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ABSTRACT 

        As the number of vehicles increases, traffic interruption phenomena become more frequent. In order to better 
understand and control traffic flow, we proposed a car-following model in this work by taking into account the effect of 
traffic interruption probability with electronic throttle angle under a connected vehicle environment called the IP-ET 
model. The stability condition of the proposed model is determined using the linear stability theory. The stability curve 
demonstrated that by considering the effect of interruption probability with throttle angle leads to an enhancement in 
the region of traffic flow stability when compared to existing models. Through nonlinear analysis, the study derived the 
mKdV equation, which effectively describes the propagation of traffic flow density waves near the critical point. 
Furthermore, the numerical findings align with the theoretical results, affirming the validity of the proposed model and 
observing that the IP-ET model effectively enhances the efficiency of vehicle movement, reduces traffic congestion, 
and contributes to overall road safety. 
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I. INTRODUCTION  

              As communication and information technologies provide major benefits for transportation, security, and 
environmental sustainability, connected and autonomous vehicles (CAVs) have attracted a lot of interest recently in both 
business and academia [1, 2, 3]. In a CAV system, vehicle-to-vehicle (V2V) communication is a crucial aspect that 
facilitates collaboration among individual vehicles on the road. For instance, in order to prevent crashes in an automated 
traffic stream, it is preferable for vehicles to communicate information about one another using V2V communications [4]. 

Traffic flow models are essential for transportation planners, engineers, and policymakers to analyze and improve   
traffic management, design efficient road networks, and optimize transportation systems. Generally, traffic flow mod els 
can be categorized into two groups: microscopic and macroscopic models. Microscopic traffic flow models [5, 6] focus 
on capturing the behavior of individual vehicles and their interactions at a granular level, typically using microscopic 
variables such as velocity, position, and acceleration. On the other hand, macroscopic traffic flow models [7, 8] take a more 
aggregated approach, describing traffic flow using macroscopic variables that provide an overview of traffic conditions on 
a larger scale. These variables include traffic density, flow rate and average speed of the traffic stream. Microscopic traffic 
flow models can be further classified into different subcategories, with car-following (CF) models and cellular automaton 
(CA) models being two common approaches. Car-following (CF) models describe the behavior of individual vehicles 
while following the lead of preceding cars in the same lane, rely on the concept that each motorist manages their vehicle 
by responding to stimuli from the car directly ahead. Car-following models encompass a range of approaches, such as the 
GHR model [9] and its modifications [10, 11, 12], the Gipps model [13], the optimal velocity (OV) model [14], 
intelligent driver model [15], fuzzy-logic model [16] and deep learning neural network [17]. Bando et al. developed an 
OV model [14] which states that the following vehicle aims   to maintain a secure speed based on the space headway from 
the preceding vehicle. Since then, several variations of the OV-based car-following (CF) models come into existence by 
considering the surrounding conditions of the following vehicle [18, 19, 20, 21, 22]. Li et al. [23] introduced a car-
following model that considers the influence of the electronic throttle opening angle of the leading vehicle that is closest, 
building upon the FVD model [19]. Their study revealed improved traffic flow stability as compared to the FVDM. 
Subsequently, in 2017, they extended their model to incorporate both the lateral gap and electronic throttle opening angle 
effects under connected environments [24]. However, these two models only accounted for the electronic throttle opening 
angle of the closest leading vehicle, failing to capture the characteristics of the internet of vehicles in CAVs. To address 
this limitation, Qin et al. [25] introduced a CAV car-following model that takes into account the impact of feedback 
control of electronic throttle opening angles for numerous preceding cars. Sun et al. [26] investigate the impact of the 



 

  

electronic throttle opening angle on a curved road. Furthermore, many existing research [27, 28, 29, 30] has provided 
evidence that the dynamics of   electronic throttle can influence traffic flow. 

     As we know, frequent traffic accidents can lead to traffic interruptions. To understand the underlying factors 
influencing traffic interruptions, several traffic models have been developed, taking different accidents into account [31, 
32, 33]. A macro model [34] was introduced, incorporating an interrupt probability parameter. Furthermore, a two-lane 
macro model [35] was established, considering traffic interruption probability based on the Ref. [34]. Notably, Tang et al. 
[36] proposed a car-following model that considers the probability of traffic interruptions and Peng [37] incorporates the 
anticipation term related to traffic interruptions. It’s important to note that in real traffic scenarios, traffic interruptions 
can be unpredictable. In reality, certain traffic interruptions occur with certain probabilities and give rise to complex 
phenomena within the traffic flow. To comprehensively understand and analyze such scenarios, it is crucial to develop 
models that explicitly consider the effects of traffic interruption probability on the dynamics of traffic flow. 

            Thus, in this study, we improve existing traffic models by incorporating traffic interruption probability and 
electronic throttle dynamics, which were not considered in previous models. The motivation behind this study is to better 
understand the impact of interruptions, such as accidents, pedestrians, tolling stations, and signal lights, on CAV traffic 
flow. In particular, a new CF model that takes into account the impact of traffic interruptions and electronic throttle angle 
within a connected environment. Thus, the proposed model plays a crucial role in the CAV environment which allows us 
to evaluate the performance of CAV traffic flow in terms of smoothness, stability, and important metrics like space 
headway, velocity and acceleration/deceleration profiles. By incorporating these elements, we can better understand and 
optimize the overall efficiency of CAV traffic flow. 

The following is a description of the paper's structure. In Section II, we review the basic models and introduce a new car-
following model. Linear and nonlinear stability analysis are examined in  Sections III and IV, respectively. Section~V 
carried out numerical simulation and finally, the conclusion is given in Section~VI. 

 
II. MODEL 

  Bando et al. [14] proposed the optimal velocity model, which revolves around the concept that drivers aim to 
adjust  their speed to attain an optimal velocity. The model is represented by the following equation: 

𝑑𝑣௝(�̃�)

𝑑�̃�
 = 𝑎 ൬𝑉 ቀs୨(�̃�)ቁ − 𝑣௝(�̃�)൰                                                             (1) 

where 𝑎 denotes the driver’s sensitivity coefficient, 𝑥௝ and 𝑣௝ denote the position and speed of the vehicle 𝑗, respec- 
tively, 𝑠௝ =  𝑥௝ାଵ −  𝑥௝ denotes the headway between the vehicle 𝑗 and the vehicle 𝑗 +  1, and 𝑉(𝑠௝) denotes the optimal 
velocity function as defined by 

                            𝑉൫s୨(�̃�)൯ =
௩೘ೌೣ

ଶ
ൣ𝑡𝑎𝑛ℎ൫𝑠௝(�̃�) − ℎ௖൯ + 𝑡𝑎𝑛ℎ(ℎ௖)൧                                  (2)           

where ℎ௖ denotes the safe distance and 𝑣௠௔௫ signifies the maximum speed achievable by the vehicle. The primary 
drawback of the Optimal Velocity (OV) model was its tendency to exhibit rapid acceleration rates and unlikely decel- 
eration patterns. To address these limitations, Jiang et al. [19] proposed the “full velocity difference (FVD) model”  by 
incorporating positive velocity differences into the OV model. The dynamic model equation is  

𝑑𝑣௝(�̃�)

𝑑�̃�
 = 𝑎 ൬𝑉 ቀs୨(�̃�)ቁ − 𝑣௝(�̃�)൰ + 𝜆Δ𝑣௝(�̃�)                                            (3) 

where Δ 𝑣௝(�̃�) = 𝑣௝ାଵ(�̃�) − 𝑣௝(�̃�) represent the relative speed between the 𝑗௧௛ and 𝑗 + 1௧௛ vehicles and 𝜆 is the 
sensitivity coefficient of relative speed. 

Li et al. [23] introduced a model called the throttle-based FVD (T-FVD) by combining the electronic throttle opening 
angle of CAVs with the FVD model which is expressed as follows: 

𝑑𝑣௝(�̃�)

𝑑�̃�
= 𝑎 ൬𝑉 ቀs୨(�̃�)ቁ − 𝑣௝(�̃�)൰ + 𝜆Δ𝑣௝(�̃�) + 𝜅 ቀΔ 𝜃௝(𝑡)ቁ               (4) 

where Δ 𝜃௝ = 𝜃௝ାଵ(�̃�) − 𝜃௝(�̃�) are the electronic throttle opening angles of the (𝑗 +  1)௧௛ vehicle and following 
vehicle 𝑗௧௛, 𝜅 represents the control coefficient that governs the angle difference. By manipulating the electronic throttle 
angle, drivers have the ability to alter the velocity of their vehicles. This can be achieved by understanding and applying 
the dynamic equation associated with the electronic throttle angle. By taking into account factors such as the vehicle's 
velocity and acceleration, drivers are able to effectively control and adjust their speed as desired, which is expressed as 



 

  

    𝑎௝(�̃�) = −𝑐൫𝑣௝(�̃�) − 𝑣௘൯ + 𝑑൫𝜃௝(�̃�) − 𝜃௘൯                         (5)  

where 𝑐 > 0, 𝑑 > 0 are coefficients, the steady-state velocity of the automobile is represented by 𝑣௘ , 𝜃௘ denotes the 
steady-state electronic throttle angle corresponding to the velocity 𝑣௘, 𝑎௝(�̃�) is the acceleration of th𝑒 𝑗௧௛ vehicle. Based 
on the Eq. (5) the opening angle of the electronic throttle Δ 𝜃௝(�̃�) is defined as follows:  

Δ 𝜃௝(�̃�) =
1

𝑑
ቀΔ 𝑎௝(�̃�) + 𝑐 Δ 𝑣௝(�̃�)ቁ                              (6) 

 While the car-following models mentioned above are effective in describing complex traffic patterns, however, they may 
not directly address phenomena caused by traffic interruptions such as accidents, pedestrians, tolling stations, signal 
lights, etc. These factors introduce unique dynamics and complexities that require separate study and analysis. Indeed, 
there is a possibility of interruptions occurring in each vehicle. Considering the analysis mentioned above, we proposed a 
model by considering the effect of traffic interruption probability with electronic throttle angle under a connected vehicle 
environment, called the IP-ET model. The control equation for the proposed model is as follows: 

𝑑𝑣௝(�̃�)

𝑑�̃�
= 𝑎 ൬𝑉 ቀs୨(�̃�)ቁ − 𝑣௝(�̃�)൰ + 𝜆ଵ 𝑝௝ାଵ൫−𝑣௝൯ + 𝜆ଶ൫1 − 𝑝௝ାଵ൯Δ 𝑣௝(�̃�) + 𝜅 Δ 𝜃௝  (�̃�)           (7) 

where 𝑝௝ାଵ representing the probability of the leading vehicle being interrupted and 𝜆ଵ, 𝜆ଶ are the response 
coefficients. When the leading vehicle is entirely interrupted, its speed instantaneously becomes zero, resulting in a speed 
difference of (−𝑣௝) between the (𝑗 + 1)௧௛ and the 𝑗௧௛ vehicles. 

The traffic interruption probability is influenced by traffic conditions and road configuration. For simplicity, we 
assumes that the traffic interruption probability 𝑝௝ାଵ is constant, denoted as 𝑝. We discretize Eq. (7) using the asymmetric 
forward difference as follows to do stability analysis: 

   𝑠௝(�̃� + 2𝜏) =  𝑠௝(�̃� + 𝜏) + 𝜏ൣ𝑉 (𝑠௝ାଵ(�̃�)) − 𝑉(𝑠௝(�̃�))൧  + 𝜆ଵ 𝑝 ቀ− 𝑠௝(�̃� + 𝜏) +  𝑠௝(�̃�)ቁ + 𝜆ଶ(1 − 𝑝) ቀ 𝑠௝ାଵ(�̃� + 𝜏) −

                                   𝑠௝ାଵ(�̃�) − 𝑠௝(�̃� + 𝜏) + 𝑠௝(�̃�)ቁ +
఑ ௖ ఛ

ௗ
ቀ 𝑠௝ାଵ(�̃� + 𝜏) −  𝑠௝ାଵ(�̃�) − 𝑠௝(�̃� + 𝜏) + 𝑠௝(�̃�)ቁ +

఑ 

ௗ
ቀ𝑠௝ାଵ(�̃� + 2𝜏) −

                                   2𝑠௝ାଵ(�̃� + 𝜏) + 𝑠௝ାଵ(�̃�) − 𝑠௝(�̃� + 2𝜏) + 2𝑠௝(�̃� + 𝜏) − 𝑠௝(�̃�)ቁ                                                  (8)  

 

III. LINEAR STABILITY ANALYSIS 

We conduct the linear stability analysis using the perturbation approach to determine the stability condition of the 
proposed (IP-ET) model. We assume that all vehicles are traveling at the optimal speed 𝑉(ℎ) and maintaining a consistent 
distance of ℎ between them. 

The condition for the of steady state is  

                                  𝑥௝
଴(�̃�) = ℎ𝑗 + 𝑉(ℎ)�̃�, ℎ =

𝐿

𝑁
                                                                  (9)   

where 𝑁 and 𝐿 represent the number of vehicles and the length of the route, respectively. In the traffic steady state 
𝑥௝

଴(�̃�), we introduce a small deviation 𝑦௝(�̃�) which is given below 

                                                      𝑥௝( �̃�) = 𝑥௝
଴(�̃�) + 𝑦௝(�̃�)                                                                             (10) 

The headway is represented as  𝑠௝(�̃�)  =  ℎ + Δ 𝑦௝(�̃�). By substituting these values into Eq. (8) linearizing the equation, 
and ignoring the nonlinear terms, we derive the following result: 

  Δ 𝑦௝(�̃� + 2𝜏) = Δ 𝑦௝(�̃� + 𝜏) + 𝜏 𝑉ᇱ(ℎ) ቀΔ 𝑦௝ାଵ(�̃�) − Δ 𝑦௝(�̃�)ቁ + 𝜆ଵ 𝑝 ቀ−Δ 𝑦௝(�̃� + 𝜏) + Δ 𝑦௝(�̃�)ቁ

+ 𝜆ଶ(1 − 𝑝) ቀΔ 𝑦௝ାଵ(�̃� + 𝜏) − Δ 𝑦௝ାଵ(�̃�) − Δ 𝑦௝(�̃� + 𝜏) + Δ 𝑦௝(�̃�)ቁ

+
𝜅 𝑐 𝜏

𝑑
ቀΔ 𝑦௝ାଵ(�̃� + 𝜏) − Δ 𝑦௝ାଵ(�̃�) − Δ 𝑦௝(�̃� + 𝜏) + Δ 𝑦௝(�̃�)ቁ

+
𝜅

𝑑
ቀΔ 𝑦௝ାଵ(�̃� + 2𝜏) − 2Δ 𝑦௝ାଵ(�̃� + 𝜏) + Δ 𝑦௝ାଵ(�̃�) − Δ 𝑦௝(�̃� + 2𝜏) + 2Δ 𝑦௝(�̃� + 𝜏) − Δ 𝑦௝(�̃�)ቁ   (11) 



 

  

  By expanding Δ 𝑦௝(�̃�) = 𝐴𝑒௜௝௞ା௭௧ሚ in equation (11) using Fourier series and then substituting 𝑧 = 𝑧ଵ(𝑖𝑘) + 𝑧ଶ(𝑖𝑘)ଶ+. .. 

and 𝑒௜௞ = 1 + 𝑖𝑘 +
ଵ

ଶ
+. .., while neglecting terms of order greater than the second order, we obtain 

         [𝑧ଵ(𝑖𝑘) + 𝑧ଶ(𝑖𝑘)ଶ]𝜏 +
ଷ

ଶ
𝑧ଵ

ଶ(𝑖𝑘)ଶ𝜏ଶ = 𝜏 𝑉ᇱ(ℎ) ቆ(𝑖𝑘) +
(௜௞)మ

ଶ
ቇ − 𝜆ଵ𝑝 ቂ(𝑧ଵ(𝑖𝑘) + 𝑧ଶ(𝑖𝑘)ଶ)𝜏 +

௭భ
మ(௜௞)మఛమ

ଶ
ቃ +

                                                                                 𝜆ଶ(1 − 𝑝)𝜏 𝑧ଵ(𝑖𝑘)ଶ +
఑ ௖

ௗ
𝜏ଶ𝑧ଵ(𝑖𝑘)ଶ                                                                   (12)  

  By equating the first and second-order components of 𝑖𝑘, we get 

                                                         𝑧ଵ =
௏ᇲ(௛)

ଵାఒభ ௣
                                                                                                      (13) 

                                                     𝑧ଶ =
௏ᇲ(௛)ି௭భ

మఛ(ଷାఒభ௣)ାଶఒమ (ଵି௣)௭భା
మഉ ೎

೏
௭భఛ

ଵାఒభ ௣
                                                             (14) 

   According to stability theory, the model will be in a stable state when criteria 𝑧ଵ  >  0 and 𝑧ଶ  >  0 are satisfied. 
Consequently, the stability condition is 

                                                    𝑎 >
(ଷାఒభ௣)௏ᇲ(௛)ି

మഉ ೎

೏
(ଵାఒభ ௣)

(ଵାఒభ ௣)మାଶ(ଵାఒభ௣)ఒమ(ଵି௣)
                                                                               (15)       

    When 𝑝 = 0 the neutral stability line remains identical to that of the T-FVD model [23] and the proposed IP-ET 
model is deduced to the FVD model [19] for 𝜅 = 0 and 𝑝 = 0. Additionally, if the parameters satisfy the conditions 𝜅 = 0, 
𝜆ଶ = 0, and 𝑝 = 0, the proposed IP-ET model reduces to the OV model [14], and its stability condition becomes the same 
as that of the OV model [14]. Thus, the findings verify the effectiveness of the proposed model and the correctness of the 
stability analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 1 illustrates a comparison between different traffic flow models (OV model, FVD model, T-FVD model) along 
with a proposed model for fixed value of parameters 𝑝 = 0.2 and 𝜅 = 0.1. The critical curve in Fig. 1 separates the space 
formed by the sensitivity coefficient and the space headway into two regions: the stable region and the unstable region. The 
stable region represents traffic flow conditions where the flow remains stable, while the unstable region shows the 
emergence of density waves, indicating unstable traffic flow conditions. Figure 1 shows that with the same value of ℎ௖ 
(headway), the value of sensitivity coefficient (𝑎௖) at the critical point obtained from the proposed model is the lowest 
among all the existing models (OV model, FVD model, and T-FVD model). This suggests that the proposed model exhibits 
better stability characteristics as compared to the other models. 

Figure 2(a) shows the phase diagram of the proposed model for different values interruption probability 𝑝 with fixed 
𝜆ଵ = 0.5, 𝜆ଶ = 0.1 and control coefficient of electronic throttle dynamics 𝜅 = 0.1. 

It is clearly seen from Figure 2(a) that the stable region expands as the value of the traffic interruption probability (𝑝) 
rises. Also, the lowering of the amplitude and critical point of the stability curves indicate that the traffic flow system 
becomes stronger and less sensitive to variations in the traffic interruption probability. This suggests that when drivers are 
more aware of potential traffic interruptions and adjust their driving behavior accordingly, the overall stability of traffic 
flow improves. 

 

 

 

 
Figure 1: Comparison of Phase diagram between the OVM, FVDM, T-FVDM and proposed IP-ET Model. 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

The phase diagram of the IP-ET model is shown in Fig. 2(b) for different values of 𝜅 = 0,0.1,0.2,0.3 for a fixed 
interruption probability 𝑝 = 0.2. With an increase in the value of 𝜅, the stable zone expands progressively while the neutral 
and coexistence stability curves drastically degrade. It implies that by considering the dynamics of the ET opening angle, 
the system's overall stability is enhanced. It means that accounting for the electronic throttle's behavior allows for better 
control and regulation of the system, resulting in a more stable and reliable operation. 

Thus, the relevant parameters play a crucial role in the stability of traffic flow, therefore the IP-ET model that takes into 
account the driver’s traffic interruption probability with electronic throttle effects under a connected vehicle environment 
are effectively suppresses traffic congestion.   
 

IV. NONLINEAR ANALYSIS 

In order to further investigate the impacts of the traffic interruption probability and electronic throttle on the stability of 
traffic flow, we carry out a nonlinear analysis of the slowly varying behavior of long waves in stable and unstable zones. 
We define slow variables 𝑋 and 𝑇 and introduce the slow scales for space variable 𝑗 and time variable �̃�. 

                                      𝑋 = 𝜖(𝑗 + 𝑏�̃�), 𝑇 = 𝜖ଷ�̃�, 0 < 𝜖 ≤  1                                                                                 (16) 

 where 𝑏 is the undetermined constant.  

The headway 𝑠௝(�̃�) is given as 

                                   𝑠௝(�̃�) = ℎ௖ + 𝜖 𝑅(𝑋, 𝑇)                                                                                                                        (17) 

    Using Eqs. (16) and (17) into Eq. (8), the following nonlinear evolution problem is obtained by expanding using 
Taylor's series expansion up to the fifth power of 𝜖     

𝜖ଶ𝑚ଵ𝜕௑𝑅 + 𝜖ଷ𝑚ଶ𝜕௑
ଶ𝑅 + 𝜖ସ[𝑚ଷ𝜕௑

ଷ𝑅 + 𝑚ସ𝜕௑𝑅ଷ + (1 + 𝜆ଵ𝑝)𝜕்𝑅] + 𝜖ହ[𝑚ହ𝜕௑
ସ𝑅 + 𝑚଺𝜕௑

ଶ𝑅ଷ + 𝑚଻𝜕௑𝜕்𝑅] = 0      (18) 

        where 

              𝑚ଵ = 𝑏(1 + 𝜆ଵ 𝑝) − 𝑉ᇱ(ℎ) 

               𝑚ଶ =
௕మఛ

ଶ
(3 + 𝜆ଵ𝑝) −

௏ᇲ(௛)

ଶ
− 𝜆ଶ(1 − 𝑝)𝑏 −

఑ ௖

ௗ
𝑏 𝜏 

             𝑚ଷ =
௕యఛమ

଺
(7 + 𝜆ଵ𝑝) −

௏ᇲ(௛)

଺
− ቀ𝜆ଶ(1 − 𝑝) +

఑ ௖ఛ

ௗ
ቁ

൫௕మఛା௕൯

ଶ
−

఑

ௗ
𝑏ଶ 

             𝑚ସ = −
௏ᇲᇲᇲ(௛)

଺
 

                  𝑚ହ =
௕రఛయ

ଶସ
(15 + 𝜆ଵ𝑝) −

௏ᇲ(௛)

ଶସ
− ቀ𝜆ଶ(1 − 𝑝) +

఑ ௖ఛ

ௗ
ቁ

൫ସ௕యఛయା଺௕మఛାସ௕൯

ଶସ
−

఑

ௗ
ቀ𝑏ଷ𝜏ଶ +

௕మఛ

ଶ
ቁ  

             𝑚଺ = −
௏ᇲᇲᇲ(௛)

ଵଶ
  

                                  𝑚଻ = ቀ𝑏𝜏(3 + 𝜆ଵ𝑝) − 𝜆ଶ(1 − 𝑝) −
఑ ௖ఛ

ௗ
ቁ  

 
                (a)                                                                                        (b) 

Figure 2: Phase diagram in headway-sensitivity for different values of (a) Traffic interruption probability (IP) 𝒑 and  
                 (b) Electronic throttle angle (ET) 𝜿 



 

  

and 

𝑉′(ℎ) =
𝑑𝑉൫𝑠௝൯

𝑑𝑠௝

ห 𝑠௝ = ℎ , 𝑉′′′( ℎ) =
𝑑ଷ𝑉൫𝑠௝൯

𝑑𝑠௝
ଷ ห𝑠௝ = ℎ  

By considering traffic flow near the critical point 𝑎௖
𝑎ൗ = (1 + 𝜖ଶ), 𝑎௖ =

(ଷାఒభ௣)௏ᇲ(௛೎)ି
మഉ ೎

೏
(ଵାఒభ௣)

(ଵାఒభ௣)మାଶ(ଵାఒభ௣)ఒమ(ଵି௣)
 and taking  

𝑏 =
௏ᇲ(௛೎)

ଵାఒభ௣
 into Eq. (18), we obtained the following equation after neglecting the terms of second and third orders of 𝜖 

as 

𝜖ଷ(𝜕்  𝑅 − 𝑞ଵ𝜕௑
ଷ𝑅 + 𝑞ଶ𝜕௑𝑅ଷ) + 𝜖ହ(𝑞ଷ𝜕௑

ଶ𝑅 + 𝑞ସ𝜕௑
ସ𝑅 + 𝑞ହ𝜕௑

ଶ𝑅ଷ) = 0                                          (19) 

where 

       𝑞ଵ =
௕యఛ೎

మ

଺
(7 + 𝜆ଵ𝑝) −

௏ᇲ(௛೎)
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   The following transformation (Change of scale variable) is applied to Eq. (19) to obtain the mKdV equation 

                              𝑇෨ =
ଵ

௤భ
𝑇, 𝑅෨ = ට

௤భ

௤మ
𝑅                                                                                                       (20) 

Therefore, the standard mKdV equation with such a 𝑂(𝜖) correction term is given as  

𝜕 ෨் 𝑅෨ = 𝜕௑
ଷ𝑅෨ − 𝜕௑𝑅෨ଷ − 𝜖 ൬

𝑞ଷ

𝑞ଵ

𝜕௑
ଶ𝑅෨ +

𝑞ସ

𝑞ଵ

𝜕௑
ସ𝑅෨ +

𝑞ହ

𝑞ଵ

𝜕௑
ଶ𝑅෨ଷ൰                                          (21) 

If the term 𝑂(𝜖) is neglected, the “kink-antikink” soliton is defined as  

𝑅෨଴൫𝑋, 𝑇෨൯ = √𝑐~ tanh ට
𝑐

2
൫𝑋 − 𝑐𝑇෨൯                                                                               (22) 

By using  𝑅෨଴(𝑋, 𝑇෨)  and determining propagation velocity 𝑢, the kink solution must satisfy the solvability criteria 

                         ൫𝑅෨଴, 𝑀[𝑅෨଴]൯ ≡ ∫ 𝑅෨଴
ஶ

ିஶ
𝑀[𝑅෨଴]𝑑𝑋 = 0                                                                             (23) 

where 𝑀[𝑅෨଴] = ቀ
௤య

௤భ
𝜕௑

ଶ 𝑅෨ +
௤ర

௤భ
𝜕௑

ସ𝑅෨ +
௤ఱ

௤భ
𝜕௑

ଶ𝑅෨ଷቁ. 

We determine propagation velocity u as a result of the method mentioned in Ref. [38]: 

                          𝑢 =
ହ௤మ௤య

ଶ௤మ௤రିଷ௤భ௤ఱ
                                                                                                    (24) 

As a result, the following is the general kink-antikink solution: 

   𝑠௝(�̃�) = ℎ௖ ± ඨ
𝑞ଵ𝑢

𝑞ଶ

൬
𝜏

𝜏௖
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𝜏
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− 1൰ �̃� + 𝑗൨                           (25) 

The amplitude is  

                                  𝐴ሚ = ට
௤భ௨

௤మ
ቀ

ఛ

ఛ೎
− 1ቁ                                                                                       (26) 

The presence of both jammed and free flow phases, characterized by 𝑠௝ = ℎ௖ ±  𝐴ሚ, demonstrate the coexistence of curves. 
Consequently, the jamming transition can be effectively described using the mKdV equation. In the parameter space 



 

  

(ℎ௖ , 𝑎௖), Fig. 2 illustrates the replication of neutral stability curves (solid lines) with coexisting curves (dotted lines) 
through nonlinear analysis. These curves correspond to the two coexisting phases: the freely flowing phase at low density 
and the congested jam at high density, which are represented by the “kink-antikink” solution. The nonlinear analysis 
suggests that the solution of the mKdV equation, near the critical point, effectively represents the propagating characteristic 
of traffic jams. 

V. NUMERICAL SIMULATION 

In this section, numerical simulations under periodic boundary conditions are performed using Eq. (8). To study the spatial-
time development of the headway, a small disturbance will be introduced to the uniform flow. The initial conditions for the 
study are as follows: 

        𝑠௝(0) = 𝑠௝(1) = 𝑠௝(2) = 4.0,    (𝑗 ≠  50,51) 

        𝑠௝(0) = 𝑠௝(1) = 𝑠௝(2) = 4.0 + 𝐴 ,    (𝑗 = 50) 

        𝑠௝(0) = 𝑠௝(1) = 𝑠௝(2) = 4.0 − 𝐴  ,   (𝑗 = 51) 

Other factors are set as 𝜆ଵ = 0.5, 𝜆ଶ  = 0.1, 𝑐 = 0.8, 𝑑 = 0.27 and 𝑎 = 1.6. 
When time �̃� = 10,300, the headway profiles correspond to the Figs. 2(a) and 2(b) are displayed in Figs. 3(a) and 3(b) 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 3(a) show that when a small perturbation is introduced to the conventional traffic flow, stop-and-go traffic 
congestion appears in the unstable region and expands downstream with time. As the value 𝑝 increases, the amplitude as 
well as the number of kink-antikink waves, decreases and if we enter into the stable region, the perturbation dies out which 
leads to uniform flow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a)                                                                                       (b) 

Figure 3: Headway evolution for different values of (a) Traffic interruption probability (IP) 𝒑 with fixed ET 𝜿 =  𝟎. 𝟏                                                       
(b) Electronic throttle angle (ET) 𝜿 with fixed IP 𝒑 =  𝟎. 𝟐 

 
(a)                                                                   (b)                                                                      (c) 

                     Figure 4: Headway evolution for different values of 𝒑 (a) 𝒑 = 𝟎 (b) 𝒑 =  𝟎. 𝟐 (c) 𝒑 =  𝟎. 𝟒 with fixed ET 𝜿 =  𝟎. 𝟏 



 

  

Figure 4 represents spatial-temporal evolution of the headway corresponding to Fig. 3(a) for 𝜅 = 0.1. As seen in Figs.  
4(a)-(b), the initial perturbation develops into congested flow in the form of kink waves that go backward and fluctuate 
close to the critical headway. As we reach into the stable region for 𝑝 = 0.4, it is clear from Fig. 4(c) that the congested 
flow converts into the uniform flow. Moreover, we can say that when the parameters set satisfies the stability criterion (15) 
the amplitude of stop-and-go waves dies out, representing a state of uniform flow and the traffic flow will continue in the 
stable state even in the presence of a small perturbation. Hence, to improve the stability of traffic flow, it is crucial to 
incorporate the traffic interruption probability into the car-following model. 
 
Figure 3(b) displays the headway profile for different values of 𝜅, for fixed 𝑝 = 0.2at �̃� = 10300 in respective of Fig. 2(b) 
which indicates that the amplitude of headway profile diminishes with increase in values of 𝜅 and flow become uniform for 
𝜅 = 0.3. Figure 5 depicts spatial-temporal evolution of the headway with different parameter 𝜅 in respect to Fig. 3(b) with  
fixed IP parameter value 𝑝 = 0.2. The initial perturbation evolves into a “kink-antikink” wave, which oscillates near the 
critical headway as shown in Figs. 5(a)-(c) the number of stop-and-go waves, as well as their amplitude, decreases with the 
increment in the value of 𝜅 which is remarkably similar to the solution of the mKdV equation because the stability criterion 
(15) does not satisfy. Figure 5(d) shows that once we approach in the stable zone for 𝜅 = 0.3 the congested flow 
transforms into a uniform flow. The smoothness and stability of traffic flow are thereby improved by including electronic 
throttle (ET) dynamics in the model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, under connected vehicles, the stability of traffic flow is enhanced by taking into account the traffic interruption 
probability with electronic throttle dynamics. As a result, the simulation findings are in accordance with the theoretical 
study. 
 
 

VI. CONCULSION 
 

  The increasing complexity of the modern traffic environment has led to a rise in the frequency of traffic 
interruptions. Due to the frequent occurrence of traffic interruptions, it is crucial to address this issue in traffic modeling 

 
(a)                                                                                            (b) 

 
(c)                                                                                           (d) 

Figure 5: Headway evolution for different values of 𝜿 with fixed interruption probability 𝒑 =  𝟎. 𝟐 (a) 𝜿 =  𝟎 (b) 𝜿 =  𝟎. 𝟏 (c) 𝜿 =  𝟎. 𝟐  
                (d) 𝜿 =  𝟎. 𝟑 



 

  

and car-following models. In this study, we developed a car-following model named the IP-ET model by considering the 
effect of traffic interruption probability with throttle angle under a connected vehicle environment, aiming to better 
understand and manage traffic flow. The stability of traffic flow has been subjected to analytical studies using both linear 
and nonlinear analyses. These analyses are crucial for understanding the behavior of traffic flow and assessing its stability 
under various conditions. In order to analyze nonlinear behavior, we obtained the mKdV equation to describe traffic 
behavior near critical points where interruptions are likely to occur. Moreover, increasing the control coefficient of the 
electronic throttle angle along with the interruption probability contributes to enhancing the stability of traffic flow. Also, 
the results from the numerical simulation demonstrate that incorporating both traffic interruption probability and throttle 
angle can effectively lessen and alleviate traffic congestion. These findings align remarkably well with the outcomes 
obtained from the analytical analyses. Thus, the findings demonstrate the potential of the proposed IP-ET model in 
improving the understanding and management of traffic flow in the context of connected and autonomous vehicles. 
Indeed, while the current study presents valuable insights into the impact of traffic interruption probability and throttle 
angle on traffic flow in a one-road system, there is significant potential for further advancements by extending the research 
to a road network setting. 
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