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Abstract— This paper investigates the stability of an 

isolated fractional-order power system. A novel fractional-

order mathematical model of the power system is built from an 

engineering application perspective. The model is described by 

state-space equations and is composed of the power system, 

governor, turbine equation. Based on stability theory for a 

fractional-order nonlinear system, the stable region of the 

power system is investigated by Matignon stability theory. The 

simulation results of fractional and integer order power system 

has been studied and compare.  
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I. INTRODUCTION  

In the last few decades, engineering scholars have paid a 

lot of attention to fractional-order systems (FOS) because of 

the growth of the theory of fractional calculus. These kinds 

of systems have been used in many real-world situations, 

such as power systems, brushless DC motor systems, and 

chaotic systems [1]. Everyone knows that the fractional-

order dynamic model of the system can describe physical 

events more accurately than the integer-order model [1-3]. 

Based on what was found in the past [2], the power system 

is part of an FOS. In the past, however, most research was 

done on power systems with integer orders [4,5]. Fractional-

order controllers (FOC) [4, 5] have recently been studied 

and used in power systems. In [4, 5], the FOC were looked 

at from both a theoretical and a practical implementation 

point of view. In [5], an adaptive FOC was made to solve 

the problem of controlling the grid frequency in a power 

system with a wind turbine. But in these works [4, 5], the 

only model of the system that is looked at is the order of 

integers. So, even though research is done on the stability 

and fractional-order control of integer-order power systems, 

the stability of fractional-order power systems is still not 

well understood. 

Novel contribution of presented work described below: 

i. A novel fractional-order mathematical model of an 

isolated power system is built. 

ii. The stability of the fractional-order power system is 

analyzed based on stability theory for a fractional-

order nonlinear system. 

iii. The stable region of the fractional-order power system 

is investigated in detail. 

iv. Fractional-order modeling of isolated power system 

based on fractional calculus (using ‘FOTF’ and ‘FDE 

12’ MATLAB command. 

 

 

The remainder of the paper is structured as follows. Section 

2 presents the mathematical model of the fractional-order 

power system. Section 3 discusses the fractional-order 

system stability. Section 4 contains the simulation results 

and a comparative commentary. Section 5 provides 

conclusion of the presented work. 

II. ISOLATED FRACTIONAL-ORDER MODEL OF POWER 

SYSTEM 

The linearized model can be developed to study the 

dynamic performance of isolated FoPS. The controller 

designed for frequency regulation has been derived from the 

linearized model. The conventional single area thermal 

power system model is shown in Fig. 1 
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Where , and   are the deviation in turbine output, 

frequency, governor valve position, and integral 

control, respectively,   is the deviation in load,   and   

are the time constants of power system, governor, and 

turbine, respectively. 

The state-space equation of FO system is given as 

( ) ( ) ( ) ( )D x t Ax t Bu t F d t                 (5)   
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Fig. 1 Fractional-order power system model   

III. FRACTIONAL-ORDER SYSTEMR’S STABILITY 

     When discussing dynamical systems and their 

behaviours, one of the most frequently used terms in 

literature is "stability." In mathematics, stability theory is 

concerned with the convergence solutions of differential or 

difference equations. If the roots of the characteristics 

polynomial have a negative real part, the system (LTI) is 

said to be stable. The stability of a FO system (LTI) differs 

from that of an IO system. It is important to note that the 

roots of a FO system may lie on the right half of the 

complex plane (Fig. 2). 

 

Theorem [3]: - As per the stability theory developed by 

Matignon, the FO transfer function(FOTF) 
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Fig. 2: Stable and unstable region of FO system [3] 

 

 

IV. SIMULATION RESULTS  

The fractional-order transfer function model of isolated 

FOPS with fractional operator   is given in Eq. 6 & 7 

respectively. The pole locations of the system (illustrated in 

Figs. 2 & 3) reveal that no poles are situated in the complex 

plane's unstable zone, which is represented by the shaded 

region of the complex plane. As a result, it is certain that the 

system is stable 
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Fig. 3 FO system’s stability  with 0.95   

 

 Fig. 4 FO system’s stability  with 0.85   

 

For the verification of stability and accuracy of FO calculus, 

we have plotted the output of isolated FOPS (given in Fig. 5 

and Fig. 6). The frequency deviation of IOPS with IO 

calculus (‘ODE 23’ MATLAB command) and FO calculus 

(‘FDE 12’ MATLAB command) is same, which confirms 

the FO calculus accuracy. Furthermore, a plot of frequency 

deviation FOPS with different values of fractional 

parameters such as   is given in Fig. 6. 

 



 

Fig. 5 Frequency deviation of FoPS with 1   

 

Fig. 6 Frequency deviation of FoPS with  1, 0.95, 0.85   

V. CONCLUSION 

In this brief, modelling and stability of isolated fractional-

order power system. The relevant stability results were 

obtained by using fractional-order stability theory [3].The 

pole locations of the system reveal that no poles are situated 

in the complex plane's unstable zone, which is represented 

by the shaded region of the complex plane. As a result, it is 

certain that the system is stable. The frequency deviation of 

IOPS with IO calculus and FO calculus is same, which 

confirms the accuracy of FO calculus. Furthermore, plot of 

frequency deviation FOPS with different value of fractional 

parameters has plotted 

 

Appendix 

System parameters 

       
g p=0.075s, =0.27s, =115, =2.4, =15s, =0.6t p eT T K R T K  
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