       ‘𝑊∗(𝑆, 𝑇, 𝑈, 𝑉) = ‘ℛ(𝑆, 𝑇, 𝑈, 𝑉) −
1

2(𝑛−1)
× [𝜌(𝑇, 𝑈)𝑔(𝑆, 𝑉) −

                                                   𝜌(𝑆, 𝑈)𝑔(𝑇, 𝑉) + 𝑔(𝑇, 𝑈)𝜌(𝑆, 𝑉) − 𝑔(𝑆, 𝑈)𝜌(𝑇, 𝑉)] ,              (1)     

Where ‘𝑊∗(𝑆, 𝑇, 𝑈, 𝑉) = 𝑔(𝑊∗(𝑆, 𝑇)𝑈, 𝑉) and ‘ℛ(𝑆, 𝑇, 𝑈, 𝑉) = 𝑔(ℛ(𝑆, 𝑇)𝑈, 𝑉). The tensor 

field 𝑊∗ is referred to as the ℳ-projective curvature tensor. Subsequently, Ojha conducted a 

comprehensive investigation of the properties of this tensor in both Sasakian and Kähler 

manifolds. 

The category of (𝜅, 𝜇)-contact Riemannian manifolds encompasses both Sasakian and non-

Sasakian manifolds. Boeckx [7] provided a comprehensive categorization of (𝜅, 𝜇)-contact 

Riemannian manifolds. These manifolds retain their properties under 𝐷-homothetic 

transformations. 

In an earlier study [6], Blair, Kim, and Tripathi commenced an inquiry into the concircular 

curvature tensor of contact Riemannian manifolds. The examination of the pseudo-projective 

curvature tensor on a contact Riemannian manifold was recorded in [5]. More contemporarily, 

the investigations carried out by [14] and [15] delved into exploring the quasi-conformal 

curvature tensor and the E-Bochner curvature tensor on a (𝜅, 𝜇)-contact Riemannian manifold, 

respectively. In addition to the well-known Riemannian curvature tensor, the Weyl conformal 

curvature tensor, and the concircular curvature tensor, the ℳ-projective curvature tensor 
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emerges as a pivotal tensor within the realm of differential geometry. The curvature tensor 

serves as a unifying link between the conharmonic curvature tensor, the concircular curvature 

tensor and the conformal curvature tensor on the one hand while establishing a connection with 

the 𝐻-projective curvature tensor on the other. 

Recently, the ℳ-projective curvature tensor has been a subject of study for various researchers, 

including Chaubey, Ojha [13], Singh [11], and others. 

Expanding upon prior research, our current study investigates the symmetry and flatness 

characteristics of (𝜅, 𝜇)-contact Riemannian manifolds in the context of the ℳ-projective 

curvature tensor. In Section 3, we review and deduce our initial findings. Subsequently, in 

Segment 4, we analyze ℳ-projectively flat (𝜅, 𝜇)-contact Riemannian manifolds. Segment 5 

centers on exploring 𝜁-ℳ-projectively Sasakian flat (𝜅, 𝜇)-contact Riemannian manifolds, 

where we establish the requisite and sufficient conditions for the manifestation of 𝜁-ℳ-

projective Sasakian flatness in an (𝜅, 𝜇)-contact Riemannian manifold. 

2. Contact Riemannian Manifold-    

An almost contact structure on an (2𝑛 + 1)-dimensional differentiable manifold 𝑀 is defined 

by the existence of a tensor field ℱ of type (1, 1), a vector field 𝜁, and a 1-form 𝜂 such that 

                                           ℱ2 = −𝐼 + 𝜂 ⊗  𝜁 ,        𝜂(𝜁) = 1                                                (2) 

                                               ℱ𝜁 = 0,       𝜂 ∘ ℱ = 0                                                              (3) 

Take into account a consistent Riemannian metric 𝑔 in conjunction with an almost contact 

structure (ℱ, 𝜁, 𝜂) 

                                        𝑔(ℱ𝑆, ℱ𝑇) = 𝑔(𝑆, 𝑇) − 𝜂(𝑆)𝜂(𝑇)                                                  (4)  

Subsequently, when 𝑀2𝑛+1 undergoes a transformation, it transforms into an almost contact 

Riemannian manifold by acquiring an almost contact metric structure represented as 
(ℱ, 𝜁, 𝜂, 𝑔). By observing equations (2) and (4), it becomes evident that 

                              𝑔(𝑆, ℱ𝑇) = −𝑔(ℱ𝑆, 𝑇),    𝑔(𝑆, 𝜁) = 𝜂(𝑆),                                                 (5) 

for all vector fields 𝑆 and 𝑇. 

The fact that the tangent sphere bundle of a Euclidean Riemannian manifold possesses a contact 

metric structure with the property ℛ(𝑆, 𝑇)𝜁 = 0 is widely acknowledged. Conversely, in the 

context of a Sasakian manifold, the subsequent assertion is valid: 

                                           ℛ(𝑆, 𝑇) 𝜁 = 𝜂(𝑇)𝑆 − 𝜂(𝑆)𝑇.                                                       (6) 

Blair et al. extended the concepts of ℛ(𝑆, 𝑇)𝜁 = 0 and the Sasakian case by investigating the 

(𝜅, 𝜇)-nullity condition on a contact Riemannian manifold. They introduced the (𝜅, 𝜇)-nullity 

distribution 𝑁(𝜅, 𝜇) ([3,5]) to characterize this condition on the contact Riemannian manifold. 

𝑁(𝜅, 𝜇): 𝒫 →  𝑁𝒫(𝜅, 𝜇) = {𝑈 ∈  𝒯𝒫𝑀: ℛ(𝑆, 𝑇)𝑈 = (𝜅𝐼 + 𝜇ℎ)[𝑔(𝑇, 𝑈)𝑆 − 𝑔(𝑆, 𝑈)𝑇]} 

                                                                                                                                             …(7)  

For any pair of vectors 𝑆 and 𝑇 belonging to the tangent space 𝒯𝑀, where (𝜅, 𝜇) are elements 

of the 𝑅2, a Riemannian manifold 𝑀2𝑛+1 possessing 𝜁 in the set 𝑁(𝜅, 𝜇) is referred to as a 



manifold with (𝜅, 𝜇) characteristic. Specifically, on a manifold with (𝜅, 𝜇) attributes, the 

following holds true 

                               ℛ(𝑆, 𝑇)𝜁 = 𝜅[𝜂(𝑇)𝑆 − 𝜂(𝑆)𝑇] + 𝜇 [𝜂(𝑇)ℎ𝑆 − 𝜂(𝑆)ℎ𝑇] .                           (8) 

On a (𝜅, 𝜇)-manifold, where 𝜅 ≤ 1, the structure becomes Sasakian with ℎ = 0 and 𝜇 

remaining indeterminate when 𝜅 = 1. When 𝜅 < 1, the (𝜅, 𝜇)-nullity condition uniquely 

prescribes the curvature of 𝑀2𝑛+1 Essentially, for a (𝜅, 𝜇)-manifold, the properties of being a 

Sasakian manifold, a 𝐾-contact manifold, 𝜅 = 1, and ℎ = 0 are all interchangeable and 

equivalent. 

In a (𝜅, 𝜇)-manifold, the following relations hold: 

ℎ2 = (𝜅 − 1)2 ℱ2 ,  𝜅 ≤  1, 

ℛ(𝜁, 𝑆)𝑇 = 𝜅[𝑔(𝑆, 𝑇)𝜁 − 𝜂(𝑇)𝑆] + 𝜇[𝑔(ℎ𝑆, 𝑇)𝜁 − 𝜂(𝑇)ℎ𝑆] ,   

                                                    𝜌(𝑆, 𝜁) = 2𝑛𝜅𝜂 (𝑆),                                                                               (9)   

𝜌(𝑆, 𝑇) = [2(𝑛 − 1) − 𝑛𝜇]𝑔(𝑆, 𝑇) + [2(𝑛 − 1) + 𝜇]𝑔(ℎ𝑆, 𝑇) 

                                         + [2(1 − 𝑛) +  𝑛( 2𝜅 + 𝜇)] 𝜂(𝑆)𝜂(𝑇),  𝑛 ≥ 1,   

𝜌(ℱ𝑆, ℱ𝑇) = 𝜌(𝑆, 𝑇) − 2𝑛𝜅𝜂(𝑆)𝜂(𝑇) − 2(2𝑛 − 2 + 𝜇)𝑔(ℎ𝑆, 𝑇), 

Where 𝜌 is the Ricci tensor of type (0, 2), 𝑄 is the Ricci operator, that is, 𝑔(𝑄𝑆, 𝑇) = 𝜌(𝑆, 𝑇). 

Furthermore, the (𝜅, 𝜇)-manifold exhibits the following property: 

𝜂(ℛ(𝑆, 𝑇)𝑈) = 𝜅[𝑔(𝑇, 𝑈)𝜂(𝑆) − 𝑔(𝑆, 𝑈)𝜂(𝑇)] 

                                                           +𝜇[𝑔(ℎ𝑇, 𝑈)𝜂(𝑆) − 𝑔(ℎ𝑆, 𝑈)𝜂(𝑇)]                        (10)   

In the context of Riemannian manifold, the ℳ-projective curvature tensor 𝑊∗ can be stated as 

follows [8].         

𝑊∗(𝑆, 𝑇)𝑈 = ℛ(𝑆, 𝑇)𝑈 −  
1

2(𝑛 − 1)
× [𝜌(𝑇, 𝑈)𝑆 − 𝜌(𝑆, 𝑈)𝑇 + 𝑔(𝑇, 𝑈)𝑄𝑆 − 𝑔(𝑆, 𝑈)𝑄𝑇], 

                                                                                                                                           …(11) 

Given arbitrary vector fields 𝑆, 𝑇, and 𝑈, where 𝜌 represents the Ricci tensor of type (0, 2) and 

𝑄 denotes the Ricci operator, we have the relation 𝑔(𝑄𝑆, 𝑇) =  𝜌(𝑆, 𝑇). 

Lemma 2.1. [1] In (𝜅, 𝜇)-contact Riemannian manifolds that are not Sasakian, the conditions 

that follow are mutually equivalent:     

    (i) 𝜂-Einstein manifold,  



    (ii) 𝑄ℱ = ℱ𝑄 

Definition 2.1. An 𝑀 manifold with a (𝑘, 𝜇)-contact metric structure is referred to as 𝜂-Einstein when 

the Ricci operator 𝑄 fulfills the conditions 

                                                           𝑄 = 𝑎𝐼 + 𝑏𝜂 ⊗ 𝜁                                                                          (12)       

Where 𝑎 and 𝑏 represent smooth functions defined on the manifold. Notably, when 𝑏 is set to 

zero, 𝑀 qualifies as an Einstein manifold. 

In the case where an (2𝑛 + 1)-dimensional non-Sasakian (𝑘, 𝜇)-contact Riemannian manifold 

(𝑀2𝑛+1, 𝑔) is 𝜂-Einstein, the expression for the non-zero Ricci tensor 𝜌 takes the following 

form: 

                                    𝜌(𝑆, 𝑇) = 𝑎𝑔(𝑆, 𝑇) + 𝑏𝜂(𝑆)𝜂(𝑇).                                                     (13) 

Lemma 2.2. On a non-Sasakian (𝑘, 𝜇)-contact Riemannian manifold (𝑀2𝑛+1, 𝑔), 𝑎 + 𝑏 = 2𝑛𝜅 

Proof. In view of (2)-(5) and (13), we have 

                                                       𝑄𝑆 = 𝑎𝑆 + 𝑏𝜂(𝑆)𝜁,                                                        (14) 

such that Ricci operator 𝑄 is defined by 

                                                      𝜌(𝑆, 𝑇) = 𝑔(𝑄𝑆, 𝑇).                                                                       (15) 

Again, contracting (14) with respect to 𝑆 and using (2)-(5), we have 

                                                       𝑟 = (2𝑛 + 1)𝑎 + 𝑏.                                                                          (16) 

Now, putting 𝜁 instead of 𝑆 and 𝑇 in (13) and then using the equations in (2)-(5) and (9) we get 

                                                              𝑎 + 𝑏 = 2𝑛𝜅.                                                                 (17) 

Equations (16) and (17) give 

                                       𝑎 = (
𝑟

2𝑛
− 𝜅) and 𝑏 = ((2𝑛 + 1)𝜅 −

𝑟

2𝑛
).                                      

(18) 

Equation (18) prove the statement of the Lemma 2.2. 

3. The 𝓜-Projective Curvature Tensor 𝑾∗ for an (𝜿, 𝝁)-Contact Riemannian Manifolds- 

The curvature tensor 𝑊∗ associated with ℳ-projective geometry on a (𝜅, 𝜇)-contact 

Riemannian manifold is expressed as 

𝑊∗(𝑆, 𝑇)𝜁 = −
𝜅

(𝑛−1)
[𝜂(𝑇)𝑆 − 𝜂(𝑆)𝑇] + 𝜇[𝜂(𝑇)ℎ𝑆 − 𝜂(𝑆)ℎ𝑇] −

                                                                       
1

2(𝑛−1)
[𝜂(𝑇)𝑄𝑆 −  𝜂(𝑆)𝑄𝑇],                                  (19) 



                                                  𝜂(𝑊∗(𝑆, 𝑇) 𝜁) =  0,                                                           (20) 

𝑊∗(𝜁, 𝑇)𝑈 = −𝑊∗(𝑇, 𝜁)𝑈 = −
𝜅

(𝑛 − 1)
[𝑔 (𝑇, 𝑈)𝜁 − 𝜂(𝑈)𝑇] + 𝜇[𝑔(ℎ𝑇, 𝑈)𝜁 − 𝜂(𝑈)ℎ𝑇] 

                                                      −
1

2(𝑛−1)
[𝜌(𝑇, 𝑈)𝜁 − 𝜂(𝑈)𝑄𝑇],                                       (21) 

𝜂(𝑊∗(𝜁, 𝑇)𝑈) = −𝜂(𝑊∗(𝑇, 𝜁)𝑈)   

= − 
𝜅

(𝑛 − 1)
[𝑔(𝑇, 𝑈) − 𝜂(𝑇)𝜂(𝑈)] + 𝜇[𝑔(ℎ𝑇, 𝑈) − 𝜂(𝑈)𝜂(ℎ𝑇)] 

                                       −
1

2(𝑛−1)
[𝜌(𝑇, 𝑈) − 2𝑛𝜅𝜂(𝑇)𝜂(𝑈)],                                                (22) 

            𝜂(𝑊∗(𝑆, 𝑇)𝑈)

= −
𝜅

(𝑛 − 1)
[𝑔(𝑇, 𝑈)𝜂(𝑆) − 𝑔(𝑆, 𝑈)𝜂(𝑇)] + 𝜇[𝑔(ℎ𝑇, 𝑈) − 𝜂(𝑈)𝜂(ℎ𝑇)] 

                                           −
1

2(𝑛−1)
[𝜌(𝑇, 𝑈)𝜂(𝑆) − 𝜌(𝑆, 𝑈)𝜂(𝑇)].                                       (23) 

4. 𝓜-Projectively Flat (𝜿, 𝝁)-Contact Riemannian Manifolds- 

The class of (𝜅, 𝜇)-contact Riemannian manifolds known as ℳ-projectively flat manifolds is 

a distinctive category within contact Riemannian manifold where the geometry is such that the 

curvature tensor satisfies certain conditions related to the ℳ-projective flatness property. The 

parameters 𝜅 and 𝜇 are involved in the definition of the curvature conditions and can affect the 

geometry of the manifold. 

Theorem 4.1. A (𝜅, 𝜇)-contact Riemannian manifold 𝑀2𝑛+1that is ℳ-projectively flat exhibits 

the property of being an Einstein manifold. 

Proof.  Let 𝑊∗(𝑆, 𝑇, 𝑈, 𝑉) = 0. Subsequently, utilizing equation (11), we derive the 

following outcome: 

      ‘ℛ(𝑆, 𝑇, 𝑈, 𝑉) =
1

2(𝑛−1)
 [𝜌(𝑇, 𝑈)𝑔(𝑆, 𝑉) − 𝜌(𝑆, 𝑈)𝑔(𝑇, 𝑉) + 𝑔(𝑇, 𝑈)𝜌(𝑆, 𝑉) 

                                 −𝑔(𝑆, 𝑈)𝑔(𝑇, 𝑉)]                                                                                        (24) 

Considering 𝑒𝑖 as an orthonormal basis of the tangent space at any point, if we set 𝑇 = 𝑈 = 𝑒𝑖 

in the given equation and then sum up over 𝑖, where 1 ≤  𝑖 ≤  2𝑛 +  1, we arrive at the same 

result, 

                                                  𝜌(𝑆, 𝑇) = −𝑟𝑔 (𝑆, 𝑇),                                                                     (25) 

Where 𝑟-Scalar curvature of the manifold and 𝑟 = 2𝑛(2𝑛 − 2 + 𝜅 − 𝑛𝜇). 

This indicates that 𝑀2𝑛+1 is a manifold that satisfies the Einstein condition. This completes the 

proof. 



5. 𝜁-𝓜-Projectively Sasakian Flat (𝜿, 𝝁)-Contact Riemannian Manifolds- 

𝜁-ℳ-Projectively Sasakian flat (𝜅, 𝜇)-contact Riemannian manifolds likely refer to a specific 

class of contact Riemannian manifolds that satisfy curvature conditions related to ℳ-projective 

flatness and these manifolds also have a distinguished Reeb vector field (𝜁) and Sasakian 

geometry. This indicates a very specialized and intricate geometric structure where various 

curvature conditions, contact structures, and vector fields are intertwined. 

Definition 5.1. An (2𝑛+1) (with 𝑛 > 1)-dimensional (𝜅, 𝜇)-contact Riemannian manifold is 

classified as 𝜁-ℳ-projectively Sasakian flat when the condition 𝑊∗(𝑆, 𝑇)𝜁 = 0 holds for all 𝑆 

and 𝑇 belonging to the tangent space 𝒯𝑀. 

Theorem 5.1. An (2𝑛+1)-dimensional (𝑛>1) (𝜅, 𝜇)-contact Riemannian manifold exhibits 𝜁-

ℳ-projective Sasakian flatness iff it possesses the characteristic of being an 𝜂-Einstein 

manifold. 

Proof.  Let  𝑊∗(𝑆, 𝑇)𝜁 = 0.  Then, in view of (11), we have 

             ℛ(𝑆, 𝑇)𝜁 =
1

2(𝑛−1)
[𝜌(𝑇, 𝜁)𝑆 − 𝜌(𝑆, 𝜁)𝑇 + 𝑔(𝑇, 𝜁)𝑄𝑆 − 𝑔(𝑆, 𝜁)𝑄𝑇]                          (26) 

Due to the presence of (5), (8), and (9), the equation above can be simplified to 

𝜅[𝜂(𝑇)𝑆 − 𝜂(𝑆)𝑇] + 𝜇[𝜂(𝑇)ℎ𝑆 − 𝜂(𝑆)ℎ𝑇] 

                                          =  
𝑛𝜅

𝑛−1
[𝜂(𝑇)𝑆 − 𝜂(𝑆)𝑇]+

1

2(𝑛−1)
[𝜂(𝑇)𝑄𝑆 − 𝜂(𝑆)𝑄𝑇]                   (27) 

which by putting 𝑇 = 𝜁, gives 

                             𝑄𝑆 = 2𝜅 [−𝑆 + (𝑛 + 1)𝜂(𝑆)𝜁] + 2(𝑛 − 1)𝜇(ℎ𝑆)                                           (28) 

In the case of Sasakian manifolds, 𝜅 = 1, (and hence ℎ = 0) 

Now, taking the inner product of above equation with 𝑉, we get 

                                𝜌(𝑆, 𝑉) = 2[−𝑔(𝑆, 𝑉) + (𝑛 + 1) 𝜂(𝑆)𝜂(𝑉)]                                      (29) 

Furthermore, it can be proved that a (𝜅, 𝜇)-contact Riemannian manifold represents an 𝜂-

Einstein manifold. Conversely, assume that condition (29) is fulfilled. As a result of the 

implications of (28) and (19), we can deduce 𝑊∗(𝑆, 𝑇)𝜁 = 0. Thus, the proof is concluded. 
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