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ABSTRACT: Various problems of Statistics, Mathematics, Radio Physics, Nuclear Physics, Atomic Physics, Fluid
Mechanics, Engineering and Science can easily handle by applying integral transform techniques on their
mathematical models. Problems of heat equation, wave equation, Laplace equation, Helmholtz equation and
Schrodinger equation have solutions in terms of Bessel functions. To solve such equations by integral transform
methods, we need to know the integral transform of Bessel functions. In this chapter, authors determine the Rishi
transform of Bessel functions of first kind.
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1. INTRODUCTION: Nowadays integral transform methods have various applications to solve the problems of
engineering and science [1-2]. Researchers used different integral transform methods and solved various ordinary
differential equations [3-4]; partial differential equations [5]; Volterra integral equations [6-17, 40-42] and Volterra
integro differential equations [18-33]. Aggarwal with different scholars [34-39] determined the Kamal; Mahgoub;
Mohand; Aboodh; Elzaki and Sawi transforms of Bessel’s functions. The motive of the present chapter is to
determine the Rishi transform of Bessel function of first kind of orders zero, one and two.
2.NOMENCLATURE OF SYMBOLS:
Y, Rishi transformoperator;
Y1, inverse Rishi transform operator;
N, the set of natural numbers;
€, belongs to;
I, the usual factorial notation;
T, the classical Gamma function;
R, the set of real numbers;
1., @®), Bessel function of first kind of order n;
Jo(®), Bessel function of first kind of order zero;
J,(@®, Bessel function of first kind of order one;
J,(@®), Bessel function of first kind of order two
3.DEFINITION OF RISHI TRANSFORM:
The Rishi transform of a piecewise continuous exponential order function F (t),t = 0 is given by [41]

YF®} = (%) [ Fwe@dar =1(e,0), £> 0,0 >0 )
4. INVERSE RISHI TRANSFORM [42]:

The inverse rishi transformof T (e, o), designated by Y ~*{T'(¢, )}, is another function F (¢) having the property that
Y{F)}=T(, 0).
Some useful operational characteristics of Rishi transform, Rishi transforms of some fundamental functions and
their inverse Rishi transforms are summarized in the Tables1-3 respectively.

Table-1: Some operational characteristics of Rishitransform [42]

S.N. Name of Characteristic Mathematical Form

1 Linearity YU, kF (8) } = X7y k; Y{E (¢)}, where k; are arbitrary
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constants
2 Change of Scale IFY(F(6)} =T (e, 0) then Y(F (kt)} = =T (%, 0)
3 Translation If Y{F (t)} = T (e, 0) then
(ver0) = () 16 —ko,0))
4 Convolution IFY{F, ®©} = T,(,0) and Y{E, )} = T, (¢, o) then
(5@ + R0} =[(2) .0 T, 0]}

Table-2: Some fundamental functions and their Rishi transform [40-43]

S.N. F),t >0 Y{F(t)} = T(e, 0)
1 1 2%
()
2 elt 0'2
ele —lo)
3 tP,p €N a\P*2
g o ()
4 tP,p>—-1,p€ER o\P+e
- 'p+1
Bl
5 sin (It) Io?
e(e? + g212)
6 cos(lt) o*
(2 +0212)
7 sinh(It) lo3
e(e2 —g2]2)
8 cosh(it) o”
(e2 —g212)

Table-3: Inverse Rishi transformations of some fundamental functions [42]

S.N. T (e, 0) F(t) =Y HT(e, 0)}
1 [ 1
()
2 o okt
ele —lo)
3 o\Pt2 tP
(;) ,PEN ;
4 o\P+2 tP
(3) p>-1per TG D
z 53 sin(t)
e(e? + 0212) l
6 o’ cos(it)
(2 4+ 0212)
2 P sinh (It)
e(e? — g2]2) l
) o? cosh(it)
(2 — g2]2)

5.RISHI TRANSFORM OF DERIVATIVES OF A FUNCTION [43]:

If Y{IF(¢)} = T (e, o) then




D YF©) = (9160 -(2) FO,

a

b) Y(F ©)=(2) T6,0) - FO - (2) F©.

0 YIF' ©)} = (;)3 T(e,0) - (£) F(0) - F'(0) - (i)_1 F'(0).

6. BESSEL FUNCTIONS OF FIRST KIND [35-39]:
Bessel’s function of first kind of order n, where neN is given by
t" ¢2 4 ¢©
Jn © = Mt {1 T 2.Gn+2) + 240012 2ntd)  2.4.62n+2)Cn+9Cn +6) o }
Bessel’s function of first kind of zero order is given by
¢2 ¢ ¢0
Jo@® = {1 —mtag gaat }

Bessel’s function of first kind of order one is given by
5
t

t t 7
51 ©) = {E T2 T2ais  Zazeg }
Equation (4) can also be written as
t t3 55 t7
J1(® = {E “ Pt Bam Zaa T }
Bessel’s function of first kind of order is given by
t? I I 8
L0 ={=—o—+ TR

2246 224268 224262810

7.RELATIONBETWEEN J, (&) AND J,(¢t) [35]:
L] =1,
8. RELATIONBETWEEN J,(8) AND J,(¢t) [38]:

1,® =J,@® +2/,"®
9. RISHI TRANSFORM OF BESSEL FUNCTIONS OF FIRST KIND:

9.1 RISHI TRANSFORM OFBESSEL FUNCTION OF FIRST KIND OF ORDER ZERO J,(®):

Operating Rishi transformon both sides of (3), we have
2 4 6
Y@} =Y{1-5+ = -t}

2242 22422
Use of linearity property of Rishi transformon (9) gives

YU,0) = Y0 -y S+ v G - v )+
2 1 4 1 6 1 8
:>Y{]0(t)}=(g) —2—22!(2) + (g) —ma(g) + o
2 1,002 13,00% 13.5 06
:Y{]O(t)}=(%) [1—5(%) +ﬁ(g) _m(%) +]

= ¥U,@) = (2)°

- L\/:Ziaz]

IJH@‘

9.2 RISHI TRANSFORM OFBESSEL FUNCTION OF FIRST KIND OF ORDER ONE J, (t):

Operating Rishi transformon both sides of (7), we have

Y{< 1,01} = —Y(, (0}

Use of Rishi transform of derivatives of a function property in (11) gives
() YU @3 - () 1o = ¥,

Use of (3) and (10) in (12) provides

Ol=—]- O -~

evVer + o2
2
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=01 =) - ()| =]
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9.3 RISHI TRANSFORM OFBESSEL FUNCTION OF FIRST KIND OFORDER TWO J, (t):

Operating Rishi transformon both sides of (8), we have

Y{,®3} =Y, ©® + 2/, ®}

Use of linearity property of Rishi transformon (14) gives

Y{,®} =Yy, + 2v{y, ®©}

Use of Rishi transform of derivatives of a function property in (15) gives

2 -1,
Y0, 03 = Y, 03 +2[() Y0, 03 1, ~ (£) 1, O]
Use of (3), (7) and (10) in (16) provides

2 - 2 52 . -1
V0,00 = |72 +2[) [75] -1+ () o)
Using (4) in (17), we have
Y{()}[UZ ]2[ : ]1
t)i=|l——+2||—|-
N Y{]Z (t)} — [U +2¢2 —ZZi\/US +0 ]
9.4 RISHI TRANSFORM OF ekt (¢):
From (10), we have
g

Y{/,®} = [—]

= | Ve s o
Using translation property of Rishi transform on above equation, we have

0.2

e — ko
Y kt - |:
e, ®) ( € ) (e — ko)y/(e —ko)?2 + g2

ﬁY{ektjo(t)} = [m]
9.5 RISHI TRANSFORM OF e*tJ, (t):
From (13), we have
2 2
Y{, ()} = [M
eve? + g2
Using translation property of Rishi transform on above equation, we have

o(VE— k)2 + a2~ (e~ ko)

(e — ko) (e — ko) + o2

Yl /) = (7

it a(\/ (e—ka)2+02 7(£7ka))
=V O = |~ =

9.6 RISHI TRANSFORM OF e*tJ,(t):
From (18), we have

_ 2 2
YU,0) = [a +2e?—2eVe? + o ]

eVe? + o2
Using translation property of Rishi transform on above equation, we have

g — ko |0% + 2(e — ko)? — 2(e — ko)+/ (e — ko)? + o2
Y{ek],([®)} =
el < € ) (e — ko) /(e — ko)? + o2

13)

(14)

(15)

(16)

17

(18)

(19)

(20)



o2 —ko)?— —ka)+/(e—ka)2 +o2
:>Y{€kt]2(t)}= [ +2(e—ko)*—2(e—ka)/(e—ko)? + (21)

s\/(e—ka)2+dz
9.7 RISHI TRANSFORM OF J, (kt)
From (10), we have

0.2
0,01 = [

Using change of scale property of Rishi transform on above equation, we have
1 o? ]
2l ez

(GNGEEE

0_2
= Yo ()} = |- 22
9.8 RISHI TRANSFORM OF J, (kt):
From (13), we have
o(Ve?+ 0% —¢
Y{,®} = [—)
eVe? + o2

Using change of scale property of Rishi transform on above equation, we have

o+
B~

Y{,(kt)} =

1
Y{,(kt)} = =

1 LT(\/ 82+k2U2—8)
= Y{J,(kt)} = P N (23)
9.9 RISHI TRANSFORM OF J, (kt):
From (18), we have
02+ 2e%—2eVe? ¥ o2
Y{,®} =
eVel + o2
Using change of scale property of Rishi transform on above equation, we have
[ 205 (&2 _ 5 (&) [(EV 4 2]
1|9 +2(k) ‘Z(k) (k) t+o?
Y{,kt)}=—
k2 < a2 ,
NGRS
1 [k 62 +2e2-2ev e2+Kk2 62
=Y{,kt)} = = [ T ] (24)

10. CONCLUSION: In this chapter, authors successfully determined the Rishi transform of Bessel’s functions of
first kind of order zero, one and two i.e. J,(¢),/;(t) and J;(t). Authors also obtained the Rishi transform of
ek J @), ek 1, @), e 1, @), ], (kt), ], (kt) and J,(kt) using translation and change of scale properties of Rishi
transform. These results are important for determining the solutions of Bessel’s equations and evaluating the
improper integrals which contain Bessel’s functions.
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